
ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR

EIGENVALUE PROBLEMS ARISING IN INCOMPRESSIBLE FLUID

FLOWS

K. ANDREW CLIFFE ∗, EDWARD J.C. HALL † , AND PAUL HOUSTON ‡

Abstract. In this article we consider the a posteriori error estimation and adaptive mesh
refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability
problem associated with the incompressible Navier–Stokes equations. Particular attention is given
to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, com-
putable a posteriori error bounds are derived based on employing the generalization of the standard
Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of
the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both
a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors
stemming from both the numerical approximation of the original nonlinear flow problem, as well
as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments high-
lighting the practical performance of the proposed a posteriori error indicator on adaptively refined
computational meshes are presented.
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1. Introduction. The numerical approximation of eigenvalue problems plays a
central role in the analysis of the stability of nonlinear partial differential equations.
Application areas include structural mechanics and fluid mechanics; in the latter
case, the terminology of hydrodynamic stability is typically used within the literature,
cf. [6], for example. In this latter situation, the underlying problem will typically con-
sist of the incompressible Navier–Stokes equations, which must be solved to compute
a given base solution, coupled with an associated (linearized) eigenvalue problem;
the linearization being undertaken at the computed base solution. The computation
of the most dangerous or critical eigenvalue λcrit, namely the one with smallest real
part, is of paramount importance for determining the stability of the underlying flow.
Indeed, if the real part of λcrit is negative, then any perturbation having a nontrivial
component in the direction of the eigenfunction associated with the eigenvalue λcrit

may initially grow, or indeed blow up. Therefore, to understand the stability of a
given system of nonlinear partial differential equations with respect to a parameter
of interest, say the Reynolds number Re in the case of hydrodynamic stability, it
is essential to compute both the underlying base solution and corresponding most
dangerous eigenvalue to high accuracy. To undertake this task in a computationally
efficient manner naturally leads to the application of adaptive mesh refinement based
on rigorous a posteriori error estimates.

We note that if the linearized operator is far from normal, its eigenvalues may be
very sensitive to small perturbations and so may be an unreliable guide to the stability
of the underlying flow. See, for example, the book by Schmid and Henningson for a
detailed discussion of these issues [28]. For the problems we consider in this article
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the most dangerous eigenvalues are, in fact, well conditioned and so provide reliable
information concerning stability.

Over the past few decades, tremendous progress has been made in the area of
a posteriori error estimation and adaptive finite element approximation of partial
differential equations; for a review of some of the main developments in the subject
we refer to the recent monographs [1, 31, 34], and the articles [16, 7]. Despite a number
of significant advances in the field, much of the research to date has focused on source
problems. In contrast, the development of reliable and efficient adaptive algorithms
for the numerical approximation of eigenvalue problems has received considerably less
attention. In the context of the finite element approximation of second–order self-
adjoint elliptic eigenvalue problems we mention the recent articles [14, 15, 23, 27]; for
related work, based on considering the eigenvalue problem as a parameter–dependent
nonlinear equation, see Verfürth [33, 34], for example. For earlier references devoted
to the derivation of a posteriori error bounds for the finite element approximation
of symmetric eigenvalue problems, we refer to [4, 5], for example. Extensions to the
finite element approximation of both the eigenvalue problem for the Stokes equations
and linear elasticity may be found in the recent articles [26] and [35], respectively.
Finally, we mention [19], where the convergence of an adaptive finite element method
for the computation of eigenvalues and eigenfunctions of second–order self-adjoint
elliptic PDEs is studied.

The treatment of non-symmetric eigenvalue problems has been considered in the
article [21]; see also [6]. The approach adopted there is based on a generalization
of the standard Dual–Weighted–Residual (DWR) approach, originally developed for
the a posteriori error estimation of target functionals of the solution, to the deriva-
tion of computable bounds on the underlying eigenvalue/eigenvector of interest. The
central idea involves the design of a corresponding dual eigenvalue problem to the
original (primal) eigenvalue problem. By simultaneously considering the numerical
approximation of the primal and dual eigenvalue problems, computable a posteriori
error bounds on the eigenvalue of interest may be derived, under minimal regularity
assumptions. For related work on the application of duality arguments in the context
of a posteriori error estimation for source problems, we refer to [7, 22, 16, 24], and
the references cited therein.

In this article we shall be concerned with the a posteriori error estimation and
adaptive mesh refinement of discontinuous Galerkin (DG, for short) approximations
of the hydrodynamic stability problem associated with the incompressible Navier–
Stokes equations based on employing the generalization of the DWR approach to
eigenvalue problems outlined in [6, 21]. We point out that work in this direction has
been undertaken in [6, Chapter 11] for standard conforming finite element methods.
However, [6, Chapter 11] only considers the estimation of the error in the underlying
eigenvalue, assuming that the base solution has been computed sufficiently accurately.
Of course, as the mesh is refined on the basis of the error in the computed eigenvalue of
interest, it is natural to expect that the error in the base solution will also decrease.
However, in this setting, reliable bounds on the error in the eigenvalue of interest
can no longer be guaranteed. In this article, we propose an alternative approach,
whereby the DWR methodology is applied to the full hydrodynamic stability problem.
More precisely, we construct an augmented dual problem consisting of both a dual
eigenvalue problem, together with a dual problem associated with the base problem,
i.e., the incompressible Navier–Stokes system. In this manner, an a posteriori bound
on the error in the computed eigenvalue of interest is derived, which includes both
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Fig. 2.1. Generic channel domain.

contributions arising from the error in the computed base solution, as well as the
discretization error in the approximation of the linearized eigenvalue problem. By
accounting for both errors in the approximation of the base solution, as well as the
eigenvalue problem of interest, we shall demonstrate numerically that the effectivity
indices, i.e., the ratio of the a posteriori error bound and the true error in the computed
eigenvalue, tends to unity. In contrast, we shall also show that if the error in the base
solution is neglected in the a posteriori error estimation, then there is a deterioration
in the corresponding computed effectivities, indicating that error control can no longer
be guaranteed. The emphasis of this article is the numerical approximation of the
hydrodynamic stability problem for flows in channels and pipes, though we stress that
the general methodology is applicable to a much wider variety of problems.

The paper is structured as follows. In Section 2 we introduce the incompress-
ible Navier–Stokes equations and the associated eigenvalue problem resulting from
their linearization about a steady–state base solution. We then introduce the DG dis-
cretization employed for the numerical approximation of the hydrodynamic stability
problem, consisting of both the discretization of the base problem and the correspond-
ing (linearized) eigenvalue problem. Then, in Section 3, we briefly recall the DWR
a posteriori error estimation technique for the numerical approximation of general
target functionals of the solution. Subsequently, we exploit this technique to derive
an a posteriori bound for the error in the computed eigenvalue of interest which in-
cludes error contributions stemming from both the numerical approximation of the
base problem, as well as the discretization of the associated eigenvalue problem. On
the basis of the proposed a posteriori error bound, in Section 4 we investigate the
practical performance of the proposed a posteriori error estimator on sequences of
adaptively generated meshes. In particular, the quality of the (approximate) error
representation formula and (approximate) a posteriori bound, are studied through a
series of numerical experiments. Here, we consider three well documented cases: a
sudden expansion in a plane channel, a channel partially blocked by a cylinder and
a pipe partially blocked by a sphere. Finally, in Section 5, we summarize the work
presented in this article and draw some conclusions.

2. Model problem and DG discretization. In this section we introduce
mixed discontinuous Galerkin methods for the numerical approximation of both the
steady incompressible Navier–Stokes equations, as well as the associated eigenvalue
problem resulting from the linearization of the corresponding unsteady problem. For
brevity we only consider the case of flow confined to a two–dimensional channel; the
discretization of the incompressible Navier–Stokes equations in a cylindrical pipe fol-
lows analogously.



4 K.A. CLIFFE, E. HALL, P. HOUSTON

2.1. Incompressible Navier–Stokes equations. Consider the flow of an in-
compressible fluid confined in a generic two–dimensional channel Ω ∈ R2 of width
R with boundary Γ = ΓD ∪ ΓN ∪ ΓM, where ΓM is parallel to the x-axis. A sim-
ple example of such a geometry is depicted in Figure 2.1, though we point out that
the proceeding discussion holds for more general computational domains. Here, we
impose a Dirichlet boundary condition on ΓD, a natural Neumann condition on ΓN

and a mixed Dirichlet/Neumann on ΓM. By introducing the Reynolds number Re,
defined as Re = Rumax/ν, where R is the width of the channel, umax is the peak
inlet velocity and ν is the kinematic viscosity, the flow can be modeled by the follow-
ing non–dimensionalized unsteady Navier–Stokes equations: find u = [ux, uy]

⊤ and p
such that

∂u

∂t
−

1

Re
∇2u + (u · ∇)u + ∇p = 0, in Ω, (2.1)

∇ · u = 0, in Ω, (2.2)

with boundary conditions

u = gD on ΓD, (2.3)

1

Re

∂u

∂n
− pn = 0 on ΓN, (2.4)

1

Re

∂ux

∂n
− pnx = 0 and uy = 0 on ΓM, (2.5)

subject to some appropriate initial condition. Here, u and p denote the velocity and
pressure of the fluid, respectively, and n = (nx, ny)

⊤ denotes the unit outward normal
vector to the boundary Γ of Ω.

In the sequel we consider the numerical approximation of the corresponding steady
state problem and investigate its linear stability. With this in mind, employing the
continuity equation (2.2), we rewrite the steady Navier–Stokes equations in the fol-
lowing divergence form (to facilitate the DG discretization): find u0 and p0 such
that

−
1

Re
∇2u0 + ∇ · (u0 ⊗ u0) + ∇p0 = 0, in Ω, (2.6)

∇ · u0 = 0, in Ω, (2.7)

subject to the boundary conditions outlined in (2.3)–(2.5) above, with u and p re-
placed by u0 and p0, respectively. Here, for vectors v ∈ Rm and w ∈ Rn, m, n ≥ 1,
the matrix v⊗w ∈ Rm×n is the standard outer product defined by (v⊗w)kl = vkwl.
For the purposes of this article, we shall refer to (2.6)–(2.7), subject to the boundary
conditions (2.3)–(2.5) with u and p replaced by u0 and p0, respectively, as the primal
base problem; in the sequel when referring to the primal base problem (2.3)–(2.7), we
shall implicitly assume that the boundary conditions (2.3)–(2.5) are enforced with u

and p replaced by u0 and p0, respectively. For ease of exposition we define the flux
F0(·) as

F0(u0) := u0 ⊗ u0.
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Remark 2.1. The mixed boundary condition (2.5) can be viewed as a symmetry
boundary condition, enabling symmetric solutions to be found in domains with reflec-
tional symmetry about ΓM by using only a half domain, thus saving computational
time and effort. It also implicitly enforces the reflectional symmetry of the problem
exactly, even in the presence of rounding errors.

2.2. Eigenvalue problem. We shall be interested in investigating how initially
small perturbations (δu(t), δp(t)) of the steady state solution (u0, p0) behave as time
evolves. With this in mind, we assume (u(t), p(t)) = (u0 +δu, p0 +δp), where (δu, δp)
are of the form

δu = e−iλmtum,

δp = e−iλmtpm,

respectively. Thereby, upon linearization of the unsteady Navier–Stokes equations
(2.1)–(2.2), we obtain the following eigenvalue problem for the pair {λm, (um, pm)}:

−
1

Re
∇2um + ∇ · (um ⊗ u0)

+ ∇ · (u0 ⊗ um) + ∇pm = λmum, in Ω, (2.8)

−∇ · um = 0, in Ω, (2.9)

subject to homogeneous Dirichlet and Neumann conditions

um = 0 on ΓD, (2.10)

1

Re

∂um

∂n
− pmn = 0 on ΓN, (2.11)

um
x = 0 and

1

Re

∂um
y

∂n
− pmny = 0 on ΓM. (2.12)

As is customary, we also enforce the (scaling) condition ‖um‖0 = 1, where ‖ · ‖0

denotes the L2(Ω)–norm. We shall now refer to (2.8)–(2.12) as the primal eigenvalue
problem. Once again, for simplicity of presentation we define the flux Fm(·; ·) as

Fm(u0;um) := um ⊗ u0 + u0 ⊗ um.

Remark 2.2. In the application of pipe flows, the steady symmetric flow be-
comes unstable as the Reynolds number Re is increased, these instabilities having an
antisymmetric nature. The boundary condition (2.12) can thus be viewed as an an-
tisymmetric boundary condition, with the resultant eigenvectors being antisymmetric
about ΓM. Thus, the stability of the underlying flow can be investigated by solving
the eigenvalue problem on only half of the domain, rather than the full computational
domain. For further details, see, for example, [36].

Remark 2.3. The linear stability of the steady state solution can then be de-
termined by the nature of the eigenvalues λm. Standard bifurcation theory dictates
that the flow is linearly stable if all eigenvalues have positive real part. Should an
eigenvalue with the smallest real part be non–complex, a change of its sign from posi-
tive to negative indicates the presence of a steady bifurcation, while the crossing of a
complex eigenvalue with smallest real part across the imaginary axis indicates a Hopf–
bifurcation. It is therefore of fundamental importance to locate the critical Reynolds
number at which the flow first becomes unstable.
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2.3. Meshes and traces. In this section we introduce the notation needed to
define the interior penalty DG discretization of the primal base problem (2.3)–(2.7),
and the primal eigenvalue problem (2.8)–(2.12).

To this end, we assume that Ω can be subdivided into shape-regular meshes
Th = {κ} consisting of quadrilateral elements κ. For each κ ∈ Th, we denote by nκ

the unit outward normal vector to the boundary ∂κ, and by hκ the elemental diameter.
An interior edge of Th is the (non-empty) one-dimensional interior of ∂κ+∩∂κ−, where
κ+ and κ− are two adjacent elements of Th. Similarly, a boundary edge of Th is the
(non-empty) one-dimensional interior of ∂κ ∩ Γ which consists of entire edges of ∂κ.
We denote by Γint the union of all interior edges of Th.

Next, we define average and jump operators. To this end, let κ+ and κ− be
two adjacent elements of Th, and x be an arbitrary point on the interior edge e =
∂κ+∩∂κ− ⊂ Γint. Furthermore, let q, v, and τ be scalar–, vector–, and matrix–valued
functions, respectively, that are smooth inside each element κ±. By (q±,v±, τ±) we
denote the traces of (q,v, τ ) on e taken from within the interior of κ±, respectively.
Then, we introduce the following averages at x ∈ e:

{{q}} = (q+ + q−)/2, {{v}} = (v+ + v−)/2, {{τ}} = (τ+ + τ−)/2.

Similarly, the jumps at x ∈ e are given by

[[q]] = q+nκ+ + q−nκ− , [[v]] = v+ · nκ+ + v− · nκ− ,

[[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− , [[τ ]] = τ+nκ+ + τ−nκ− .

On boundary edges e ⊂ Γ, we set {{q}} = q, {{v}} = v, {{τ}} = τ , [[q]] = qn, [[v]] = v ·n,
[[v]] = v⊗n, and [[τ ]] = τn. Here, we recall that n is the unit outward normal vector to

the boundary Γ. For matrices σ, τ ∈ Rm×n, m, n ≥ 1, we use the standard notation
σ : τ =

∑m

k=1

∑n

l=1
σklτkl.

2.4. Discontinuous Galerkin discretization. We now present the DG dis-
cretization employed for the numerical approximation of both the steady Navier–
Stokes equations (2.3)–(2.7), and the associated eigenvalue problem (2.8)–(2.12). To
this end, for a given a mesh Th and polynomial degree k ≥ 1, we introduce the
following finite element spaces

Vh,k = {v ∈ [L2(Ω)]2 : v|κ ∈ [Qk(κ)]2, κ ∈ Th},

Qh,k = {q ∈ L2(Ω) : q|κ ∈ Qk−1(κ), κ ∈ Th}.

Here, Qk(κ) denotes the space of complex multiples of tensor product polynomials
on κ of degree at most k in each coordinate direction. We remark that, although
solutions to (2.3)–(2.7) are real, solutions to the corresponding dual problem, cf. the
next section, may be complex, as well as, of course, the solution to the associated
primal and dual eigenvalue problems.

We now introduce the following symmetric version of the interior penalty method,
together with a Lax–Friedrichs numerical flux approximation of the nonlinear convec-
tive terms: find (u0

h, p0
h) ∈ Vh,k × Qh,k such that

{

Ah(u0
h, v̄0

h) + Ch(u0
h, v̄0

h) + Bh(v̄0
h, p0

h) = ℓ1(v̄
0
h),

Bh(u0
h, q̄0

h) = ℓ2(q̄
0
h)

(2.13)
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for all (v0
h, q0

h) ∈ Vh,k × Qh,k. Here, the bilinear forms Ah and Bh are defined,
respectively, by

Ah(u,v) =
1

Re

(
∫

Ω

∇hu : ∇hv dx

−

∫

Γint∪ΓD

({{∇hv}} : [[u]] + {{∇hu}} : [[v]]) ds

−

∫

ΓM

({{∇hvy}} · [[uy]] + {{∇huy}} · [[vy]]) ds

+

∫

Γint∪ΓD

σ[[u]] : [[v]] ds +

∫

ΓM

σ[[uy ]] · [[vy ]] ds

)

,

Bh(v, q) = −

∫

Ω

q∇h · v dx +

∫

Γint∪ΓD

{{q}}[[v]] ds

+

∫

ΓM

{{q}}vyny ds,

where the operator ∇h is used to denote the broken gradient operator ∇, defined
elementwise. The function σ ∈ L∞(Γint∪Γ) is the so–called interior penalty function,
which is chosen as follows: writing h ∈ L∞(Γint ∪ Γ) to denote the mesh function
defined by

h(x) =

{

min{hκ, hκ′}, x ∈ e = ∂κ ∩ ∂κ′ ⊂ Γint,
hκ, x ∈ e = ∂κ ∩ Γ,

we set

σ = Cσ

k2

h
.

Here, Cσ is a positive constant which is independent of the mesh size and the poly-
nomial degree k. To guarantee stability of the bilinear form Ah, Cσ must be chosen
sufficiently large; see [3], for example, and the references cited therein.

The semilinear form Ch represents the approximation of the nonlinear convection
terms and is defined by

Ch(u,v) = −

∫

Ω

F0(u) : ∇hv dx +

∫

Γint

H(u+,u−,n)[[v]] ds

+

∫

Γ

H(u+,uΓ(u+),n)[[v]] ds, (2.14)

where H(·, ·, ·) denotes the Lax-Friedrichs flux given by

H(v,w,n) :=
1

2

(

F0(v) · n + F0(w) · n− α(w − v)
)

.

Here, α := max(µ+, µ−), where µ+ and µ− are the largest eigenvalues (in absolute
magnitude) of the Jacobi matrices (∂/∂u)(F0(·)·n) evaluated at v and w, respectively.
Thereby, in this setting, we have α = 2 max(|v · n|, |w · n|).

The boundary function uΓ is given according to the type of boundary condition
imposed. To this end, we set

uΓ(u) = gD on ΓD,



8 K.A. CLIFFE, E. HALL, P. HOUSTON

uΓ(u) = u+ on ΓN, uΓ(u) = [u+
x , 0]⊤ on ΓM.

Finally, ℓ1(·) and ℓ2(·) are given, respectively, by

ℓ1(v) = −
1

Re

∫

ΓD

((gD ⊗ n) : ∇hv − σgD · v) ds,

ℓ2(q) =

∫

ΓD

qgD · n ds. (2.15)

As the chosen numerical fluxes are consistent, it then follows that the underlying
DG scheme is also consistent, i.e., assuming sufficient regularity of the analytical
solution (u0, p0), we note that

{

Ah(u0, v̄0
h) + Ch(u0, v̄0

h) + Bh(v̄0
h, p0) = ℓ1(v̄

0
h),

Bh(u0, q̄0
h) = ℓ2(q̄

0
h)

(2.16)

for all (v0
h, q0

h) ∈ Vh,k × Qh,k.

Remark 2.4. It was recently shown that, in the context of the Stokes equa-
tions, the mixed method defined above satisfies a discrete inf-sup condition, and is
thereby well–posed; for details, see Hansbo and Larson [20], Toselli [32], Schötzau,
Schwab and Toselli [29] and the references cited therein. We further point out that
our mixed approximation in (2.13) is based on so-called mixed-order elements (or
(Qk)2 − Qk−1 elements), where the approximation degree for the pressure is of one
order lower than for the velocity. In view of the approximation properties, this pair
is optimally matched. However, by introducing suitable pressure stabilization terms,
it is also possible to employ equal-order elements (or (Qk)2 − Qk elements) with
the same approximation degree for the velocity and the pressure; see the LDG ap-
proaches by Cockburn, Kanschat, Schötzau and Schwab [13] and Cockburn, Kanschat
and Schötzau [12] for details. Finally, for the treatment of the nonlinear convec-
tion terms, we refer to the article [30] where the discretization of the time–dependent
incompressible Navier–Stokes equations has been undertaken.

For the discretization of the eigenvalue problem (2.8)–(2.12), we proceed in a
completely analogous fashion; here, we seek pairs {λm

h , (um
h , pm

h )} ∈ C × Vh,k × Qh,k

such that







Âh(um
h ,vm

h ) + Ĉh(u0
h;um

h ,vm
h ) + B̂h(v̄m

h , pm
h ) = λm

h M̂(um
h ,vm

h ),

B̂h(um
h , q̄m

h ) = 0,
‖um

h ‖0 = 1

(2.17)

for all (vm
h , qm

h ) ∈ Vh,k ×Qh,k, where, due to the anti-symmetric nature of the eigen-
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functions, Âh and B̂h are given, respectively, by

Âh(u,v) =
1

Re

(
∫

Ω

∇hu : ∇hv̄ dx

−

∫

Γint∪ΓD

({{∇hv̄}} : [[u]] + {{∇hu}} : [[v̄]]) ds

−

∫

ΓM

({{∇hv̄x}} · [[ux]] + {{∇hux}} · [[v̄x]]) ds

+

∫

Γint∪ΓD

σ[[u]] : [[v̄]] ds +

∫

ΓM

σ[[ux]] · [[v̄x]] ds

)

,

B̂h(v, q) = −

∫

Ω

q∇h · v dx +

∫

Γint∪ΓD

{{q}}[[v]] ds

+

∫

ΓM

{{q}}vxnx ds.

Furthermore, M̂h is defined by

M̂h(u,v) :=

∫

Ω

u · v̄ dx,

and Ĉh represents the approximation of the (linear) convection terms. Employing the
Lax–Friedrichs flux (or simply the upwind flux function) gives

Ĉh(u0;um,v) = −

∫

Ω

(

Fm(u0;um) : ∇hv̄
)

dx

+
∑

κ∈Th

(

∫

∂κ\Γ

Ĥ({{u0}};um,+,um,−,n) · v̄+ ds

+

∫

∂κ∩Γ

Ĥ((u0,+ + uΓ(u0))/2;um,+, ûΓ(um),n) · v̄+ ds

)

,

where

Ĥ(v;u,w,n) :=
1

2
(Fm(v;u) · n + Fm(v;w) · n + α̂(u − w)) .

In this case α̂ = |2v · n|, uΓ is as before and the new boundary function ûΓ is given
by

ûΓ(u) = 0 on ΓD,

ûΓ(u) = u+ on ΓN, ûΓ(u) = [0, u+
y ]⊤ on ΓM.

Once again, the consistency of the numerical fluxes also ensures the consistency of
the DG discretization. Hence, for sufficiently smooth (u0, p0) and (λm, (um, pm)), the
analytical solutions of (2.3)–(2.7) and (2.8)–(2.12), respectively, we have







Âh(um,vm
h ) + Ĉh(u0;um,vm

h ) + B̂h(v̄m
h , pm) = λmM̂(um,vm

h ),

B̂h(um, q̄m
h ) = 0,

‖um‖0 = 1

(2.18)

for all (vm
h , qm

h ) ∈ Vh,k × Qh,k.
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3. A posteriori error estimation. In this section we consider the derivation
of an a posteriori error estimate for a given eigenvalue of interest. To this end, we
first recall the DWR technique in the context of error estimation for general target
functionals of the solution; for further details, see [7, 22, 16, 24].

In order to proceed we first combine the base and eigenvalue discretizations de-
fined by (2.13) and (2.17), respectively, into a single discrete system of equations.
With this in mind, we wish to compute the triple ûh := {(u0

h, p0
h), λm

h , (um
h , pm

h )} ∈

(Vh,k × Qh,k) × C × (Vh,k × Qh,k) := V̂h,k, such that

N (ûh, v̂h) = 0 (3.1)

for all v̂h := {(v0
h, q0

h), χm
h , (vm

h , qm
h )} ∈ V̂h,k, where

N (ûh, v̂h) := −Ah(u0
h, v̄0

h) − Ch(u0
h, v̄0

h) − Bh(v̄0
h, p0

h)

− Bh(u0
h, q̄0

h) + ℓ1(v̄
0
h) + ℓ2(q̄

0
h)

− Âh(um
h ,vm

h ) − Ĉh(u0
h;um

h ,vm
h ) − B̂h(v̄m

h , pm
h ) − B̂h(um

h , q̄m
h )

+ λm
h M̂(um

h ,vm
h ) + χ̄m

h (‖um
h ‖2

0 − 1).

We remark that due to the consistency of the discretization of both the primal base and
eigenvalue problems, the analytical solution û := {(u0, p0), λm, (um, pm)} of (2.3)–
(2.12) satisfies the consistency condition

N (û, v̂h) = 0 ∀v̂h ∈ V̂h,k. (3.2)

Remark 3.1. To avoid the burden of extra notation we make the following re-
mark. In the original eigenvalue problem, the bilinear form related to the approxi-
mation of the convection term, i.e., Ĉh(·; ·, ·), is evaluated at the computed base so-
lution u0

h. However, in the formulation of the augmented discretization of the full
hydrodynamic stability problem, the variable u0

h arising in the resulting semilinear
form N (ûh, v̂h) is assumed to not be known, but must instead be computed as part
of the problem. To highlight this, it would be pertinent to modify our notation ac-
cordingly by dropping the semi-colon present in Ĉh; for reasons of notational brevity,
we retain the semi-colon notation, under the understanding that the augmented dis-
cretization (3.1) may be solved by first computing (u0

h, p0
h) followed by the evaluation

of {λm
h , (um

h , pm
h )}.

3.1. DWR approach for functionals. For a general target functional of prac-
tical interest J(·), we briefly outline the key steps involved in estimating the ap-
proximation error J(û) − J(ûh) employing the DWR technique. Assuming J(·) is
differentiable, we write J̄(·, ·; ·) to denote the mean value linearization of J(·), defined
by

J̄(û, ûh; û− ûh) = J(û) − J(ûh) =

∫ 1

0

J ′[θû + (1 − θûh)](û − ûh) dθ, (3.3)

where J ′[ŵ](·) denotes the Fréchet derivative of J(·) evaluated at some ŵ ∈ V̂. Here,

V̂ is some suitably chosen space such that V̂h,k ⊂ V̂. In the same way, we write

M(û, ûh; û− ûh, ŵ) = N (û, ŵ) −N (ûh, ŵ)

=

∫ 1

0

N ′
û
[θû + (1 − θ)ûh](û − ûh, ŵ) dθ. (3.4)
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We now introduce the following (formal) dual problem: find ẑ ∈ V̂ such that

M(û, ûh; ŵ, ẑ) = J̄(û, ûh; ŵ) ∀ŵ ∈ V̂. (3.5)

We assume that (3.5) possesses a unique solution. This assumption is, of course,
dependent on both the definition of M(û, ûh; ·, ·) and the target functional under
consideration. For the proceeding error analysis, we must therefore assume that (3.5)
is well–posed.

Proposition 3.2 (Error Representation Formula). Let û and ûh denote the
solutions of (2.3)–(2.12) and (3.1), respectively, and suppose that the dual problem
(3.5) is well posed, with solution ẑ. Then,

J(û) − J(ûh) = εΩ(û, ûh; ẑ − ẑh) ≡
∑

κ∈Th

ηκ, (3.6)

where ηκ = η0
κ + ηm

κ with

η0
κ =

∫

κ

R0(u0
h, p0

h) · w̄0 dx −
1

2

∫

∂κ\Γ

[[p0
h]] · w̄0 ds +

∫

∂κ∩ΓN

R0
N(u0

h, p0
h) · w̄0,+ ds

+

∫

∂κ∩ΓM

R0
M,x(u0

h, p0
h)w̄0,+

x ds −
1

Re

∫

∂κ∩ΓD

(R0
D(u0

h) ⊗ nκ) : ∇hw̄
0,+ ds

+
1

Re

∫

∂κ∩ΓD

σR0
D(u0

h) · w̄0,+ ds +
1

Re

∫

∂κ∩ΓM

σR0
M,y(u

0
h, p0

h)w̄0,+
y ds

−
1

Re

∫

∂κ∩ΓM

R0
M,y(u

0
h, p0

h)nκ · ∇hw̄
0,+
y ds

−
1

2Re

∫

∂κ\Γ

{

[[u0
h]] : ∇hw̄

0,+
h − [[∇hu

0
h]] · w̄0,+

}

ds

+
1

Re

∫

∂κ\Γ

σ[[u0
h]] : (w̄0,+ ⊗ nκ+) +

1

2

∫

∂κ\Γ

ω̄0,+[[u0
h]] ds

+

∫

∂κ∩ΓD

ω̄0,+R0
D(u0

h) · n ds +

∫

∂κ∩ΓM

ω̄0,+R0
N,x(u0

h)ny ds

−

∫

∂κ\Γ

(

F0(u0
h) · nκ −H(u0,+

h ,u0,−
h ,nκ)

)

· w̄0,+ ds

−

∫

∂κ∩Γ

(

F0(u0
h) · nκ −H(u0,+

h ,uΓ(u0,+
h ),nκ)

)

· w̄0,+ ds, (3.7)

and (w0, ω0) = (z0−z0
h, τ0 − τ0

h) for all (z0
h, τ0

h) ∈ Vh,k ×Qh,k. Here, R0(u0
h, p0

h)|κ =
[

L0(u0
h),∇h · u0

h

]⊤
|κ denotes the elementwise residual and R0

D(u0
h), R0

N(u0
h, p0

h) and
R0

M(u0
h, p0

h) are the Dirichlet, Neumann and mixed boundary residuals, respectively,
given by

R0
D(u0

h)|∂κ∩ΓD
= (u+

h − gD)|∂κ∩Γin
,

R0
N(u0

h, p0
h)|∂κ∩ΓN

=
1

Re

∂u
0,+
h

∂n
− p0,+

h n|∂κ∩ΓN
,

R0
M(u0

h, p0
h)|∂κ∩ΓM

=

[

1

Re

∂u
0,+
h,x

∂n
− p0,+

h nx,u0,+
h,y

]⊤ ∣
∣

∣

∣

∣

∂κ∩ΓM

.
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Similarly, ηm
κ is given by

ηm
κ =

∫

κ

Rm(u0
h;um

h , pm
h ) · w̄m dx −

1

2

∫

∂κ\Γ

[[pm
h ]] · w̄m ds +

∫

∂κ∩ΓN

Rm
N (um

h , pm
h ) · w̄m,+ ds

+

∫

∂κ∩ΓM

Rm
M,y(u

m
h , pm

h )w̄m,+
y ds −

1

Re

∫

∂κ∩ΓD

(Rm
D(um

h ) ⊗ nκ) : ∇hw̄
m,+ ds

+
1

Re

∫

∂κ∩ΓD

σRm
D(um

h ) · w̄m,+ ds +
1

Re

∫

∂κ∩ΓM

σRm
M,x(um

h , pm
h )w̄0,+

x ds

−
1

Re

∫

∂κ∩ΓM

R0
M,x(um

h , pm
h )nκ · ∇hw̄

m,+
x ds

−
1

2Re

∫

∂κ\Γ

{

[[um
h ]] : ∇hw̄

m,+ − [[∇hu
m
h ]] · w̄m,+

}

ds

+
1

Re

∫

∂κ\Γ

σ[[um
h ]] : (w̄m,+ ⊗ nκ) ds +

1

2

∫

∂κ\Γ

ω̄m,+[[um
h ]] ds

+

∫

∂κ∩ΓD

ω̄m,+Rm
D(um

h ) · n ds +

∫

∂κ∩ΓM

ω̄m,+Rm
M,x(um

h )nx ds

−

∫

∂κ\Γ

(

Fm(u0
h;um

h ) · nκ − Ĥ({{u0
h}};u

m,+,um,−,n)
)

· w̄m,+ ds

−

∫

∂κ∩Γ

(

Fm(u0
h;um

h ) · nκ − Ĥ((u0,+ + uΓ(u0))/2;um,+, ûΓ(um),n)
)

· w̄m,+ ds

and (wm, ωm) = (zm − zm
h , τm − τm

h ) for all (zm
h , τm

h ) ∈ Vh,k × Qh,k. Here, we

write Rm(u0
h;um

h , pm
h )|κ =

[

Lm(u0
h;um

h , pm
h ) − λmum

h ,∇h · um
h

]⊤
|κ to denote the el-

ementwise residual and Rm
D (um

h ), Rm
N (um

h , pm
h ) and Rm

M(um
h , pm

h ) are the Dirichlet,
Neumann and mixed boundary residuals of the eigenfunctions, respectively, given by

Rm
D (um

h )|∂κ∩ΓD
= u+

h |∂κ∩ΓD
,

Rm
N (um

h , pm
h )|∂κ∩ΓN

=
1

Re

∂u
m,+
h

∂n
− pm,+

h n|∂κ∩ΓN
,

Rm
M(um

h , pm
h )|∂κ∩ΓM

=

[

u
m,+
h,x ,

1

Re

∂u
m,+
h,y

∂n
− pm,+

h ny

]⊤ ∣
∣

∣

∣

∣

∂κ∩ΓM

.

Proof. Upon choosing ŵ = û − ûh in (3.5), recalling the linearization performed
in (3.3) and (3.4) and exploiting the consistency of the DG discretizations (2.16) and
(2.18) we have

J(û) − J(ûh) = J̄(û, ûh; û − ûh) = M(û, ûh; û− ûh, ẑ)

= M(û, ûh; û− ûh, ẑ− ẑh) = −N (ûh, ẑ − ẑh) ∀ẑh ∈ V̂h,k.

Equation (3.6) then follows by application of the integration by parts formula.
Corollary 3.3 (Type I error bound). Given that the assumptions of Proposition

3.2 hold, then

|J(û) − J(ûh)| ≤
∑

κ∈Th

|ηκ|, (3.8)
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where ηκ is as given in Proposition 3.2.
Proof. Equation (3.8) follows from (3.6) by use of the triangle inequality.
Remark 3.4. We note that the elemental error indicators ηκ, κ ∈ Th, consist

of two parts: η0
κ and ηm

κ . The former indicator can be employed to estimate the
contribution to the overall error stemming from the DG approximation of the primal
base problem, while the latter indicator measures the local contribution to the error
committed in the approximation of the underlying primal eigenvalue problem.

3.2. A posteriori error estimation for eigenvalues. In order to exploit the
above analysis for the estimation of the error in a given eigenvalue λm of interest,
we proceed as in Heuveline & Rannacher [21]. More precisely, we reformulate the
evaluation of the eigenvalue λm as the estimation of a nonlinear target functional of
the solution. To this end, following [21], the functional of interest may be defined by

J(v̂) := χm‖vm‖2
0, (3.9)

in which case

J(û) − J(ûh) = λm − λm
h ,

by virtue of the fact that ‖um‖0 = 1 and ‖um
h ‖0 = 1.

Remark 3.5. We remark that the choice of the definition of the functional (3.9)
is not unique. Indeed, one may simply select J(·) as J(v̂) := χm, in which case the
resultant dual problem has complex coefficients and requires the solution of one extra
equation. As we shall see below, the functional defined in (3.9) leads to a more natural
dual problem which consists of a dual eigenvalue problem and a dual base problem, thus
mirroring the original problem. It is worth pointing out that numerical experiments
indicate that the resulting error indicators using either of these definitions for J(·)
lead to almost identical results. However, the latter definition is more pertinent in the
context of parameter estimation in bifurcation problems; see, for example, [9].

3.3. Numerical approximation of the dual problem. With J(·) defined by
(3.9), we now proceed to formulate the dual problem. For ẑ = {(z0, τ0), µm, (zm, τm)}
we calculate the Fréchet derivative of N (·, ẑ) in the direction v̂ at a fixed point û, i.e.,

N ′
û
[û](v̂, ẑ) = −Ah(v0, z̄0) − C′

h[u0](v0, z̄0) − Bh(z̄0, q0) − Bh(v0, τ̄0)

−Âh(vm, zm
h ) − B̂h(z̄m, qm) − B̂h(vm, τ̄m)

−Ĉh(u0;vm, zm) − Ĉh(v0; zm,um) + χm(um, zm)

+λm(vm, zm) + 2µ̄mRe(um,vm),

where

C′
h[u0](v0, z0) = −

∫

Ω

(u0 ⊗ v0) : ∇hz
0 dx −

∫

Ω

(v0 ⊗ u0) : ∇hz
0 dx

+

∫

∂κ\Γ

H′[u0](v0,+,v0,−,n) · z0 ds

+

∫

∂κ∩Γ

H′[u0](v0,+,uΓ(v0
h),n) · z0 ds.

Similarly, the Fréchet derivative of J(·) in the direction v̂ at a fixed point û is

J ′[û](v̂) = χm‖um‖2
0 + 2λmRe(um,vm).
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Rather than linearizing about u − uh, we simply consider the linearization about
just u; in practice, this linearization will be performed on the basis of the current
numerical solution. Thereby, we have the resultant (approximate) dual problem: find
ẑ = (z0, τ0), µm, (zm, τm)) such that

−Ah(v0, z̄0) − C′
h[u0](v0, z̄0) − Bh(z̄0, q0)

− Bh(v0, τ̄0) − Âh(vm, zm) − B̂h(z̄m, qm)

− B̂h(vm, τ̄m) − Ĉh(u0;vm, zm) − Ĉh(v0;um, zm)

+ χm(um, zm) + λm(vm, zm) + 2µ̄mRe(um,vm) =

χm‖um‖2
0 + 2λmRe(um,vm) ∀v̂ ∈ V̂. (3.10)

By a process of back substitution, we see that the solution to (3.10) can be
found by first solving a dual eigenvalue problem and substituting the result back into
a dual base problem. Hence, the dual eigenvalue problem becomes: find the pair
(µm, (zm, τm)) ∈ C × V such that

−Âh(vm, zm) − B̂h(z̄m, qm) − B̂h(vm, τ̄m) − Ĉh(u0;vm, zm)

+χm(um, zm) + λm(vm, zm) + 2µ̄mRe(um,vm) =

χm‖um‖2
0 + 2λmRe(um,vm) ∀v̂ ∈ V̂m. (3.11)

However, it is perhaps more natural to consider the alternative dual eigenvalue prob-
lem: find (µ̃m, (z̃m, t̃m)) ∈ V̂m such that

Âh(vm, z̃m) + B̂h(vm, ¯̃tm) + Ĉh(u0
h;vm, z̃m) = µ̃m(vm, z̃m),

B̂h(¯̃zm, qm) = 0 ∀v̂ ∈ V̂m, (3.12)

subject to the scaling condition (um, z̃m) = 1. Indeed, it follows directly that µ̃m =
λ̄m, and hence, (µ̃m, (z̃m, t̃m)) is also the solution of (3.11).

Finally, the dual base solution becomes: find (z0, τ0) ∈ V̂0 such that

Ah(v0, z̄0) + C′
h[u0](v0, z̄0) + Bh(z̄0, q0)

+Bh(v0, τ̄0) = Ĉh(v0;um, zm) ∀v0 ∈ V̂0. (3.13)

Thus, the dual base solution is dependent on the primal base solution and both the
dual and primal eigenfunctions and, as such, in the case of complex eigenvalues is also
complex.

In order to approximate (3.12) and (3.13) numerically, we now proceed by re-
placing û with ûh and seeking a discrete alternative ẑh to ẑ. Evidently, seeking
ẑh ∈ V̂h,k is not applicable as, by virtue of (3.1), our error estimate would be identi-
cally zero. Instead we seek ẑh computed on the same mesh Th used for ûh, but with a
higher degree polynomial. Thus, our discrete dual eigenvalue problem becomes: find
{µm

h , (zm
h , τm

h )} ∈ C × (V
h,k̂

× Q
h,k̂

) such that

Âh(vm
h , zm

h ) + B̂h(vm
h , τ̄m

h ) + Ĉh(u0
h;vm

h , zm
h ) = µm

h (vm
h , zm

h ),

B̂h(z̄m
h , qm

h ) = 0 (3.14)

for all (vm
h , qm

h ) ∈ V
h,k̂

× Q
h,k̂

, with (um
h , z̃m

h ) = 1, where k̂ > k. Similarly, the

discrete dual base problem becomes: find (z0
h, τ0

h) ∈ V
h,k̂

× Q
h,k̂

such that

Ah(v0
h, z̄0

h) + C′
h[u0

h](v0
h, z̄0

h) + Bh(z̄0
h, q0

h)

+Bh(v0
h, τ̄0

h) = Ĉh(v0
h;um

h , zm
h ) (3.15)
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for all (v0
h, q0

h) ∈ V
h,k̂

× Q
h,k̂

, Hence, we have the following approximate a posteriori
error bound

|λm − λm
h | ∼<

∑

κ∈Th

|η̂κ|,

where η̂κ is defined in an analogous manner to ηκ, cf. Proposition 3.2, with ẑ replaced
by ẑh.

Remark 3.6. Although not of interest for our current applications, we point out
that the same general framework may be employed to control the error in certain target
functionals of the eigenfunctions; see Heuveline and Rannacher [21] for details.

4. Numerical experiments. In this section we present a series of numerical
examples to demonstrate the practical performance of the proposed a posteriori error
estimator derived in Proposition 3.2 within an automatic adaptive refinement proce-
dure which is based on 1-irregular quadrilateral elements; i.e., elements which contain
at most one hanging node per element-edge, which we assume to be the barycenter of
the edge. Here, the elements are marked for refinement/derefinement on the basis of
the size of the elemental error indicators |η̂κ| using the fixed fraction refinement algo-
rithm with refinement and derefinement fractions set to 25% and 10%, respectively.
In each of the examples shown in this section, we set Cσ = 10, k = 2, and k̂ = 3.
The resulting system of nonlinear equations arising in the numerical approximation of
the primal base solution are solved by a damped Newton method; within each inner
(linear) iteration, we exploit the MUltifrontal Massively Parallel Solver (MUMPS),
see [2] for details. However, we point out that for high Reynolds numbers it is neces-
sary to employ a continuation technique based on computing approximations at lower
Reynolds numbers initially, before increasing Re to the desired value.

The discretization of the primal and dual eigenvalue problems require the com-
putation of the eigenvalue with smallest real part satisfying a system of the form

Ax = λBx, (4.1)

where, with an abuse of notation, A, B, and x take the form

A =

[

K C
C⊤ 0

]

, B =

[

M 0
0 0

]

, and x =

(

u

p

)

. (4.2)

In order to solve (4.1) we employ the Arnoldi Package (ARPACK) of Lehoucq,
Sorensen and Yang [25]. We point out that ARPACK is most adept at finding highly
separated eigenvalues with large magnitude, and not necessarily those with small real
part that determine linear stability. Another issue is that, due to the mass matrix
having a zero diagonal block, there are a number of infinite eigenvalues, which we
wish to avoid computing. To overcome these difficulties, Cliffe et al. [8] proposed the
use of a modified Cayley transform to compute the solution of (4.1). This involves
solving a modified eigenvalue problem of the form

[

K − µM βC
βC⊤ 0

](

u

q

)

= θ

[

K − σM C
C⊤ 0

](

u

q

)

, (4.3)

where σ < µ and β are real–valued parameters. Under this transformation it is readily
shown, see Garratt [18], that for finite eigenvalues

θ =
λ − µ

λ − σ
and q =

(θ − 1)p

θ − β
, (4.4)
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ΓOut

ΓIn

ΓWall

ΓWall

ΓWall

ΓCenter

R

r

x

y

Ω

Fig. 4.1. Example 1: Half Channel with a Sudden Expansion

while the infinite eigenvalues are mapped to β. Furthermore,

Re(λ) <
1

2
(σ + µ) ⇔ |θ| > 1,

Re(λ) ≥
1

2
(σ + µ) ⇔ |θ| ≤ 1;

hence, by choosing σ and µ in a judicious manner and selecting β = 0 we can ensure
the computation of the eigenvalue of interest. Solution by ARPACK of (4.3) involves
the repeated multiplication of a vector by the inverse of

[

K − σM C
C⊤ 0

]

. (4.5)

For computational efficiency, we again employ the MUMPS [2] direct matrix solver
which computes and stores the factors of (4.5).

4.1. Example 1. In this first example we consider the flow in a channel with a
sudden expansion; the ratio of the half-width of expanded section of the channel, r, to
that of the inlet section channel, R, being set to 3 :1 and the outlet being sufficiently
long to allow Poiseuille flow to have fully developed at the exit, see Figure 4.1. On
entry, Γin, the flow is also assumed to be Poiseuille; no slip Dirichlet conditions are
imposed on ΓWall, a Neumann condition is enforced on ΓOut and the mixed boundary
condition is imposed on Γcenter. In this situation it is well known, see [17], that at
around Re = 40 there is a steady symmetry breaking bifurcation, where a real eigen-
value crosses the imaginary axis. As such, we explore the eigenvalue error estimation
and mesh adaptivity near to this bifurcation point by setting Re = 35. In this case the
eigenvalue with smallest real part has true value 0.00613553131999. We begin with
a uniform starting grid, comprising 760 elements and perform 6 adaptive refinement
steps based on employing the fixed fraction refinement strategy.

Table 4.1 shows the number of elements, the number of degrees of freedom for
both the primal base and primal eigenvalue problems, the error in the eigenvalue and
the error effectivities when the full indicator |

∑

κ∈Th
η̂κ| is used and when the partial

indicator |
∑

κ∈Th
η̂m

κ |, based only on computing the error in the eigenvalue alone,
cf. [6], are employed. We first notice that the effectivities when using the full error
indicator tend towards unity as the mesh is refined indicating that as the adaptive
algorithm proceeds, a reliable prediction of the error in the computed eigenvalue of
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Mesh No No. Eles Base DOF Eig. Dof |λ − λh|
∣

∣

∑

κ∈Th
η̂κ

∣

∣

∣

∣

∑

κ∈Th
η̂m

κ

∣

∣

1 760 16720 16720 6.027E-05 1.92 0.14
2 1387 30514 30514 1.540E-05 2.47 0.96
3 2479 54538 54538 9.795E-06 1.98 1.16
4 4387 96514 96514 6.327E-06 1.58 0.98
5 7645 168190 168190 3.845E-06 1.33 0.80
6 13243 291346 291346 2.231E-06 1.16 0.67
7 22585 496870 496870 1.281E-06 1.00 0.56

Table 4.1
Example 1: Adaptive algorithm for Re = 35.

(a)

(b)

Fig. 4.2. Example 1: (a) Mesh after 5 refinement steps, (b) Contour plot of zm
x

.

interest may be determined. In contrast, the effectivities when using only the partial
error indicator seem to be extremely unreliable; for this example, we observe around
a 50% underestimation of the error on the final mesh.

Figures 4.2(a) and 4.3(a) show the mesh after 5 and 6 refinement steps, respec-
tively; the latter shows the detail of the mesh in the vicinity of the expansion point.
Indeed, from Figure 4.3(a) we observe that the majority of the refinement has been
performed around the reentrant corner. For brevity we do not show plots of all the
components of the primal base and dual solution and primal and dual eigenfunctions;
instead, we show contour plots of the x–component of the dual eigenvector and the
y–component of the dual base solution in Figures 4.2(b) and 4.3(b), respectively, in
order to indicate how the refinement has been directed towards the structure in the
dual solutions.

Finally, in Figure 4.4 we compare the performance of the adaptive mesh refine-
ment strategy against a uniform refinement strategy; here the error in the computed
eigenvalue is plotted against the number of degrees of freedom (in the primal eigen-
value problem) for the both strategies. The superiority of the adaptive refinement
algorithm is evident: for a given number of degrees of freedom the error in the eigen-
value computed on the adaptively refined meshes is always less than the corresponding
quantity computed using simply uniform refinement of the mesh. Indeed, on the final
grid, for the same number of degrees of freedom the adaptive strategy leads to almost
an order of magnitude improvement in error |λ− λh| in comparison with the uniform
mesh refinement strategy.

4.2. Example 2. In this second example we consider flow in a channel with
a cylinder centered on the midline of the channel partially blocking the flow; the
radius of the cylinder is r and the half-width of the channel is R, see Figure 4.5.
We consider a blockage ratio r : R = 1 : 2, with Poiseuille flow on entry, no slip
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(a) (b)

Fig. 4.3. Example 1: (a) Mesh detail near expansion, (b) Contour plot of zy near expansion.
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Fig. 4.4. Example 1: Error Convergence

conditions on ΓWall and ΓB, a Neumann condition on ΓOut and a mixed condition
on ΓCenter. For this configuration a Hopf bifurcation occurs at around Re ≈ 120, see
[11]. Here, we set Re = 100 and seek to perform error estimation and adaptivity
for the eigenvalue with the smallest real part; the true value of this eigenvalue is
0.114789963956350+ 2.116719676204527i. Our starting grid has 816 elements and is
fitted around the blockage.

As before, we show in tabular form the number of elements, the number of degrees
of freedom for both the primal base and primal eigenvalue problems, the error in
the eigenvalue and the error effectivities when the full indicator |

∑

κ∈Th
η̂κ| is used

and when the partial indicator |
∑

κ∈Th
η̂m

κ |, based only on the eigenvalue error, is
employed; see Table 4.2. In this case we see an improvement of the effectivities
for the full error indicator in comparison to the previous example; in this case the
effectivities tend to unity in much fewer refinement steps, this possibly being due to
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ΓOutΓIn

ΓWall
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ΓB
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Fig. 4.5. Example 2: Half Channel with a Cylindrical Blockage

Mesh No No. Eles Base DOF Eig. Dof |λ − λh|
∣

∣

∑

κ∈Th
η̂κ

∣

∣

∣

∣

∑

κ∈Th
η̂m

κ

∣

∣

1 816 17952 17952 8.966E-02 1.08 4.51E-02
2 1443 31746 31746 2.229E-03 1.54 0.55
3 2577 56694 56694 1.455E-04 1.31 0.68
4 4590 100980 100980 4.089E-05 0.98 0.53
5 8190 180180 180180 1.033E-05 1.01 0.81
6 14400 316800 316800 3.870E-06 0.95 0.51
7 24843 546546 546546 1.060E-06 1.00 0.97

Table 4.2
Example 2: Convergence and Effectivities

greater regularity of the dual base and eigenvalue problems. Once again, the partial
error indicators prove unreliable, consistently underestimating the error; however, on
the final grid the partial error indicator effectivity is quite reasonable. Evidently, if the
primal base solution is completely resolved, then the partial and full error indicators
will both provide a reliable estimates for the size of the discretization error in the
computed eigenvalue.

Figures 4.6(a) and (b) show the adaptively refined mesh after 6 refinement steps,
the former showing the full extent of the mesh, while the latter shows the mesh detail
near to the blockage. We notice that the majority of refinement has been performed
downstream of the blockage, with substantially less being undertaken upstream. Fig-
ure 4.6(c) shows a contour plot of the y–component of the dual base solution z0 over
the same portion of the domain as depicted in Figure 4.6(b). It can be seen that
some of the mesh refinement in the right portion of the domain has been carried out
in response to the fine structures present in the dual base solution.

Finally, we again compare the error in the computed eigenvalue, using our adap-
tive refinement strategy, with that using uniform refinement, see Figure 4.7. The
adaptive refinement strategy shows a marked improvement over the uniform refine-
ment strategy; indeed, on the final grid the adaptive refinement strategy shows over an
order of magnitude improvement in error for the same number of degrees of freedom
as the uniform strategy.

4.3. Example 3. In this final example we consider a cylindrical pipe, of radius
R, blocked by a sphere, of radius r, centered on the axis of symmetry of the pipe.
Here, we shall be interested in an axisymmetric steady solution and hence we can use
the same two–dimensional domain as shown in Figure 4.5 to calculate the base flow;
once again we choose R : r = 2 : 1. This symmetric steady solution is known to be
unstable for Re ≈ 360, hence we pick Re = 350 and seek to adapt the mesh to locate
the smallest real eigenvalue. We use the techniques developed in [10] in order to only
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(a)

(b) (c)

Fig. 4.6. Example 2: (a) Final mesh, (b) Mesh detail near blockage, (c) Contour plot of zy

near blockage.
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Fig. 4.7. Example 2: Error Convergence

consider a two–dimensional analogue of the problem, albeit with an extra azimuthal
component for the velocity vector. The true eigenvalue is 0.015358133759879. As
before, we use an initial mesh fitted to the blockage, this time with 1016 elements and
carry out adaptive refinement using the fixed fraction refinement strategy.

Table 4.3 shows the effectivities for the full and partial error indicators, |
∑

κ∈Th
η̂κ|

and |
∑

κ∈Th
η̂m

κ |, respectively. Again, the full error indicators have effectivities set-
tling down to 1 after only 2 refinement steps. In contrast, the effectivities computed
employing only the partial error indicators for the eigenproblem alone tend to oscil-
late around unity, thereby indicating that reliable estimates for the true error in the
computed eigenvalue cannot be inferred from this quantity.

In Figures 4.8(a) and (b) we show the adapted mesh after 4 refinement steps; the
first shows the whole of the computational domain, while the second shows the mesh
detail near the blockage. As with the blocked channel, the majority of mesh refinement
is seen to be carried out slightly downstream of the blockage with significantly less
refinement of the mesh undertaken upstream of the blockage. Figure 4.8(c) shows
the radial component of the dual base solution z0

r on the same portion of the domain
depicted in Figure 4.8(b). Once again, we observe that the mesh in the right portion
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Mesh No No. Eles Base DOF Eig. Dof |λ − λh| |
∑

κ∈Th
η̂κ| |

∑

κ∈Th
η̂m

κ |

1 1016 22352 31496 1.384E-01 1.68 .114E-01
2 1793 39446 55583 2.552E-03 2.01 2.70
3 3158 69476 97898 4.877E-04 0.94 0.67
4 5624 123728 174344 2.467E-05 1.02 1.14
5 10301 226622 319331 2.111E-06 1.08 2.69

Table 4.3
Example 3: Convergence and Effectivities

(a)

(b) (c)

Fig. 4.8. Example 3: (a) Final mesh, (b) Mesh detail near blockage, (c) Contour plot of z0
r

near blockage.

of the visible domain has been refined in response to the fine structures present in z0
r ;

indeed, no other component of the solution exhibits these same features.
Finally, Figure 4.9 gives a comparison of the error in the computed eigenvalue em-

ploying both the proposed adaptive refinement strategy and uniform mesh refinement.
As with the previous examples, the adaptive strategy shows a great improvement in
the error in the computed eigenvalue in comparison to the same quantity computed
using uniform refinement; indeed, on the final mesh, we witness over two orders of
magnitude improvement in error when the adaptive strategy is employed.

5. Concluding remarks. In this article we have considered the a posteriori
error estimation and adaptive mesh refinement of discontinuous Galerkin approxi-
mations of the hydrodynamic stability problem associated with the incompressible
Navier–Stokes equations. In particular, by constructing both a dual eigenvalue prob-
lem and a dual problem for the original base solution, an a posteriori error estimator
has been derived based on employing a generalization of the standard DWR approach,
originally developed for the estimation of target functionals of the solution, to eigen-
value/stability problems. In this way, errors stemming from both the numerical ap-
proximation of the original nonlinear flow problem, as well as the underlying linear
eigenvalue problem are correctly controlled. Indeed, numerical experiments presented
in this article clearly demonstrate that the resulting error indicators lead to reliable
estimation of the underlying eigenvalue of interest: as the mesh is refined the com-
puted effectivity indices tend to unity. In contrast, the quality of the error indicator
significantly deteriorates if the error related to the discretization of the original base
flow is neglected in the analysis. The application of these techniques to the reliable
approximation of bifurcation problems is in progress and will be reported elsewhere.
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Fig. 4.9. Example 3: Error Convergence
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