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Abstract. We introduce and analyze a discontinuous Galerkin method for the numerical dis-
cretization of a stationary incompressible magnetohydrodynamics model problem. The fluid un-
knowns are discretized with inf-sup stable discontinuous P3

k
−Pk−1 elements whereas the magnetic

part of the equations is approximated by discontinuous P3
k
−Pk+1 elements. We carry out a complete

a-priori error analysis and prove that the energy norm error is convergent of order O(hk) in the mesh
size h. We also show that the method is able to correctly capture and resolve the strongest magnetic
singularities in non-convex polyhedral domains. These results are verified in a series of numerical
experiments.
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1. Introduction. Incompressible magnetohydrodynamics (MHD) models the
interaction of viscous, electrically conducting incompressible fluids with electromag-
netic fields. It has a number of technological and industrial applications such as
metallurgical engineering, electromagnetic pumping, stirring of liquid metals, and
measuring flow quantities based on magnetic induction; cf. [15, 20].

The numerical simulation of incompressible MHD problems requires discretiz-
ing a system of partial differential equations that couples the incompressible Navier-
Stokes equations with Maxwell’s equations. Various finite element methods (FEM)
can be found in the literature where the magnetic field is approximated by standard
nodal (i.e., H1-conforming) finite elements, see, e.g., [2, 19, 22, 23] and the references
therein. However, in non-convex polyhedra of engineering interest, the magnetic field
may have regularity below H1 and a nodal FEM discretization, albeit stable, can
converge to a magnetic field that misses certain singular solution components induced
by reentrant vertices or edges; see [14]. In the recent work [35], this drawback of nodal
elements was overcome by the use of Nédélec elements for the approximation of the
magnetic field. Thereby, a new variational setting for the formulation of incompress-
ible MHD problems was proposed. This framework is based on a mixed approach
for the discretization of the Maxwell operator and introduces a Lagrange multiplier
related to the divergence constraint of the magnetic field, cf. [26, 32].

Over the last two decades, discontinuous Galerkin (DG) methods have become an
integral part of computational fluid mechanics and computational electromagnetics,
see [11, 12, 13, 17, 25] and the references therein. DG methods are extremely versatile
and flexible; they can deal robustly with partial differential equations of almost any
kind, as well as with equations whose type changes within the computational domain.
Their intrinsic stability properties make them naturally suited for problems where
convection is dominant. Moreover, discontinuous Galerkin methods can easily handle
irregularly refined meshes and variable approximation degrees (hp-adaptivity). The
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DG approximations of magnetic or electric fields can be based on standard polynomial
shape functions, in contrast to curl-conforming or divergence-conforming elements
commonly used in computational electromagnetics. DG methods have already been
successfully applied to both ideal and viscous compressible MHD problems [31, 37].

In this paper, we propose and analyze an interior penalty discontinuous Galerkin
method for a linearized incompressible MHD model problem based on the mixed
formulation introduced in [35]. Our method roots in the DG discretizations that
have been developed recently for incompressible flow problems and Maxwell’s equa-
tions. More specifically, the fluid unknowns are approximated using mixed discon-
tinuous P3

k − Pk−1 elements [8, 9, 36] while the magnetic variables are discretized
with the P3

k − Pk+1 element pair proposed and analyzed in [28, 29], see also [27].
We carry out a complete a-priori error analysis for the proposed DG method, and
show that the energy error in the velocity and the L2-norm error in the pressure are
optimally convergent of order O(hk) in the mesh size h. Moreover, the energy errors
in the magnetic field and the magnetic multiplier are proven to converge with the
order O(hk) as well. While this order is optimal for the magnetic field, it is slightly
suboptimal for the error in the multiplier. This is due to the fact that polynomi-
als of degree k + 1 are used for the approximation of the magnetic multiplier. The
same suboptimality phenomenon is observed when using the second family Nédélec
element pair [32]. On the other hand, the use of polynomials of degree k + 1 in the
approximation of the magnetic multiplier ensures optimality of the L2-norm error of
the magnetic field [27, 28]. Our results also show that the proposed DG method is
able to correctly resolve the strongest magnetic singularities in non-convex polyhedral
domains, in contrast to nodal elements that are often used for the approximation of
the magnetic field.

The rest of the paper is organized as follows. In Section 2, we begin by introducing
an interior penalty discontinuous Galerkin finite element method for the discretization
of an incompressible MHD model problem. In Section 3, our main results are stated
and discussed: a-priori error estimates for the method under consideration. Section 4
is devoted to the detailed proof of these results. In Section 5, we present a series
of numerical experiments validating our theoretical results. Finally, we present some
concluding remarks in Section 6.

2. Discontinuous Galerkin discretization of a model problem. In this
section, we formulate a linearized MHD model problem and present its weak formu-
lation. Then we discretize it using an interior penalty discontinuous Galerkin finite
element method.

2.1. An MHD model problem. We consider the following linear and station-
ary MHD system based on the mixed formulation proposed in [35]: find the velocity
field u, the pressure p, the magnetic field b, and the scalar potential r such that

− ν∆u + (w · ∇)u + γu + ∇p− κ (∇× b) × d = f in Ω, (2.1)

κ νm ∇× (∇× b) + ∇r − κ∇× (u × d) = g in Ω, (2.2)

∇ · u = 0 in Ω, (2.3)

∇ · b = 0 in Ω. (2.4)

Here, we take Ω to be a Lipschitz polyhedron in R
3. We assume that Ω is simply-

connected, and that its boundary Γ is connected. The function w ∈ L∞(Ω)3 is
a prescribed convective field with ∇ · w ∈ L∞(Ω)3, and d ∈ L∞(Ω)3 is a given
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magnetic field. Typically these fields come from a linearization process. The right-
hand sides f and g are vector-valued source terms in L2(Ω)3. The scalar function γ
belongs to L∞(Ω). We further assume that there is a positive constant γ⋆ such that

γ0(x) := γ(x) − 1

2
∇ · w(x) ≥ γ⋆ > 0, x ∈ Ω. (2.5)

Without loss of generality, we may assume that the size of Ω, and the magnitudes of w

and d are of order one. Then the equations contain three characteristic parameters:
The quantity ν−1 is the hydrodynamic Reynolds number Re which represents the
ratio of inertial forces to viscous forces. The second parameter ν−1

m is the magnetic
Reynolds number Rm. It measures how much the magnetic field will be influenced
by the flow motion. The third parameter κ is the coupling number. The coupling
number κ is typically expressed as a function of the so-called Hartmann number Ha:

κ = ννmHa2. (2.6)

The parameter Ha is a measure of the ratio of electromagnetic forces to viscous forces.
Remark 2.1. In this paper, we will focus on the case where the magnitudes of Rm

and κ are of order one, whereas Re can be substantially larger, as is the case in many
engineering applications. For example, in aluminum electrolysis, Re is around 105,
while the values of Rm and κ are in the range of 10−1 and 1, respectively. We refer
the reader to [2] and [4] for the orders of magnitude of these parameters in other
cases. For simplicity, we will thus not make explicit our error estimates with respect
to νm and κ.

We suppose that the boundary Γ of Ω can be partitioned into two disjoint parts.
That is, we have Γ = ΓD ∪ΓN with ΓD ∩ΓN = ∅. Throughout, we assume that ΓD is
non-empty and satisfies

∫
ΓD

ds > 0. We then supplement the MHD system (2.1)–(2.4)
with the following boundary conditions:

u = uD on ΓD, (2.7)

(pI − ν∇u)n = pNn on ΓN , (2.8)

n× b = n× bD on Γ, (2.9)

r = 0 on Γ. (2.10)

Here, I is the identity matrix in R
3×3 and n is the unit outward normal vector on Γ.

We assume that pN ∈ L2(ΓN ). Moreover, we assume that the boundary data uD

and bD can be extended to functions in Ω, also denoted by uD and bD, so that

uD ∈ H1(Ω)3 ∩H(div0; Ω), bD ∈ H(curl; Ω) ∩H(div0; Ω), (2.11)

where

H(curl; Ω) =
{
b ∈ L2(Ω)3 : ∇× b ∈ L2(Ω)3

}
,

H(div0; Ω) =
{
b ∈ L2(Ω)3 : ∇ · b = 0 in Ω

}
.

For the velocity datum uD, a lifting of this type has been constructed in [21, Lemma
IV.2.3] (when ΓN = ∅). For the lifting of bD, we refer to [34, Proposition A.1].
Finally, we notice that, if ΓN = ∅, the datum uD must satisfy the compatibility
condition

∫
Γ

uD · n ds = 0.
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We also define the inflow and outflow boundaries of Ω as

Γ− = {x ∈ Γ : w(x) · n(x) < 0 } and Γ+ = {x ∈ Γ : w(x) · n(x) ≥ 0 },

respectively. We adopt the (physically reasonable) hypothesis that

w(x) · n(x) ≥ 0 for all x ∈ ΓN . (2.12)

Obviously, we then have Γ− ⊆ ΓD.

Remark 2.2. We point out that the MHD system (2.1)–(2.4) is a linearized
version of the fully non-linear stationary MHD system studied in [35]. Indeed, using
a Picard-type iteration procedure for the non-linear equations in [35] yields a linear
problem of the form (2.1)–(2.4) in each iteration step.

As in [35], we use a mixed approach to discretize the Maxwell operator; see
also [26, 32]. This has the advantage that the strongest magnetic singularities can
be correctly captured and resolved in non-convex domains, in contrast to classical
approaches that employ nodal elements and regularization of the electrostatic equa-
tion (2.2). The scalar potential r is the Lagrange multiplier associated with this mixed
formulation. By taking the divergence of (2.2), we see that

−∆r = ∇ · g in Ω, r = 0 on Γ. (2.13)

In particular, we have r = 0 provided that the function g is divergence-free. In this
case, the MHD problem (2.1)–(2.4) is the same as the linearized version of the one
considered in [23] or the one studied in [19].

2.2. Weak formulation. On introducing the Sobolev spaces

V =
{
u ∈ H1(Ω)3 : u = 0 on ΓD

}
,

C = {b ∈ H(curl; Ω) : n × b = 0 on Γ } ,
S = H1

0 (Ω),

and the pressure space

Q =

{
L2

0(Ω) = { u ∈ L2(Ω) : (u, 1)Ω = 0 } if ΓN = ∅,
L2(Ω) otherwise,

the weak formulation of the incompressible MHD system (2.1)–(2.4) consists in find-
ing (u,b, p, r) ∈ H1(Ω)3×H(curl; Ω)×Q×S, with u = uD on ΓD and n× b = n × bD

on Γ, such that

A(u,v) +O(u,v) + C(v,b) +B(v, p) = (f ,v)Ω − 〈pNn,v〉ΓN
, (2.14)

M(b, c) − C(u, c) +D(c, r) = (g, c)Ω, (2.15)

B(u, q) = 0, (2.16)

D(b, s) = 0, (2.17)
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for all (v, c, q, s) ∈ V × C ×Q× S. Here, the bilinear forms are given by

A(u,v) =

∫

Ω

ν∇u : ∇v dx,

O(u,v) =

∫

Ω

( (w · ∇)u + γ u) · v dx,

M(b, c) =

∫

Ω

κ νm(∇× b) · (∇× c) dx,

C(v,b) =

∫

Ω

κ (v × d) · (∇× b) dx,

B(u, q) = −
∫

Ω

(∇ · u) q dx,

D(b, s) =

∫

Ω

b · ∇s dx.

(2.18)

The well-posedness of this problem follows from the theory of mixed finite elements [6]
and well-known stability properties, taking into account assumptions (2.5), (2.11)
and (2.12). We also refer to [35] for the well-posedness of a closely related non-linear
incompressible MHD problem.

2.3. Discretization. We now introduce a discontinuous Galerkin discretization
for the incompressible MHD problem (2.1)–(2.4).

2.3.1. Meshes and finite element spaces. We consider a family of regular
and shape-regular triangulations Th that partition the domain Ω into tetrahedra {K}.
We denote by FI

h the set of all interior faces of Th, and by FB
h the set of all boundary

faces. We always assume that FB
h can be divided into two disjoint sets FD

h and FN
h of

Dirichlet and Neumann faces, respectively. That is, we assume that FB
h = FD

h ∪ FN
h

where

ΓD = ∪F∈FD

h

F , ΓN = ∪F∈FN

h

F . (2.19)

As usual, hK denotes the diameter of the element K, and hF is the diameter of the
face F . The mesh size of Th is given by h = maxK∈Th

hK . Finally, we write nK to
denote the outward unit normal vector on the boundary ∂K of the element K.

Next, we introduce the average and jump operators. To do so, let F = ∂K ∩ ∂K ′

be an interior face shared by K and K ′ and let x ∈ F . Let ϕ be a generic piecewise
smooth function and denote by ϕ and ϕ′ the traces of ϕ on F taken from within the
interior of K and K ′, respectively. Then, we define the mean value {{·}} at x ∈ F as

{{ϕ}} =
1

2
(ϕ+ ϕ′).

Furthermore, for a piecewise smooth scalar function u, we define the (vector-valued)
jump [[·]] at x ∈ F as

[[u]] = unK + u′ nK′ .

Similarly, if u is a piecewise smooth vector-valued function, we define the following
three types of jumps:

[[u]] = u⊗nK + u′ ⊗nK′ , [[u]]T = nK ×u +nK′ ×u′, [[u]]N = u ·nK + u′ ·nK′ ,
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where u ⊗ n = (uinj)1≤i,j≤3. Note that [[u]]T and [[u]]N denote the tangential and

normal jumps, respectively, whereas [[u]] is the full jump in all the components of the
vector field u. On a boundary face F = ∂K ∩ Γ, we set accordingly

{{ϕ}} = ϕ, [[u]] = un, [[u]] = u ⊗ n, [[u]]T = n × u, [[u]]N = u · n.

Here, we recall that n is the unit outward normal on the boundary Γ.

For k ≥ 1, we now wish to approximate the solution (u,b, p, r) of the MHD
problem (2.1)–(2.4) by finite element functions (uh,bh, ph, rh) ∈ Vh ×Ch ×Qh ×Sh,
where

Vh =
{
u ∈ L2(Ω)3 : u|K ∈ Pk(K)3, K ∈ Th

}
,

Ch =
{
b ∈ L2(Ω)3 : b|K ∈ Pk(K)3, K ∈ Th

}
,

Qh = { p ∈ Q : p|K ∈ Pk−1(K), K ∈ Th } ,
Sh =

{
r ∈ L2(Ω) : r|K ∈ Pk+1(K), K ∈ Th

}
,

(2.20)

with Pk(K) denoting the polynomials of total degree at most k on K.

2.3.2. Interior penalty formulation. We consider the following discontinuous
Galerkin method: find (uh,bh, ph, rh) ∈ Vh × Ch ×Qh × Sh such that

Ah(uh,v) +Oh(uh,v) + Ch(v,bh) +Bh(v, ph) = Fh(v), (2.21)

Mh(bh, c) − Ch(uh, c) +Dh(c, rh) = Gh(c), (2.22)

Bh(uh, q) = 〈uD · n, q〉ΓD
, (2.23)

Dh(bh, s) − Jh(rh, s) = 0 (2.24)

for all (v, c, q, s) ∈ Vh × Ch ×Qh × Sh.

Here, the forms related to the discretization of the Oseen operator are the ones
proposed and studied in [8, 9, 24, 36]. The form Ah associated with the Laplacian is
chosen to be the standard interior penalty form:

Ah(u,v) =
∑

K∈Th

∫

K

ν∇u : ∇v dx −
∑

F∈FI

h
∪FD

h

∫

F

{{ν∇u}} : [[v]] ds

−
∑

F∈FI

h
∪FD

h

∫

F

{{ν∇v}} : [[u]] ds+
∑

F∈FI

h
∪FD

h

νa0

hF

∫

F

[[u]] : [[v]] ds.

(2.25)

The parameter a0 > 0 is a stabilization parameter; it has to be chosen larger than a
threshold value which is independent of the mesh size and ν, νm and κ, see Propo-
sition 3.1 below. For the convective form, we take the usual upwind form defined
by

Oh(u,v) =
∑

K∈Th

∫

K

((w · ∇)u + γ u) · v dx

+
∑

K∈Th

∫

∂K−\Γ−

w · nK(ue − u) · v ds−
∫

Γ−

w · nu · v ds.
(2.26)
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Here, we denote by ue the value of the trace of u taken from the exterior of ele-
ment K. Moreover, we set ∂K− and ∂K+ to be the inflow and outflow boundaries
of K, respectively, with respect to w. They are defined by

∂K− = {x ∈ ∂K : w(x) · nK(x) < 0 }, ∂K+ = {x ∈ ∂K : w(x) · nK ≥ 0 }.

Upon integration by parts, the form Oh can be written as

Oh(u,v) = −
∑

K∈Th

∫

K

(w · ∇)v · u dx +
∑

K∈Th

∫

K

(γ −∇ · w)u · v dx

+
∑

K∈Th

∫

∂K+\Γ+

w · nKu · (v − ve) ds+

∫

Γ+

w · nu · v ds.
(2.27)

The form Bh related to the divergence constraint −∇ · u = 0 is defined by

Bh(u, q) = −
∑

K∈Th

∫

K

(∇ · u) q dx +
∑

F∈FI

h
∪FD

h

∫

F

{{q}}[[u]]N ds. (2.28)

Next, we introduce the forms for the discretization of the Maxwell operator. Our
choice corresponds to the non-stabilized P3

k −Pk+1 interior penalty methods proposed
and analyzed in [28, 29]. The form Mh related to the curl-curl operator is given by

Mh(b, c) =
∑

K∈Th

∫

K

κ νm(∇× b) · (∇× c) dx −
∑

F∈Fh

∫

F

{{κνm∇× b}} · [[c]]T ds

−
∑

F∈Fh

∫

F

{{κνm∇× c}} · [[b]]T ds+
∑

F∈Fh

κνm
m0

hF

∫

F

[[b]]T · [[c]]T ds.

(2.29)

The last term in Mh penalizes the tangential jump of the magnetic field. As for the
diffusion form, to ensure stability, the stabilization parameter m0 > 0 must be chosen
large enough, independently of the mesh size and the parameters ν, νm, and κ, see
Proposition 3.1 below.

The form Dh associated with the constraint −∇ · b = 0 is defined by

Dh(b, s) =
∑

K∈Th

∫

K

b · ∇s dx −
∑

F∈Fh

∫

F

{{b}} · [[s]] ds. (2.30)

The form Jh is a stabilization term that ensures theH1-conformity of the multiplier rh.
It is given by

Jh(r, s) =
∑

F∈Fh

s0
κνmhF

∫

F

[[r]] · [[s]] ds, (2.31)

with s0 > 0 denoting a positive stabilization parameter. The dependence on νm and κ
is chosen so as to suitably balance the multiplier terms in our error analysis.

For the coupling form Ch in (2.21) and (2.22), we take a discontinuous Galerkin
version of the bilinear form C defined in (2.18), namely,

Ch(v,b) =
∑

K∈Th

κ

∫

K

(v × d) · (∇× b) dx −
∑

F∈FI

h
∪FN

h

κ

∫

F

{{v × d}} · [[b]]T ds. (2.32)
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Finally, the source terms Fh(v) and Gh(c) are given, respectively, by

Fh(v) =

∫

Ω

f · v dx −
∑

F∈FD

h

∫

F

ν∇v : (uD ⊗ n) ds

+
∑

F∈FD

h

νa0

hF

∫

F

uD · v ds−
∑

F∈FN

h

∫

F

κ(v × d) · (n × bD) ds

−
∫

Γ−

w · nuD · v ds−
∑

F∈FN

h

∫

F

pNn · v ds,

(2.33)

and

Gh(c) =

∫

Ω

g · c dx −
∑

F∈FB

h

∫

F

κνm(∇× c) · (n × bD) ds

+
∑

F∈FB

h

κνm
m0

hF

∫

F

(n × bD) · (n × c) ds

−
∑

F∈FD

h

∫

F

κ(uD × d) · (n× c) ds.

(2.34)

3. Main results. In this section, we present the main results of this paper. First,
we review the stability properties of the discontinuous Galerkin method proposed
in (2.21)–(2.24), and show that it has a unique solution. Then, we state and discuss
a-priori error estimates for the error measured in terms of a natural energy norm.

3.1. Stability. To discuss the stability properties of the discontinuous Galerkin
forms used in (2.21)–(2.24), we introduce several semi-norms and norms.

First, for the hydrodynamic velocity, we define

|u|2V ⊥ =
∑

F∈FI

h
∪FD

h

h−1
F ‖[[u]]‖2

L2(F ),

‖u‖2
1,h =

∑

K∈Th

‖∇u‖2
L2(K) + |u|2V ⊥ ,

‖u‖2
V = ν‖u‖2

1,h + ‖γ
1
2

0 u‖2
L2(Ω) +

1

2

∑

F∈Fh

‖|w · n| 12 [[u]]‖2
L2(F ).

In the last term in the definition of ‖ · ‖V , the vector n is any unit normal vector on
the face under consideration. For the pressure, we will use ‖p‖2

Q = ν−1‖p‖2
L2(Ω).

For the magnetic variables, we define the following semi-norms and norm:

|b|2C⊥ = κνm

∑

F∈Fh

h−1
F ‖[[c]]T ‖2

L2(F ),

|b|2C = κνm

∑

K∈Th

‖∇× b‖2
L2(K) + |b|2C⊥ ,

‖b‖2
C = κνm‖b‖2

L2(Ω) + |b|2C .
8



Finally, on the multiplier space, we introduce

|r|2S = κ−1ν−1
m

∑

F∈Fh

h−1
F ‖[[r]]‖2

L2(F ),

‖r‖2
S = κ−1ν−1

m

∑

K∈Th

‖∇r‖2
L2(K) + |r|2S .

Let us now recall some of the well-known stability properties for the discontin-
uous Galerkin forms involved. First, we state the following well-known coercivity
properties, see [3, 8, 28] and the references therein.

Proposition 3.1. There holds:

(i) Under assumption (2.5), there is a threshold value a0 > 0, independent of the
mesh size, ν, νm and κ, such that for every a0 ≥ a0 there is constant C > 0
independent of the mesh size, ν, νm and κ such that

Ah(u,u) +Oh(u,u) ≥ C‖u‖2
V , u ∈ Vh.

(ii) There is a threshold value m0 > 0, independent of the mesh size, ν, νm,
and κ, such that for m0 ≥ m0 there is a constant C > 0 independent of the
mesh size, ν, νm and κ such that Mh(b,b) ≥ C|b|2C holds for all b ∈ Ch.

Next, we point out that the velocity/pressure pair Vh×Qh is inf-sup stable; cf. [6,
Remark II.2.10] and [24, Proposition 10].

Proposition 3.2. There is a stability constant C > 0 independent of the mesh
size, ν, νm and κ such that

inf
p∈Qh

sup
u∈Vh

Bh(u, p)

‖u‖1,h‖p‖L2(Ω)
≥ C > 0.

There is no inf-sup condition available for the pair Ch × Sh. However, the un-
derlying conforming spaces are stable, see [26, 32]. To discuss this, we introduce the
conforming spaces Cc

h = Ch ∩ C and Sc
h = Sh ∩ S. The space Cc

h is the Nédélec
finite element space of the second type of order k [32, 33], with zero tangential trace
enforced on the boundary Γ. The space Sc

h is the space of continuous polynomials of
degree k + 1, with zero trace on Γ. Thus, we may decompose Ch and Sh into

Ch = Cc
h ⊕ C⊥

h , Sh = Sc
h ⊕ S⊥

h , (3.1)

respectively. Obviously, the semi-norms | · |C⊥ and | · |S define norms on C⊥
h and S⊥

h ,
respectively. The following norm-equivalence results from [28, Theorem 4.1] are es-
sential to our error analysis.

Proposition 3.3. There is a constant C > 0, independent of the mesh size, ν,νm

and κ, such that

C‖b‖C ≤ |b|C⊥ ≤ ‖b‖C , C‖r‖S ≤ |r|S ≤ ‖r‖S ,

for any b ∈ C⊥
h and r ∈ S⊥

h .

The conforming pair Cc
h × Sc

h is stable and satisfies the following properties,
see [28, Lemma 5.3] for a proof.

Proposition 3.4. There holds:
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(i) The bilinear form M is coercive on the conforming kernel of D in Cc
h. That

is, there exists a constant C > 0 independent of the mesh size, ν, νm and κ
such that

M(b,b) ≥ C‖b‖2
C ,

for any b in Xc
h, where

Xc
h = {b ∈ Cc

h : D(b, s) = 0 ∀ s ∈ Sc
h }. (3.2)

(ii) The form D is inf-sup stable on Cc
h × Sc

h. That is, there exists a constant
C > 0 independent of the mesh size, ν, νm and κ such that

inf
r∈Sc

h

sup
b∈Cc

h

D(b, r)

‖b‖C‖r‖S
≥ C > 0.

In the spirit of [7], we will use the stability properties of the conforming spaces
to derive error estimates for the magnetic variables. The non-conformity of the DG
method will then be controlled by using the norm-equivalence estimates in Proposi-
tion 3.3.

We are now ready to prove that the DG formulation is uniquely solvable.

Proposition 3.5. Suppose that the stability parameters a0, m0 and s0 satisfy

a0 ≥ a0 > 0, m0 ≥ m0 > 0, s0 > 0. (3.3)

Then the discontinuous Galerkin method in (2.21)–(2.24) has a unique solution.

Proof: Since the discrete problem is linear and finite-dimensional, it is enough to show
that the discontinuous Galerkin approximation to the incompressible MHD prob-
lem (2.1)–(2.4) with zero data, i.e., with f = g = uD = bD = 0 and pN = 0, is given
by (uh,bh, ph, rh) = (0,0, 0, 0).

To show this, we choose the test function (v, c, q, s) = (uh,bh, ph, rh) in the
weak formulation (2.21)–(2.24). Adding the first two of the resulting equations and
subtracting the last two, we easily obtain that

Ah(uh,uh) +Oh(uh,uh) +Mh(bh,bh) + Jh(rh, rh) = 0. (3.4)

From this identity and the coercivity results in Proposition 3.1, as well as the fact
that Jh(rh, rh) = s0|rh|2S , we conclude that ‖uh‖V = 0, |bh|C = 0 and |rh|S = 0. This
implies that uh = 0, bh ∈ Cc

h and rh ∈ Sc
h. Hence, the fourth equation (2.24) now

reads Dh(bh, s) = 0 for all s ∈ Sh. This also holds true for any s ∈ Sc
h: Dh(bh, s) =

D(bh, s) = 0 for all s ∈ Sc
h. We conclude that bh belongs to the conforming kernel

of D, i.e., bh ∈ Xc
h. Therefore, the coercivity result in Proposition 3.4 and (3.4) yield

bh = 0.

Using that uh = bh = 0, the first equation (2.21) is reduced to Bh(v, ph) = 0 for
all v ∈ Vh. The discrete inf-sup condition for Bh in Proposition 3.2 readily yields
that ph = 0. Finally, the second equation (2.22) is now Dh(c, rh) = 0 for all c ∈ Ch.
Since rh ∈ Sc

h, we also have Dh(c, rh) = D(c, rh) = 0 for any c ∈ Cc
h, and the inf-sup

condition for D in Proposition 3.4 yields that rh = 0. 2
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3.2. A-priori error estimates. Next, we state a-priori error estimates for the
DG method in (2.21)–(2.24). To that end, we introduce the broken Sobolev space

Hσ(Th) = { u ∈ L2(Ω) : u|K ∈ Hσ(K), K ∈ Th }, σ ≥ 0,

and endow it with the broken norm

‖u‖2
σ,Th

=
∑

K∈Th

‖u‖2
Hσ(K).

In our error analysis, we will suppose that the solution (u,b, p, r) ∈ V × C ×Q× S
of the MHD problem (2.1)–(2.4) satisfies

(u, p) ∈ Hσ+1(Th)3 ×Hσ(Th), for σ > 1
2 , (3.5)

and

(b,∇× b, r) ∈ Hτ (Th)3 ×Hτ (Th)3 ×Hτ+1(Th), for τ > 1
2 . (3.6)

Remark 3.6. Let us point out that the regularity assumptions (3.5)–(3.6) are
realistic. Indeed, for the Stokes problem in polyhedral domains (with square-integrable
right-hand sides and ΓN = ∅), the regularity property (3.5) has been proven in [16].
Furthermore, for Maxwell’s equations in polyhedral domains, the embedding results
in [1] show that the fields b and ∇ × b can be expected to belong to Hτ (Th)3 for a
regularity exponent τ > 1

2 . In particular, this regularity assumption holds true for the
strongest magnetic singularities in non-convex polyhedral domains. Finally, since r
satisfies the Laplace problem (2.13), the assumption r ∈ Hτ+1(Th) is realistic as well,
provided that the right-hand side g is in H(div; Ω).

The following theorem represents the main theoretical result of this article.
Theorem 3.7. Let the solution (u,b, p, r) of the MHD problem (2.1)–(2.4) sat-

isfy the regularity assumptions in (3.5) and (3.6). Let (uh,bh, ph, rh) denote the
DG approximation defined in (2.21)–(2.24) with stability parameters satisfying (3.3).
Then, the error in u, b and r can be bounded by

‖u− uh‖V + ‖b− bh‖C + ‖r − rh‖S

≤ Chmin{σ,k}
((
ν

1
2 + min{1, ν− 1

2h+ h
1
2 }
)
‖u‖σ+1,Th

+ ν−
1
2 ‖p‖σ,Th

)

+Chmin{τ,k}
(
‖b‖τ,Th

+ ‖∇× b‖τ,Th
+ ‖r‖τ+1,Th

)
.

Moreover, the error in p satisfies

‖p− ph‖L2(Ω) ≤ Chmin{σ,k}
(
‖u‖σ+1,Th

+ ν−
1
2 ‖p‖σ,Th

)

+Chmin{τ,k} (‖b‖τ,Th
+ ‖∇× b‖τ,Th

+ ‖r‖τ+1,Th
) .

The constants C > 0 are independent of the mesh size and ν.
Remark 3.8. For smooth solutions, the estimate in Theorem 3.7 ensures con-

vergence rates of order O(hk) in the mesh size h. This rate is optimal in the approx-
imation of the velocity, the pressure and the magnetic field in the respective norms,
but suboptimal by one order in the approximation of the multiplier r with respect to
the norm ‖ · ‖S. This is due to the fact that we are using polynomials of degree k + 1
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to approximate r. The same suboptimal result is observed for the conforming Nédélec
family of the second type [33]. On the other hand, the use of polynomials of degree k+1
for the magnetic multiplier leads to optimal convergence rates in the L2-error in the
magnetic field b, in contrast to the use polynomials of degree k, cf. the discussion
in [27, 28].

Remark 3.9. The coefficient ν
1
2 +min{1, ν− 1

2h+h
1
2 } in front of ‖u‖σ+1,Th

on the
right-hand side in the first estimate in Theorem 3.7 corresponds to the approximation
of the diffusion term and the convection term, respectively. With respect to convection,
it is slightly suboptimal when compared to the standard error estimate for DG methods
for pure convection equations, cf. [30]. The sub-optimality is due to the appearance
of the pressure.

4. Proofs. In this section, we shall prove the a-priori error estimate stated in
Theorem 3.7. In Section 4.1, we introduce extended DG forms and discuss the re-
sulting error equations. Continuity properties of the coupling and convection forms
will be established in Section 4.2. Finally, in Section 4.3, we complete the proof of
Theorem 3.7 in several steps.

4.1. Extended forms and error equations. For the purpose of our analysis,
we set

V(h) = V + Vh, C(h) = C + Ch, S(h) = S + Sh.

Using the lifting operators constructed in [3, 36] and [27, 28], it is then possible to
extend the discrete bilinear forms Ah, Bh, Mh, Dh to bilinear forms

Ãh : V(h) × V(h) → R, B̃h : V(h) ×Q→ R,

M̃h : C(h) × C(h) → R, D̃h : C(h) × S(h) → R,

respectively. The extended forms have the following continuity properties.
Proposition 4.1. The bilinear forms Ãh, M̃h, B̃h and D̃h satisfy

|Ãh(u,v)| ≤ C ν‖u‖1,h ‖v‖1,h ∀u,v ∈ V(h),

|M̃h(b, c)| ≤ C |b|C |c|C ∀b, c ∈ C(h),

|B̃h(u, q)| ≤ C‖u‖1,h ‖q‖L2(Ω) ∀u ∈ V(h), q ∈ Q,

|D̃h(c, r)| ≤ C ‖c‖C ‖r‖S ∀ c ∈ C(h), r ∈ S(h),

respectively, with constants C > 0 that are independent of the mesh size, ν, νm and κ,
and only depend on the stabilization parameters a0, m0, the shape-regularity constants
of the meshes, and the polynomial degree k.

Moreover, the extended forms are constructed in such a way that

Ãh(u,v) = Ah(u,v), M̃h(b, c) = Mh(b, c),

B̃h(u, p) = Bh(u, p), D̃h(b, r) = Dh(b, r),
(4.1)

for all discrete functions u,v ∈ Vh, b, c ∈ Ch, p ∈ Qh and r ∈ Sh, as well as

Ãh(u,v) = A(u,v), M̃h(b, c) = M(b, c),

B̃h(u, p) = B(u, p), D̃h(b, r) = D(b, r),
(4.2)
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for all u,v ∈ V, b, c ∈ C, p ∈ Q and r ∈ S.
Suppose now that (u,b, p, r) is the solution of the MHD problem (2.1)–(2.4). We

define, for any v ∈ Vh, c ∈ Ch and s ∈ Sh, the following functionals

RA(v) = Ãh(u,v) +Oh(u,v) + Ch(v,b) + B̃h(v, p) − Fh(v),

RM (c) = M̃h(b, c) − Ch(u, c) + D̃h(c, r) −Gh(c),

RD(s) = D̃h(b, s) − Jh(r, s).

The terms RA, RM and RD measure how well the analytical solution satisfies the
DG formulation when it is rewritten in terms of the extended bilinear forms. If now
(uh,bh, ph, rh) is the DG approximation, the following error equations are obtained
from property (4.1): there holds

RA(v) = Ãh(u − uh,v) +Oh(u − uh,v) + Ch(v,b − bh) + B̃h(v, p− ph), (4.3)

RM (c) = M̃h(b − bh, c) − Ch(u − uh, c) + D̃h(c, r − rh), (4.4)

RD(s) = D̃h(b − bh, s) − Jh(r − rh, s), (4.5)

for any v ∈ Vh, c ∈ Ch, and S ∈ Sh. We remark that the third equation (2.23) is

consistent when it is rewritten in terms of the form B̃h. That is, from the definition
of B̃h in [36] we readily see that

B̃h(u, q) = 〈uD · n, q〉ΓD
, q ∈ Qh.

Therefore, by (2.23) and (4.1), we have

B̃h(u − uh, q) = 0, q ∈ Qh. (4.6)

Proceeding as in [27, 28, 36], we readily obtain the following bounds for RA, RM

and RD, respectively.
Proposition 4.2. Let the solution (u,b, p, r) of the MHD problem satisfy the

smoothness assumptions in (3.5) and (3.6). Then, we have

|RA(v)| ≤ 2ν
1
2 |v|V ⊥E(u,b, p),

|RM (c)| ≤ |c|C⊥E(u,b, p),

|RD(s)| ≤ |s|SE(u,b, p),

for all v ∈ Vh, c ∈ Ch and s ∈ Sh, where E(u,b, p) can be bounded by

E(u,b, p) ≤ Chmin{σ,k}
(
ν

1
2 ‖u‖σ+1,Th

+ ν−
1
2 ‖p‖σ,Th

)

+ Chmin{τ,k}
(
(κνm)

1
2 (h‖b‖τ,Th

+ ‖∇× b‖τ,Th
)
)
,

with constants C > 0 that are independent of the mesh size, ν, νm and κ.

4.2. Continuity of coupling and convection forms. In this section, we es-
tablish some continuity properties of the coupling and convection forms. To that end,
we introduce the additional norms:

‖u‖2
⋆ = ‖u‖2

L2(Ω) +
∑

K∈Th

hK‖u‖2
L2(∂K),

‖u‖2
O = ν−1‖u‖2

L2(Ω) +
∑

K∈Th

‖u‖2
L2(∂K).

(4.7)
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Proposition 4.3. There holds:

|Ch(u,b)| ≤ C‖u‖⋆|b|C ∀u ∈ V(h), b ∈ C(h),

|Ch(u,b)| ≤ C‖u‖L2(Ω) |b|C ∀u ∈ Vh, b ∈ C(h),

with a constant C > 0 independent of the mesh size and ν.

Proof: Applying the Cauchy-Schwarz inequality and taking into account the shape-
regularity of the meshes, we obtain

|Ch(u,b)| ≤ κ‖d‖L∞(Ω)‖u‖L2(Ω)‖∇× b‖L2(Ω)

+Cκ‖d‖L∞(Ω)

(
∑

K∈Th

∫

∂K\ΓD

hK |u|2 ds
) 1

2

‖h−
1
2

F [[b]]T ‖L2(F )

≤ Cκ
1
2 ν

− 1
2

m ‖d‖L∞(Ω)‖u‖⋆|b|C .

To prove the second continuity estimate, we use the following discrete trace inequality:
for any polynomial u ∈ Pk(K), K ∈ Th, we have

‖u‖L2(∂K) ≤ Ch
− 1

2

K ‖u‖L2(K). (4.8)

The constant C > 0 only depends on the polynomial degree k and the shape-regularity
constants of the meshes. We then readily obtain that

‖u‖⋆ ≤ C‖u‖L2(Ω) ∀u ∈ Vh. (4.9)

With this bound, the second estimate of the proposition follows from the first one.2

Finally, we provide the following continuity properties for the convection form.
Proposition 4.4. Assume (2.5) and (2.12) hold. Then, the bilinear form Oh

satisfies

|Oh(u,v)| ≤ C‖u‖1,h‖v‖L2(Ω) ∀u ∈ V(h), v ∈ Vh,

|Oh(u,v)| ≤ C‖u‖O‖v‖V ∀u ∈ V(h), v ∈ Vh.

The constants C > 0 are independent of the mesh size and ν.

Proof: Applying the Cauchy-Schwarz inequality to the form Oh in (2.26) yields

|Oh(u,v)| ≤
(
‖w‖L∞(Ω)‖u‖1,h + ‖γ‖L∞(Ω)‖u‖L2(Ω)

)
‖v‖L2(Ω)

+ ‖w‖L∞(Ω)

∑

K∈Th

‖h−
1
2

K [[u]]‖L2(∂K−\Γ−) ‖h
1
2

Kv‖L2(∂K−\Γ−)

+ ‖w‖L∞(Ω)

∑

K∈Th

‖h−
1
2

K u‖L2(∂K−∩Γ−) ‖h
1
2

Kv‖L2(∂K−∩Γ−).

Using the Cauchy-Schwarz inequality, the shape-regularity of the mesh and the dis-
crete trace inequality (4.8) for v ∈ Vh, we obtain

∑

K∈Th

‖h−
1
2

K [[u]]‖L2(∂K−\Γ−) ‖h
1
2

Kv‖L2(∂K−\Γ−) ≤ C
( ∑

F∈FI

h

h−1
F ‖[[u]]‖2

L2(F )

) 1
2 ‖v‖L2(Ω).
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We proceed similarly for the boundary terms, but also take into account assump-
tion (2.12) which implies that Γ− ⊆ ΓD. We obtain

∑

K∈Th

‖h−
1
2

K u‖L2(∂K−∩Γ−) ‖h
1
2

Kv‖L2(∂K−∩Γ−) ≤ C
( ∑

F∈FD

h

h−1
F ‖[[u]]‖2

L2(F )

) 1
2 ‖v‖L2(Ω).

Therefore,

|Oh(u,v)| ≤ C
(
‖w‖L∞(Ω)‖u‖1,h + ‖γ‖L∞(Ω)‖u‖L2(Ω)

)
‖v‖L2(Ω).

The first continuity property of the proposition is achieved by applying the Poincaré
inequality for piecewise smooth functions, cf. [5, Remark 1.1]:

‖u‖L2(Ω) ≤ C‖u‖1,h ∀u ∈ V(h), (4.10)

with C > 0 only depending on the shape-regularity constants of the mesh.
To show the second estimate, we start from the integrated version (2.27) of the

form Oh. Taking into account (2.5), we obtain

|Oh(u,v)| ≤ ‖w‖L∞(Ω)‖u‖L2(Ω)‖v‖1,h + ‖γ−
1
2

0 (γ −∇ · w)‖L∞(Ω)‖u‖L2(Ω)‖γ
1
2

0 v‖L2(Ω)

+ ‖w‖
1
2

L∞(Ω)

( ∑

K∈Th

‖u‖2
L2(∂K+\Γ+)

) 1
2
( ∑

K∈Th

‖|w · nK | 12 [[v]]‖2
L2(∂K+\Γ+)

) 1
2

+ ‖w‖
1
2

L∞(Ω)

( ∑

K∈Th

‖u‖2
L2(∂K+∩Γ+)

) 1
2 ‖|w · n| 12 v‖L2(Γ+).

Using the Cauchy-Schwarz inequality for sums, we conclude that

|Oh(u,v)| ≤ ‖w‖L∞(Ω)‖u‖L2(Ω)‖v‖1,h + ‖γ−
1
2

0 (γ −∇ · w)‖L∞(Ω)‖u‖L2(Ω)‖γ
1
2

0 v‖L2(Ω)

+ ‖w‖
1
2

L∞(Ω)

( ∑

K∈Th

‖u‖2
L2(∂K+)

) 1
2
( ∑

F∈Fh

‖|w · n| 12 [[v]]‖2
L2(F )

) 1
2

≤ C‖u‖O‖v‖V ,

where we have used that ‖u‖L2(Ω) ≤ Cν−
1
2 ‖u‖L2(Ω) ≤ C‖u‖O. This proves the

second continuity estimate. 2

4.3. Error bounds. We are now ready to derive our error bounds. Throughout
this section, we denote by (u,b, p, r) the solution of the MHD problem (2.1)–(2.4)
and by (uh,bh, ph, rh) its DG approximation (2.21)–(2.24). We also assume that the
regularity assumptions in (3.5) and (3.6) hold. We split the velocity error as follows:

u− uh = u − ΠBu + ΠBu− uh = ηu + ξu, (4.11)

where we use the Brezzi-Douglas-Marini (BDM) projection ΠB onto Vh ∩H(div; Ω)
of degree k for the approximation of the velocity, see [6, Proposition III.3.6]. For the
other fields, specific approximations will be chosen at a later point.

Remark 4.5. The reason why we use the BDM projection to approximate the
velocity is that it yields an exactly divergence-free approximation [6]. This allows us
to decouple the velocity error from the pressure error, without having to invoke the
discrete inf-sup condition. This, in turn, is crucial for bounding the convection and
coupling terms.
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For notational convenience, we introduce

O(u) = sup
v∈Vh

Oh(ηu,v)

‖v‖V
,

A(u)2 = ‖ηu‖2
V + ‖ηu‖2

⋆ + O(u)2,

|||(b, p, r)|||2 = ‖b‖2
C + ‖p‖2

Q + ‖r‖2
S .

(4.12)

Finally, we decompose bh and rh into

bh = bc
h + b⊥

h , rh = rc
h + r⊥h , (4.13)

with bc
h ∈ Cc

h, b⊥
h ∈ C⊥

h , rc
h ∈ Sc

h and r⊥h ∈ S⊥
h , in accordance to the decomposition

in (3.1).

4.3.1. Error in u and b. In this section, we estimate the error in u and b. To
this end, we prove two technical lemmas. The first one establishes a bound for ξu and
the non-conforming functions b⊥

h and r⊥h .
Lemma 4.6. There are constants C > 0 and Cε > 0 independent of the mesh size

and ν such that

‖ξu‖2
V + |b⊥

h |2C⊥ + |r⊥h |2S
≤ ε‖b− bh‖2

C + Cε‖ηr‖2
S + C

(
E(u,b, p)2 + A(u)2 + |||(b − c, p− q, r − s)|||2

)
,

for any ε > 0, c ∈ Cc
h, q ∈ Qh, and s ∈ Sc

h. The constant Cε depends on ε.

Proof: Fix c ∈ Cc
h, q ∈ Qh, s ∈ Sc

h and ε > 0. In addition to (4.11), we write

b− bh = b − c + c− bh= ηb + ξb,

p− ph = p− q + q − ph = ηp + ξp, (4.14)

r − rh = r − s+ s− rh = ηr + ξr.

We now proceed in the following steps.
Step 1: We first observe that, since the functions bc

h and c are conforming in Cc
h,

we have

|b⊥
h |C⊥ = |c − bc

h − b⊥
h |C⊥ = |c − bh|C⊥ ≤ |ξb|C . (4.15)

Similarly, from the conformity of rc
h and s in Sc

h,

|r⊥h |S = |s− rc
h − r⊥h |S = |s− rh|S = |ξr|S . (4.16)

Taking into account (4.15)–(4.16), we have

‖ξu‖2
V + |b⊥

h |2C⊥ + |r⊥h |2S ≤ ‖ξu‖2
V + |ξb|2C + |ξr|2S . (4.17)

To bound the right-hand side of (4.17), we observe (4.1), use the stability results

for Ãh + Oh, M̃h in Proposition 3.1, the fact that Jh(ξr, ξr) = s0|ξr |2S , and add and
subtract the coupling and multiplier terms. Thereby, we obtain

C1

(
‖ξu‖2

V + |ξb|2C + |ξr|2S
)

≤ Ãh(ξu, ξu) +Oh(ξu, ξu) + Ch(ξu, ξb) + B̃h(ξu, ξp)

+ M̃h(ξb, ξb) − Ch(ξu, ξb) + D̃h(ξb, ξr)

− B̃h(ξu, ξp) − D̃h(ξb, ξr) + Jh(ξr , ξr).

(4.18)
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From (4.18), and the error equations in (4.3)–(4.6), we now readily conclude that

C1

(
‖ξu‖2

V + |ξb|2C + |ξr |2S
)
≤ T1 + T2 + T3 + T4, (4.19)

where

T1 = RA(ξu) − Ã(ηu, ξu) −Oh(ηu, ξu) − Ch(ξu, ηb) − B̃h(ξu, ηp),

T2 = RM (ξb) − M̃h(ηb, ξb) + Ch(ηu, ξb) − D̃h(ξb, ηr),

T3 = B̃h(ηu, ξp),

T4 = −RD(ξr) + D̃h(ηb, ξr) − Jh(ηr, ξr).

Step 2: We now bound the terms T1, T2, T3 and T4 under the additional assump-
tion that c belongs to the kernel Xc

h defined in (3.2).
To bound T1, we use the estimate of RA in Proposition 4.2, the continuity prop-

erties of Ãh and B̃h in Proposition 4.1, the results for Ch in Proposition 4.3, and the
estimates for Oh in Proposition 4.4. Upon application of the arithmetic-geometric
mean inequality, we readily obtain that

|T1| ≤ C‖ξu‖V

(
E(u,b, p) + ν

1
2 ‖ηu‖1,h + O(u) + |ηb|C + ‖ηp‖Q

)

≤ C1

2
‖ξu‖2

V + C
(
E(u,b, p)2 + ‖ηu‖2

V + O(u)2 + ‖ηb‖2
C + ‖ηp‖2

Q

)
.

(4.20)

Similarly, from Proposition 4.2, Proposition 4.1 and Proposition 4.3, we have

|T2| ≤ C|ξb|C
(
E(u,b, p) + |ηb|C + ‖ηu‖⋆

)
+ C‖ξb‖C‖ηr‖S

≤ C|ξb|C
(
E(u,b, p) + ‖ηb‖C + ‖ηu‖⋆

)
+ C‖b − bh‖C‖ηr‖S + C‖ηb‖C‖ηr‖S .

Using the arithmetic-geometric mean inequality again, we have that, for all ε > 0,

|T2| ≤
C1

2
|ξb|2C +

C1

2
ε‖b− bh‖2

C

+ Cε‖ηr‖2
S + C

(
E(u,b, p)2 + ‖ηu‖2

⋆ + ‖ηb‖2
C + ‖ηr‖2

S

)
.

(4.21)

Next, we claim that

T3 = 0. (4.22)

To see this, we note that ηu = u−ΠBu belongs toH(div; Ω). It follows that [[ηu]]N = 0
on interior faces. In addition, by virtue of [6, Proposition III.3.7] and since ∇·u = 0,
we have that

∇ · ηu = ∇ · (u− ΠBu) = Πk−1(∇ · u) = 0 in Ω.

Then, using the definition of B̃h in [36] and the defining properties of the BDM
projection (cf. [6, Proposition III.3.6]), we conclude that

T3 = B̃h(ηu, ξp) =
∑

F∈FD

h

∫

F

ηu · n ξp ds = 0;

thereby, proving (4.22) holds.

17



For the term T4, we first note, since s ∈ Sc
h, we have Jh(ηr , ξr) = 0. Furthermore,

D̃h(ηb, ξr) = D̃h(ηb, s− rh) = D̃h(ηb, s− rc
h) − D̃h(ηb, r

⊥
h ).

From property (4.2), we conclude that

D̃h(ηb, s− rc
h) = D(b, s− rc

h) −D(c, s− rc
h).

Both terms on the right-hand side are zero: the first one due to the weak equa-
tion (2.17) and the second one due to the assumption that c ∈ Xc

h. As a consequence,
we obtain

T4 = −RD(ξr) − D̃h(ηb, r
⊥
h ).

From Proposition 4.2 and the continuity of D̃h in Proposition 4.1,

|T4| ≤ C|ξr |SE(u,b, p) + C‖ηb‖C‖r⊥h ‖S .

The norm-equivalence in Proposition 3.3 and the identity (4.16) yield

‖r⊥h ‖S ≤ C|r⊥h |S = C|ξr |S .

These results and the arithmetic-geometric mean inequality readily show that

|T4| ≤
C1

2
|ξr|2S + C

(
E(u,b, p)2 + ‖ηb‖2

C

)
. (4.23)

Combining the estimates in (4.19), (4.20), (4.21), (4.22) and (4.23) implies that

C1

2

(
‖ξu‖2

V + |ξb|2C + |ξr |2S
)

≤ C1

2
ε‖b− bh‖2

C + Cε‖ηr‖2
S

+ C

(
E(u,b, p)2 + A(u)2 + |||(b − c, p− q, r − s)|||2

)
,

provided that c ∈ Xc
h. Dividing the previous estimate by C1

2 and using (4.17) yield

‖ξu‖2
V + |b⊥

h |2C⊥ + |r⊥h |2S
≤ ε‖b− bh‖2

C + Cε‖ηr‖2
S

+ C
(
E(u,b, p)2 + A(u)2 + |||(b − c, p− q, r − s)|||2

)
,

(4.24)

provided that c ∈ Xc
h.

Step 3: We show that, in estimate (4.24), the approximation c ∈ Xc
h can be

replaced by any c ∈ Cc
h. To that end, take c ∈ Cc

h and look for a ∈ Cc
h such that

D̃h(a, s) = D̃h(b− c, s) ∀ s ∈ Sc
h.

By Proposition 4.1, the right-hand side is a continuous functional on Sc
h. Since Xc

h

is non-empty and D̃h = D on Cc
h × Sc

h, cf. (4.2), the inf-sup condition for D in

18



Proposition 3.4 implies that there exists at least one non-trivial solution a ∈ Cc
h

satisfying

‖a‖C ≤ C ‖b− c‖C ,

with a constant C > 0 only depending on the continuity constant of D̃h and the
discrete inf-sup constant of D on Cc

h ×Sc
h, see [6, Equation II.2.20]. By construction,

we have a + c ∈ Xc
h, since, due to (4.2) and (2.17), there holds

D̃h(b, s) = D(b, s) = 0 ∀ s ∈ Sc
h.

Consequently, (a + c) can be used as an approximation in (4.24). By construction,

‖b− (a + c)‖C ≤ ‖b− c‖C + ‖a‖C ≤ C ‖b− c‖C ,

and inequality (4.24) holds for any c ∈ Cc
h, which completes the proof. 2

The second technical lemma of this subsection bounds the error in b.
Lemma 4.7. There exists a constant C > 0 independent of the mesh size and ν

such that

‖b− bh‖2
C ≤ C

(
‖ξu‖2

V + ‖ηu‖2
⋆ + |b⊥

h |2C⊥ + |r⊥h |2S + |||(b − c, 0, r − s)|||2
)
,

for any c ∈ Cc
h and s ∈ Sc

h.

Proof: Let c ∈ Cc and s ∈ Sc
h. Again, we split the errors in b and r into two parts

and adopt the same notation as in (4.14). We now proceed in two steps.
Step 1: We first consider the case where the approximation c ∈ Cc

h to the magnetic
field b is such that

c − bc
h ∈ Xc

h. (4.25)

It can be readily shown that non-trivial approximations of this type exist. To show
this, consider the problem: find c ∈ Cc

h such that

D̃h(c, s) = D̃h(bc
h, s) ∀ s ∈ Sc

h. (4.26)

As before, the right-hand side is a continuous functional on Sc
h (see Proposition 4.1),

and the discrete inf-sup condition for D (see (4.2) and Proposition 3.4) ensures that
problem (4.26) admits at least one non-trivial solution c ∈ Cc

h which then satisfies
property (4.25).

Now let c ∈ Cc
h be such that (4.25) holds. We decompose the function ξb = c−bh

into

ξb = ξc
b

+ ξ⊥
b
, ξc

b
∈ Cc

h, ξ
⊥
b
∈ C⊥

h , (4.27)

according to (3.1). Since the approximation c belongs to the conforming space Cc
h,

we have

ξc
b = (c − bc

h), ξ⊥b = −b⊥
h . (4.28)

Next, we bound ‖ξc
b
‖C . Due to the coercivity of M̃h on Ch, see Proposition 3.1

and (4.1), and the fact that ξb = ξc
b
− b⊥

h , we have

C1‖ξc
b
‖2

C ≤ M̃h(ξc
b
, ξc

b
) = M̃h(ηb + ξb, ξ

c
b
) − M̃h(ηb, ξ

c
b
) + M̃h(b⊥

h , ξ
c
b
).
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Using the error equation in (4.4), we obtain that

M̃h(ηb + ξb, ξ
c
b) = RM (ξc

b) + Ch(ηu + ξu, ξ
c
b) − D̃h(ξc

b, ηr + ξr).

The term RM (ξc
b
) is zero because ξc

b
∈ Cc

h. Moreover, the term −D̃h(ξc
b
, ηr + ξr)

can be simplified as follows: since ξc
b

= c − bc
h and s ∈ Sc

h, we deduce from (4.25)
and (4.1) that

−D̃h(ξc
b
, ηr + ξr) = −D̃h(ξc

b
, ηr) − D̃h(ξc

b
, s− rc

h − r⊥h )

= −D̃h(ξc
b, ηr) + D̃h(ξc

b, r
⊥
h ).

From the previous discussion, we conclude that

C1‖ξc
b
‖2

C ≤ S1 + S2, (4.29)

where

S1 = −M̃h(ηb, ξ
c
b) + Ch(ηu, ξ

c
b) − D̃h(ξc

b, ηr),

S2 = M̃h(b⊥
h , ξ

c
b) + Ch(ξu, ξ

c
b) + D̃h(ξc

b, r
⊥
h ).

The continuity properties of M̃h, D̃h and Ch in Proposition 4.1 and Proposition 4.3,
respectively, and the arithmetic-geometric mean inequality yield

|S1| ≤
C1

4
‖ξc

b
‖2

C + C
(
|ηb|2C + ‖ηu‖2

⋆ + ‖ηr‖2
S

)
. (4.30)

Similarly,

|S2| ≤
C1

4
‖ξc

b
‖2

C + C
(
‖b⊥

h ‖2
C + ‖ξu‖2

L2(Ω) + ‖r⊥h ‖2
S

)

≤ C1

4
‖ξc

b
‖2

C + C
(
|b⊥

h |2C⊥ + ‖ξu‖2
V + |r⊥h |2S

)
,

(4.31)

where we have also used the norm-equivalence results in Proposition 3.3.
Combining (4.29) with the estimates (4.30)–(4.31) shows that

‖ξc
b
‖2

C ≤ C
(
‖ξu‖2

V + ‖ηu‖2
⋆ + |b⊥

h |2C⊥ + |r⊥h |2S + |||(b − c, 0, r − s)|||2
)
.

Therefore, the previous estimate, the decomposition (4.27)–(4.28), the triangle in-
equality and the norm equivalence in Proposition 3.3 yield that

‖b− bh‖2
C ≤ C(‖ηb‖2

C + ‖ξb‖2
C)

≤ C(‖ηb‖2
C + ‖ξc

b
‖2

C + |b⊥
h |2C⊥)

≤ C(‖ξu‖2
V + ‖ηu‖2

⋆ + |b⊥
h |2C⊥ + |r⊥h |2S + |||(b − c, 0, r − s)|||2

)
,

(4.32)

for any s ∈ Sc
h and c ∈ Cc

h satisfying (4.25).
Step 2: We now show that (4.32) holds for c ∈ Cc

h arbitrary. Proceeding as
before, we can find a non-trivial function a ∈ Cc

h such that

{
D̃h(a, s) = D̃h(b − c − b⊥

h , s) ∀ s ∈ Sc
h,

‖a‖C ≤ C
(
‖b− c‖C + ‖b⊥

h ‖C

)
.

(4.33)
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Then, due to the properties in (4.1), (4.2) and the weak formulation in (2.17), (2.24),
we have

D((a + c) − bc
h, s) = D̃h((a + c)− bc

h, s) = D̃h(b− bh, s) = D(b, s)−Dh(bh, s) = 0,

for any s ∈ Sc
h. Hence, (a + c) − bc

h ∈ Xc
h and a + c satisfies (4.25). It can then be

used as an approximation in (4.32). In view of (4.33) and the norm-equivalence in
Proposition 3.3, we obtain

‖b− (a + c)‖C ≤ ‖b− c‖C + ‖a‖C ≤ C‖b− c‖C + |b⊥
h |C⊥ .

It follows that (4.32) holds for any approximation c ∈ Cc
h, which completes the proof

of the lemma. 2

We are now ready to bound the errors in u and b.
Theorem 4.8. There exists a constant C > 0, independent of the mesh size

and ν such that

‖u− uh‖V + ‖b− bh‖C + |b⊥
h |C⊥ + |r⊥h |S

≤ C
(
E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||

)
,

for any c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h.

Proof: Fix c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h. Decomposing the errors as in (4.11) and (4.14),
we obtain from the triangle inequality, Lemma 4.7 and Lemma 4.6:

‖u− uh‖2
V + ‖b− bh‖2

C + |b⊥
h |2C⊥ + |r⊥h |2S

≤ C
(
‖ηu‖2

V + ‖ξu‖2
V + ‖b− bh‖2

C + |b⊥
h |2C⊥ + |r⊥h |2S

)

≤ C
(
‖ηu‖2

⋆ + ‖ξu‖2
V + |||(b − c, 0, r − s)|||2 + |b⊥

h |2C⊥ + |r⊥h |2S
)

≤ Cε‖b− bh‖2
C + Cε‖ηr‖2

S

+C
(
E(u, p,b)2 + A(u)2 + |||(b − c, p− q, r − s)|||2

)
.

Choosing ε = 1
2C and bringing the term 1

2‖b−bh‖2
C to the left-hand side now readily

implies the assertion. 2

4.3.2. Error in p and r. Next, we bound the errors in the pressure p and the
multiplier r.

Proposition 4.9. There is a constant C > 0 independent of the mesh size and ν
such that

‖p− ph‖L2(Ω) ≤ C (E(u,b, p) + A(u) + ‖ηu‖1,h + |||(b − c, p− q, r − s)|||) ,

for any c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h.

Proof: Let c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h. As before, we split the errors into two parts
and adopt the same notation as in (4.14). Obviously, by the triangle inequality

‖p− ph‖L2(Ω) ≤ ‖ηp‖L2(Ω) + ‖ξp‖L2(Ω). (4.34)

We must then further estimate ‖ξp‖L2(Ω). For reasons that will become clear below,
we make use of the continuous inf-sup condition over V × Q, instead of the discrete
one in Proposition 3.2. For ΓN = ∅, a proof of the continuous inf-sup condition can
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be found in [21]. The case ΓN 6= ∅ follows similarly by subtracting pressure mean
values. Therefore, we conclude that there is v ∈ V such that

C‖ξp‖L2(Ω) ≤ B̃h(v, ξp) and ‖v‖H1(Ω) ≤ 1, (4.35)

where we have also used (4.2). We now set vh = ΠBv with ΠB denoting the BDM

projection into Vh ∩ H(div; Ω). By using the definition of the extended form B̃h

in [36], (4.1), (4.2) and the properties of the BDM projection, we readily obtain

B̃h(vh, ξp) = B̃h(v, ξp). (4.36)

In addition, the approximation property of the BDM projection and (4.35) guarantee
that

‖vh‖1,h ≤ ‖v − vh‖1,h + ‖v‖1,h ≤ C‖v‖H1(Ω) ≤ C. (4.37)

In fact, the equations (4.36) and (4.37) imply the discrete inf-sup condition in Propo-
sition 3.2 from the continuous one.

Now, we use the error equation (4.3) to obtain

B̃h(vh, ξp) = T1 + T2 + T3, (4.38)

where

T1 = RA(vh) − Ãh(ηu,vh) −Oh(ηu,vh) − B̃h(vh, ηp),

T2 = −Ch(vh,b − bh),

T3 = −Ãh(ξu,vh),

T4 = −Oh(ξu,vh).

We now bound T1, T2, T3 and T4.
For T1, we use Proposition 4.2, the continuity results for Ãh and B̃h in Proposi-

tion 4.1 and the first continuity estimate for Oh in Proposition 4.4 combined with the
Poincaré inequality (4.10). We obtain

|T1| ≤ C‖vh‖1,h

(
ν

1
2 E(u,b, p) + ν‖ηu‖1,h + ‖ηu‖1,h + ‖ηp‖L2(Ω)

)

≤ C
(
ν

1
2 E(u,b, p) + ν‖ηu‖1,h + ‖ηu‖1,h + ‖ηp‖L2(Ω)

)
,

(4.39)

where we have also used (4.37).
To estimate T2, we use the continuity property of Ch in Proposition 4.3 and the

Poincaré inequality (4.10):

|T2| ≤ C‖vh‖L2(Ω)|b− bh|C ≤ C‖vh‖1,h‖b− bh‖C .

From Theorem 4.8 and (4.37), we thus conclude

|T2| ≤ C
(
E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||

)
. (4.40)

To bound T3, we use the continuity of Ãh and Lemma 4.6 (with ε = 1). We
conclude that

|T3| ≤ Cν‖vh‖1,h‖ξu‖1,h

≤ Cν
1
2 ‖vh‖1,h‖ξu‖V

≤ Cν
1
2 ‖vh‖1,h (‖b− bh‖C + E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||) .
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The bound for ‖b− bh‖C in Theorem 4.8 and (4.37) thus give

|T3| ≤ Cν
1
2 (E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||) . (4.41)

The term T4 is the reason for introducing the continuous field v in (4.34). To
bound it, we proceed as follows. We use the integrated form (2.27) of Oh and write

Oh(ξu,vh) = T4,1 + T4,2 + T4,3,

with

T4,1 = −
∑

K∈Th

∫

K

(w · ∇)vh · ξu dx +
∑

K∈Th

∫

K

(γ −∇ ·w)ξu · vh dx,

T4,2 =
∑

K∈Th

∫

∂K+\Γ+

w · nKξu · (vh − ve
h) ds,

T4,3 =

∫

Γ+

w · nξu · vh ds.

With the Poincaré inequality (4.10), the term T4,1 can be readily bounded by

|T4,1| ≤ C‖ξu‖L2(Ω)

(
‖vh‖1,h + ‖vh‖L2(Ω)

)
≤ C‖ξu‖V ‖vh‖1,h.

For the term T4,2, we use arguments as in the proof of Proposition 4.4 and the discrete
trace inequality (4.8) to obtain

|T4,2| ≤ C‖w‖L∞(Ω)

( ∑

K∈Th

hK‖ξu‖2
L2(∂K)

) 1
2
( ∑

F∈FI

h

h−1
F ‖[[vh]]‖2

L2(F )

) 1
2

≤ C‖w‖L∞(Ω)‖ξu‖L2(Ω)‖vh‖1,h ≤ C‖ξu‖V ‖vh‖1,h.

Finally, the term T4,3 can be written as

T4,3 =

∫

Γ+

w · nξu · (vh − v) ds+

∫

Γ+

w · nξu · v ds,

with the continuous velocity field v from (4.35). For the first integral above, we use
the approximation properties of the BDM projection in [6, Proposition III.3.6] and
obtain

∣∣
∫

Γ+

w · nξu · (vh − v) ds
∣∣ ≤

( ∫

Γ

|w · n||ξu|2 ds
) 1

2
( ∫

Γ

|w · n||v − vh|2 ds
) 1

2

≤ C‖ξu‖V h
1
2 ‖w‖

1
2

L∞(Ω)‖v‖H1(Ω).

To estimate the second integral, we use the trace theorem for functions in H1(Ω).
This yields

∣∣
∫

Γ+

w · nξu · v ds
∣∣ ≤

( ∫

Γ

|w · n||ξu|2 ds
) 1

2
( ∫

Γ

|w · n||v|2 ds
) 1

2

≤ C‖ξu‖V ‖w‖
1
2

L∞(Ω)‖v‖H1(Ω).
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As a consequence, we see that

T4,3 ≤ C‖ξu‖V ‖v‖H1(Ω).

Hence, from the above estimates, (4.35) and (4.37), we conclude that

|T4| ≤ C‖ξu‖V (‖vh‖1,h + ‖v‖H1(Ω)) ≤ C‖ξu‖V .

From Lemma 4.6 (with ε = 1) and Theorem 4.8, we then obtain:

|T4| ≤ C (E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||) . (4.42)

Combining the above results with the estimates for T1, T2, T3 and T4 yields

‖p− ph‖L2(Ω) ≤ C (E(u,b, p) + A(u) + ‖ηu‖1,h + |||(b − c, p− q, r − s)|||) ,

as required. 2

Finally, we bound the error in r.
Proposition 4.10. There is a constant C > 0 independent of the mesh size

and ν such that

‖r − rh‖S ≤ C
(
E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||

)
,

for any c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h.

Proof: Let c ∈ Cc
h, q ∈ Qh and s ∈ Sc

h. As before, we adopt the notation from (4.14).
By the triangle inequality, we have

‖r − rh‖S ≤ ‖ηr‖S + ‖ξr‖S.

To bound the term ‖ξr‖S , we decompose ξr into

ξr = ξc
r + ξ⊥r , ξc

r ∈ Sc
h, ξ

⊥
r ∈ S⊥

h , (4.43)

according to (3.1). Since s belongs to the conforming space Sc
h, we have

ξc
r = (s− rc

h), ξ⊥r = −r⊥h . (4.44)

By the triangle inequality and the norm-equivalence in Proposition 3.3, we have

‖ξr‖S ≤ ‖ξc
r‖S + ‖r⊥h ‖S ≤ ‖ξc

r‖S + C|r⊥h |S . (4.45)

The latter term can be bounded by Theorem 4.8:

|r⊥h |S ≤ C
(
E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||

)
. (4.46)

To bound the former term, we use (4.2) and the inf-sup condition for D in Proposi-
tion 3.4. We obtain

C‖ξc
r‖S ≤ sup

c∈Cc

h

D̃h(c, ξc
r)

‖c‖C
. (4.47)

Using (4.43) and (4.44), we write

D̃h(c, ξc
r) = D̃h(c, ηr + ξr) − D̃h(c, ηr) + D̃h(c, r⊥h ),
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and use the error equation (4.4) to conclude that

D̃h(c, ξc
r) = RM (c) − M̃h(ηb, c) + Ch(ηu, c)

−M̃h(ξb, c) + Ch(ξu, c) − D̃h(c, ηr) +Dh(c, r⊥h )

for all c ∈ Cc
h. We note that RM (c) = 0 for c ∈ Cc

h. From Proposition 4.3 and
assumption (2.5), we have

Ch(ηu, c) ≤ C‖ηu‖⋆|c|C ,
Ch(ξu, c) ≤ C‖ξu‖L2(Ω)|c|C ≤ C‖ξu‖V |c|C .

Using these estimates, the continuity properties in Proposition 4.1 and the norm-
equivalence in Proposition 3.3, we obtain

|D̃h(c, ξc
r)| ≤ C‖c‖C

(
|ηb|C + ‖ηu‖⋆ + |ξb|C + ‖ξu‖V + ‖ηr‖S + ‖r⊥h ‖S

)

≤ C‖c‖C

(
‖ηb‖C + ‖ηu‖⋆ + ‖b− bh‖C + ‖ξu‖V + ‖ηr‖S + |r⊥h |S

)
.

(4.48)

Referring to (4.45), (4.46), (4.47), (4.48), Lemma 4.6 (with ε = 1) and Theorem 4.8
shows

‖r − rh‖S ≤ C
(
E(u,b, p) + A(u) + ‖b− bh‖C + |||(b − c, p− q, r − s)|||

)

≤ C
(
E(u,b, p) + A(u) + |||(b − c, p− q, r − s)|||

)
.

This completes the proof. 2

4.3.3. Proof of Theorem 3.7. We are now ready to complete the proof of
Theorem 3.7. In (4.11), the approximation for the velocity u has already be chosen
to be the BDM projection ΠBu of degree k. With this definition, the following result
holds.

Proposition 4.11. Under the regularity assumptions in (3.5), there holds:

‖ηu‖1,h ≤ Chmin{σ,k}‖u‖σ+1,Th
,

O(u) ≤ Cmin{1, v− 1
2h+ h

1
2 }hmin{σ,k}‖u‖σ+1,Th

,

A(u) ≤ C(ν
1
2 + min{1, ν− 1

2 h+ h
1
2 })hmin{σ,k}‖u‖σ+1,Th

,

with constants C > 0 that are independent of the mesh size and ν.

Proof: The approximation properties of the BDM projection in [6, Proposition III.3.6]
readily yield the first estimate of the proposition and also the following:

‖ηu‖O ≤ C(ν−
1
2h+ h

1
2 )hmin{σ,k}+1‖u‖σ+1,Th

,

‖ηu‖V ≤ C
(
ν

1
2 + ‖γ0‖

1
2

L∞(Ω)h+ ‖w‖
1
2

L∞(Ω)h
1
2

)
hmin{σ,k}‖u‖σ+1,Th

,

‖ηu‖⋆ ≤ Chmin{σ,k}+1‖u‖σ+1,Th
.

To bound O(u), we use the two continuity results in Proposition 4.4 to obtain that,
for v ∈ Vh,

|Oh(ηu,v)| ≤ Cmin{‖ηu‖1,h, ‖ηu‖O}‖v‖V .
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The estimates for ‖ηu‖1,h and ‖ηu‖O now imply the desired bound for O(u). The
bound for A(u) is established similarly by noting that

A(u) ≤ C (‖ηu‖V + ‖ηu‖⋆ + O(u)) .

This completes the proof. 2

We now approximate the remaining fields as follows:

c = ΠNb, q = Πk−1p, s = ΠSr, (4.49)

where ΠN is the H(curl; Ω)-conforming Nédélec projection of the second kind of
degree k onto Cc

h; see [33]. Its approximation properties are listed in [32, Theorem 8.15
and Remark 5.42]. Moreover, Πk−1 is the L2-projection of degree k − 1 onto Qh,
and ΠS is the standard H1-conforming nodal interpolation operator of degree k + 1
into Sh, cf. [32, Theorem 5.48].

The approximation properties of these operators immediately yield the following
result.

Proposition 4.12. Assume the smoothness properties (3.5) and (3.6). Choosing
the interpolants as in (4.49), there holds

|||(b − c, p− q, r − s)||| ≤Cν− 1
2hmin{σ,k}‖p‖σ,Th

+ Chmin{τ,k} (‖b‖τ,Th
+ ‖∇× b‖τ,Th

+ ‖r‖τ+1,Th
) ,

with constants C > 0 that are independent of the mesh size and ν.
The error estimate in Theorem 3.7 follows now directly from the error estimates

in Theorem 4.8, Proposition 4.9 and Proposition 4.10, in conjunction with the ap-
proximation results in Proposition 4.2, Proposition 4.11 and Proposition 4.12.

5. Numerical Results. In this section we present a series of numerical exper-
iments to highlight the practical performance of the mixed DG method introduced
in this article for the numerical approximation of incompressible MHD problems. To
confirm the convergence rates predicted by our analysis, we consider two problems
with smooth solutions and a third one with a singular solution. Finally, we consider
the numerical approximation of both two– and three–dimensional Hartmann channel
flow problems. Throughout this section, we select the stabilization parameters as
follows:

a0 = α k2, m0 = µk2 and s0 = 1,

α, µ > 0, cf. [28], for example. To ensure stability of the underlying DG method we
set α = µ = 10 in two dimensions; for three-dimensional simulations, it is necessary
to increase α and µ to α = µ = 20.

5.1. Smooth solutions. First, we verify the theoretical error bound stated in
Theorem 3.7 for problems with smooth analytical solutions.

5.1.1. Example 1: A two-dimensional problem in an L–shaped domain.

The first example we consider is a two-dimensional version of the MHD problem (2.1)–
(2.4). While the Navier-Stokes operator has the same form in two dimensions, some
care is required for the curl-curl operator and the coupling terms in the equations; see
also [32, Page 51]. For a two-dimensional vector b = (b1, b2), the curl of b is defined
as the scalar quantity ∇ × b = ∂xb2 − ∂yb1; meanwhile for a scalar function b, we
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Fig. 5.1. Example 1. (a) Problem domain; (b) Initial unstructured triangular mesh.

define its vector curl as ∇× b = (∂yb,−∂xb). Furthermore, the cross product of two
vectors is defined as a × b = a1b2 − a2b1; while the cross product of a scalar and
a vector is a × b = (−ab2, ab1). With this notation, the DG method can then be
straightforwardly extended to the two-dimensional variant of (2.1)–(2.4).

We consider the L–shaped domain Ω = (−1, 1)2 \ ([0, 1) × (−1, 0]) with ΓN =
{(1, y) : y ∈ (0, 1)} and ΓD = ∂Ω \ ΓN , cf. Figure 5.1(a). We set ν = νm = κ = 1,
w = (2, 1), γ = 0, d = (x,−y), and choose the forcing functions f and g and
boundary conditions so that the analytical solution of the two-dimensional variant of
(2.1)–(2.4) is of the form

u(x, y) = (−(y cos y + sin y)ex, y sin y ex), p(x, y) = 2ex sin y,

b(x, y) = (−(y cos y + sin y)ex, y sin y ex), r(x, y) = − sinπx sinπy.

Here, we investigate the asymptotic convergence of the interior penalty DG method
(2.21)–(2.24) on a sequence of successively finer quasi-uniform unstructured triangular
meshes for k = 1, 2, 3, 4. In each case the meshes are constructed by uniformly refining
the initial unstructured mesh depicted in Figure 5.1(b).

In Figure 5.2 we plot the norms ‖ · ‖V , ‖ · ‖C , and ‖ · ‖S of the errors u − uh,
b − bh, and r − rh, respectively, against the square root of the number of degrees
of freedom in the finite element space Vh × Ch × Qh × Sh. Here, we observe that
both ‖u − uh‖V and ‖b − bh‖C converge to zero, for each fixed k, at the optimal
rate O(hk), as the mesh is refined, in accordance with Theorem 3.7. On the other
hand, for this mixed-order method, ‖r − rh‖S converges at the rate O(hk+1), for
each k, as h tends to zero; this rate is indeed optimal, though this is not reflected
by Theorem 3.7, cf. also [28]. Additionally, in Figure 5.2(d), we plot the sum of the
three error contributions with respect to the square root of the number of degrees of
freedom in the finite element space. Clearly, as above, this converges to zero at the
optimal rate predicted by Theorem 3.7.

Secondly, we highlight the optimality of the proposed mixed method when the
components of the error are measured in terms of the L2-norm. From Figure 5.3 we
observe that the L2-norm of the error in both the approximation to the velocity field
u and the magnetic field b tend to zero at the expected optimal rate O(hk+1), for
each k, as h tends to zero. In agreement with Theorem 3.7, for each fixed k, the
L2-norm of the error in the pressure p tends to zero at the optimal rate O(hk) as the
mesh is enriched, while ‖r − rh‖L2(Ω) is of order O(hk+2) as h tends to zero.

27



10
2

10
−6

10
−4

10
−2

10
0

1
1

1
2

1
3

1

4

 

 

k=1
k=2
k=3
k=4

‖u
−

u
h
‖ V

√
Degrees of Freedom

10
2

10
−8

10
−6

10
−4

10
−2

10
0

1
1

1
2

1
3

1

4

 

 

k=1
k=2
k=3
k=4

‖b
−

b
h
‖ C

√
Degrees of Freedom

(a) (b)

10
2

10
−8

10
−6

10
−4

10
−2

10
0

1
2

1
3

1
4

1

5

 

 

k=1
k=2
k=3
k=4

‖r
−
r h
‖ S

√
Degrees of Freedom

10
2

10
−6

10
−4

10
−2

10
0

1
1

1
2

1
3

1

4

 

 

k=1
k=2
k=3
k=4

‖u
−

u
h
‖ V

+
‖b

−
b

h
‖ C

+
‖r

−
r h
‖ S

√
Degrees of Freedom

(c) (d)

Fig. 5.2. Example 1. Convergence with h-refinement: (a) ‖u − uh‖V ; (b) ‖b − bh‖C ; (c)
‖r − rh‖S ; (d) ‖u − uh‖V + ‖b − bh‖C + ‖r − rh‖S .

5.1.2. Example 2: A three-dimensional problem in the unit cube. The
second example is a 3D problem with a smooth analytical solution. To this end, we set
Ω = (0, 1)3 ⊂ R

3 with ΓD = ∂Ω and ΓN = ∅. Furthermore, we set ν = νm = κ = 1,
w = (2, 1, 1), γ = 0, and d = (x,−y, 1), and select f and g, together with appropriate
inhomogeneous boundary conditions, so that the solution of the incompressible MHD
system (2.1)–(2.4) is given by

u = (−(y cos y + sin y + z cos z)ex, y sin y ex, z sin z ex),

b = (−(y cos y + sin y + z cos(z))ex, y sin y ex, z sin z ex),

p = 2ex(sin y + sin z) − p0, r = sinπx sinπy sinπz,

where p0 = 4(−1 + e + cos 1 − e cos 1).
In Table 5.1 we investigate the asymptotic rate of convergence of the error in the

approximation of the hydrodynamic variables; here, l denotes the computed rate of
convergence. To this end, we show ‖u − uh‖L2(Ω), ‖u − uh‖V , and ‖p − ph‖L2(Ω)

computed on a sequence of uniformly refined tetrahedral meshes for k = 1, 2. As
in the previous example, we again observe optimal rates of convergence for all three
measures of the error. Indeed, in accordance with Theorem 3.7, both ‖u− uh‖V and
‖p − ph‖L2(Ω) tend to zero at the optimal rate O(hk), for each fixed k, as the mesh
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Fig. 5.3. Example 1. Convergence with h-refinement: (a) ‖u − uh‖L2(Ω); (b) ‖p − ph‖L2(Ω);

(c) ‖b − bh‖L2(Ω); (d) ‖r − rh‖L2(Ω).

k DOFs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖V l ‖p− ph‖L2(Ω) l
576/48 6.400e-2 – 1.168 – 7.321e-1 –

1 4608/384 1.647e-2 1.96 5.823e-1 1.00 4.564e-1 0.68
36864/3072 4.213e-3 1.97 2.896e-1 1.01 2.606e-1 0.81

294912/24576 1.072e-3 1.97 1.442e-1 1.01 1.400e-1 0.90
1440/192 5.082e-3 – 1.262e-1 – 3.424e-1 –

2 11520/1536 6.802e-4 2.90 3.162e-2 2.00 8.488e-2 2.01
92160/12288 8.417e-5 3.01 7.822e-3 2.02 2.127e-2 2.00

Table 5.1

Example 2: Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖V , and ‖p − ph‖L2(Ω) with h-refinement.

is refined. Additionally, we observe that the L2-norm of the error in the velocity is of
optimal order O(hk+1) as h tends to zero.

The corresponding errors for the magnetic variables are shown in Tables 5.2 &
5.3. Here, we clearly observe the optimality of the approximation to the magnetic
field b. Indeed, from Table 5.2 we observe that ‖b−bh‖L2(Ω) and ‖b−bh‖C converge

to zero at the optimal rates O(hk+1) and O(hk), respectively, for each fixed k, as the
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k DOFs in bh ‖b− bh‖L2(Ω) l ‖b− bh‖C l
576 7.289e-2 – 7.324e-1 –

1 4608 2.076e-2 1.81 3.445e-1 1.09
36864 5.486e-3 1.92 1.668e-1 1.05
294912 1.399e-3 1.97 8.184e-2 1.03
1440 6.082e-3 – 4.920e-2 –

2 11520 7.953e-4 2.94 1.146e-2 2.10
92160 1.006e-4 2.98 2.767e-3 2.05

Table 5.2

Example 2: Convergence of ‖b − bh‖L2(Ω) and ‖b − bh‖C with h-refinement.

k DOFs in rh ‖r − rh‖L2(Ω) l ‖r − rh‖S l
480 1.038e-1 – 1.546 –

1 3840 1.766e-2 2.56 5.098e-1 1.60
30720 2.350e-3 2.91 1.363e-1 1.90
245760 2.924e-4 3.01 3.405e-2 2.00

960 1.327e-2 – 2.559e-1 –
2 7680 8.567e-4 3.95 3.430e-2 2.90

61440 5.135e-5 4.06 4.210e-3 3.03
Table 5.3

Example 2: Convergence of ‖r − rh‖L2(Ω) and ‖r − rh‖S with h-refinement.

mesh is refined. As in the previous (two–dimensional) example, we again observe that
‖r − rh‖L2(Ω) and ‖r − rh‖S are of order O(hk+2) and O(hk+1), respectively, as the
mesh is uniformly refined.

5.2. Example 3: A two-dimensional problem with a singular solution.

To verify the ability of the proposed interior penalty DG method to capture the
strongest magnetic (and hydrodynamic) singularities, we consider a problem in which
the precise regularity of the analytical solution is known. To this end, we again let Ω
be the L-shaped domain employed in Example 1 above with ΓN = {(1, y) : y ∈ (0, 1)}
and ΓD = ∂Ω \ ΓN . We choose ν = νm = κ = 1, and set w = 0, γ = 0 and d =
(−1, 1). Hence, the Navier-Stokes operator coincides with the Stokes equations. We
further choose f and g, and appropriate inhomogeneous boundary conditions so that
the solution to this problem is given by the strongest corner singularities for the
underlying elliptic operators. That is, in polar coordinates (ρ, φ) around the origin,
the hydrodynamic solution components u and p are taken to be

u(ρ, φ) =

[
ρλ((1 + λ) sin(φ)ψ(φ) + cos(φ)ψ′(φ))

ρλ(−(1 + λ) cos(φ)ψ(φ) + sin(φ)ψ′(φ))

]
,

p(ρ, φ) = −ρλ−1((1 + λ)2ψ′(φ) + ψ′′′(φ))/(1 − λ),

where

ψ(φ) = sin((1 + λ)φ) cos(λw)/(1 + λ) − cos((1 + λ)φ)

− sin((1 − λ)φ) cos(λw)/(1 − λ) + cos((1 − λ)φ),
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k DOFs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖V l ‖p− ph‖L2(Ω) l
144/24 1.311e-1 – 1.910 – 1.443 –
576/96 4.638e-2 1.50 1.352 0.50 1.064 0.44

1 2304/384 1.632e-2 1.51 9.419e-1 0.52 7.690e-1 0.47
9216/1536 5.837e-3 1.48 6.510e-1 0.53 5.436e-1 0.50
36864/6144 2.120e-3 1.46 4.482e-1 0.54 3.789e-1 0.52

288/72 6.089e-2 – 1.075 – 1.520 –
1152/288 2.405e-2 1.34 7.382e-1 0.54 9.010e-1 0.75

2 4608/1152 9.434e-3 1.35 5.065e-1 0.54 5.852e-1 0.62
18432/4608 3.837e-3 1.30 3.474e-1 0.54 3.910e-1 0.58
73728/18432 1.630e-3 1.24 2.383e-1 0.54 2.649e-1 0.56

480/144 3.094e-2 – 7.498e-1 – 9.219e-1 –
1920/576 1.198e-2 1.37 5.151e-1 0.54 5.809e-1 0.67

3 7680/2304 4.844e-3 1.31 3.532e-1 0.54 3.779e-1 0.62
30720/9216 2.054e-3 1.24 2.422e-1 0.54 2.527e-1 0.58

122880/36864 9.046e-4 1.18 1.661e-1 0.54 1.713e-1 0.56
Table 5.4

Example 3: Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖V , and ‖p − ph‖L2(Ω) with h-refinement.

and λ ≈ 0.54448373678246. The magnetic pair (b, r) is taken as

b(x) = ∇(ρ2/3 sin (2/3φ)), r(x) ≡ 0.

We point out that the magnetic field b does not belong to H1(Ω)2 and thus cannot be
correctly captured by nodal elements. In fact, for this example, we have that (u, p) ∈
H1+λ(Ω)2 × Hλ(Ω) and b ∈ H2/3(Ω)2. Thus, the limiting regularity exponent, cf.
(3.5) and (3.6), appearing in Theorem 3.7 is λ which stems from the regularity of the
hydrodynamic variables.

In this example we study the asymptotic convergence of the interior penalty DG
method (2.21)–(2.24) on the sequence of successively finer quasi-uniform unstructured
triangular meshes employed in Example 1, cf. Figure 5.1(b) for the initial mesh, with
k = 1, 2, 3. Table 5.4 presents the L2-norm of the error in both the computed velocity
uh and pressure ph, as well as the ‖ · ‖V -norm of the error in uh. In agreement with
Theorem 3.7 we see that both ‖u−uh‖V and ‖p−ph‖L2(Ω) tend to zero at the optimal

rate O(hλ) as h tends to zero. The rate of convergence of ‖u− uh‖L2(Ω) is observed
to be between O(h1.2) and O(h1.5) approximately as the mesh is uniformly refined.

From Table 5.5 we observe that both ‖b − bh‖L2(Ω) and ‖b − bh‖C are approx-
imately O(h) as h tends to zero. For this latter error, this rate is higher than what
we would expect from Theorem 3.7. However, this same behavior of the error has
also been observed in the case of simply approximating the time-harmonic Maxwell
operator in isolation, cf. [28], for example. In contrast, from Table 5.6, we observe
that ‖r− rh‖S converges to zero at the rate O(h2/3) as the mesh is refined. In terms
of the numerical approximation of the time-harmonic Maxwell operator in isolation,
this rate is indeed optimal, cf. [28], though this is not reflected in Theorem 3.7. Fi-
nally, we note that the L2-norm of the error in the approximation to the Lagrange
multiplier variable r tends to zero at the rate O(h4/3) as h tends to zero.

5.3. Hartmann channel flow. Finally, we consider the Hartmann channel flow
problems in two and three dimensions; cf. [20].
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k DOFs in bh ‖b− bh‖L2(Ω) l ‖b− bh‖C l
144 2.601e-1 – 4.091e-1 –
576 1.492e-1 0.80 2.291e-1 0.84

1 2304 7.699e-2 0.96 1.112e-1 1.04
9216 4.038e-2 0.93 5.280e-2 1.07
36864 2.265e-2 0.84 2.657e-2 0.99
288 2.244e-1 – 3.649e-1 –
1152 1.124e-1 1.00 1.785e-1 1.03

2 4608 5.371e-2 1.07 8.065e-2 1.15
18432 2.679e-2 1.00 3.654e-2 1.14
73728 1.452e-2 0.88 1.766e-2 1.05
480 1.888e-1 – 3.090e-1 –
1920 9.013e-2 1.07 1.448e-2 1.09

3 7680 4.156e-2 1.12 6.363e-2 1.19
30720 2.004e-2 1.05 2.812e-2 1.18
122880 1.055e-2 0.93 1.320e-2 1.09

Table 5.5

Example 3: Convergence of ‖b − bh‖L2(Ω) and ‖b − bh‖C with h-refinement.

k DOFs in rh ‖r − rh‖L2(Ω) l ‖r − rh‖S l
144 2.397e-1 – 2.107 –
576 1.150e-1 1.06 1.768 0.25

1 2304 4.860e-2 1.24 1.265 0.48
9216 1.946e-2 1.32 8.384e-1 0.59
36864 7.664e-3 1.34 5.387e-1 0.64
240 1.944e-1 – 2.728 –
960 8.588e-2 1.18 2.066 0.40

2 3840 3.498e-2 1.30 1.412 0.55
15360 1.382e-2 1.34 9.193e-1 0.62
61440 5.419e-3 1.35 5.868e-1 0.65
360 1.621e-1 – 3.188 –
1440 6.932e-2 1.23 2.323 0.46

3 5760 2.784e-2 1.32 1.559 0.58
23040 1.095e-2 1.35 1.008 0.63
92160 4.290e-3 1.35 6.415e-1 0.65

Table 5.6

Example 3: Convergence of ‖r − rh‖L2(Ω) and ‖r − rh‖S with h-refinement.

5.3.1. Example 4: Two-dimensional Hartmann flow. In the domain Ω =
(0, L) × (−1, 1), L ≫ 1, we consider the steady one-dimensional unidirectional flow
under a constant pressure gradient −G in the x–direction, where theoretically G can
be any real number, and practically any achievable pressure change produced by
external forces. We set

w =

(
G

νHa tanh(Ha)

(
1 − cosh(yHa)

cosh(Ha)

)
, 0

)
, d =

(
G

κ

(
sinh(yHa)

sinh(Ha)
− y

)
, 1

)
,
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Fig. 5.4. Example 4. Initial unstructured triangular mesh.
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Fig. 5.5. Example 4. Convergence with h-refinement: (a) ‖u − uh‖V ; (b) ‖b − bh‖C ; (c)
‖r − rh‖S ; (d) ‖p − ph‖L2(Ω).

γ = 0, f = 0, and g = 0. Additionally, we impose the boundary conditions

u = 0 on y = ±1,

pn = pNn on x = 0 and x = L,

n× b = n× bD on Γ,

where

bD = (0, 1), pN = −Gx− G2

2κ

(
sinh(yHa)

sinh(Ha)
− y

)2

+ p0,
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Fig. 5.6. Example 4. DG solution computed on the finest mesh with k = 1: (a) Velocity field;
(b) Magnetic field.
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Fig. 5.7. Example 4. DG solution computed on the finest mesh with k = 1. Slices along x = 5,
−1 ≤ y ≤ 1 of the solution: (a) First component of the velocity field; (b) First component of the
magnetic field.

and p0 is any constant.
The analytical solution to the incompressible MHD equations is then given by

u = w, b = d, p = pN , r ≡ 0, (5.1)

where κ = ννmHa2. We note that the fluid always moves in the direction in which the
pressure decreases. In this section we set L = 10, ν = νm = 0.1, Ha = 10, G = 0.5,
and p0 = 10.

Firstly, in Figure 5.5 we investigate the asymptotic convergence of the interior
penalty DG method (2.21)–(2.24) on a sequence of successively finer quasi-uniform
unstructured triangular meshes for k = 1, 2, 3. In each case the meshes are constructed
by uniformly refining the initial unstructured mesh depicted in Figure 5.4. Here, we
plot the norms ‖ · ‖V , ‖ · ‖C , ‖ · ‖S , and ‖ · ‖L2(Ω) of the errors u−uh, b−bh, r− rh,
and p− ph, respectively, with respect to the square root of the number of degrees of
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(a)

(b)

Fig. 5.8. Example 5. DG solution computed on a uniform tetrahedral mesh with k = 1: (a)
Velocity field; (b) Magnetic field.

freedom in the finite element space Vh ×Ch ×Qh ×Sh. As in the previous examples
presented in Section 5.1, we observe that ‖u − uh‖V , ‖b − bh‖C and ‖p − ph‖L2(Ω)

converge to zero, for each fixed k, at the optimal rate O(hk) as the mesh is refined,
in accordance with Theorem 3.7, while ‖r − rh‖S converges at the rate O(hk+1), for
each k, as h tends to zero. Moreover, we note that the L2-norms of the error in the
approximation to u, b and r tend to zero optimally, cf. Section 5.1; for brevity, these
results have been omitted.

Finally, in Figures 5.6 & 5.7 we show the DG solution computed on the finest mesh
with 41216 elements, employing k = 1; thereby, the total number of degrees of freedom
employed in the finite element space Vh × Ch × Qh × Sh is 783104. In particular,
from Figure 5.7, we observe extremely good agreement between the computed and
analytical solutions of the first components in the velocity and magnetic fields.

5.3.2. Example 5: Three-dimensional Hartmann flow. In this final exam-
ple, we consider the steady three-dimensional unidirectional flow in the rectangular
duct given by Ω = [0, L] × [−y0, y0] × [−z0, z0] with y0, z0 ≪ L. We take w = u (cf.
below), f = g = 0, γ = 0, d = (0, 1, 0), and consider solutions of the form

u = (u(y, z), 0, 0), b = (b(y, z), 1, 0), p = −Gx+ p0, r ≡ 0. (5.2)
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Fig. 5.9. Example 5. DG solution computed on a uniform tetrahedral mesh with k = 1. Slices
along x = 5, −1 ≤ y ≤ 1, z = 0, of the solution: (a) First component of the velocity field; (b) First
component of the magnetic field.

We enforce the boundary conditions

u = 0 for y = ±y0 and z = ±z0,
pn = pNn for x = 0 and x = L,

n× b = n× bD on Γ,

with pN = −Gx+ p0 and bD = (0, 1, 0). As before, G and p0 are arbitrary constants.
For this channel problem, the analytical solution can be expressed by Fourier series;
for details, we refer to [18]. Throughout this section, we set L = 10, y0 = 2, z0 = 1,
ν = νm = 0.1, Ha = 5, G = 0.5, and p0 = 10.

In Figures 5.8 & 5.9 we show the DG solution computed on a uniform tetrahedral
mesh comprising of 30720 elements with the polynomial degree k = 1; this results in
a total of 1075200 degrees of freedom in the finite element space Vh ×Ch ×Qh ×Sh.
In particular, from Figure 5.9, we observe that there is reasonably good agreement
between the computed and analytical solutions of the first components in the velocity
and magnetic fields on this relatively coarse mesh. However, here we do observe
some over-shoots in the computed solution, which are particularly evident in the
approximation to the magnetic field.

6. Conclusions. In this paper, we have proposed and analyzed a discontinuous
Galerkin method for a linear incompressible magnetohydrodynamics problem. The
method is based on an interior penalty discretization of the mixed variational formu-
lation proposed in [35]. We have derived a-priori error estimates and verified them
in a set of numerical examples. We have further tested the methods for channel flow
problems in both two- and three-dimensions.

We point out that the method and its analysis can be readily extended to other
types of electromagnetic boundary conditions. Indeed, with only minimal changes, it
is also possible to specify both b·n and ∇×b×n on Γ; see also [35]. Since we use BDM
projections for the approximation of the velocity, our analysis immediately extends to
the divergence-conforming P3

k − Pk−1 element proposed in [10]. This element yields
an exactly divergence-free velocity approximation.

Ongoing work includes extensions of the method to fully nonlinear incompressible
magnetohydrodynamics problems.
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