
Detecting Bots Based on Keylogging Activities
Yousof Al-Hammadi and Uwe Aickelin

Department of Computer Science and Information Technology,
The University of Nottingham,

Nottingham, UK NG8 1BB
Email: {yxa,uxa}@cs.nott.ac.uk

Abstract—A bot is a piece of software that is usually installed
on an infected machine without the user’s knowledge. A bot
is controlled remotely by the attacker under a Command and
Control structure. Recent statistics show that bots represent one
of the fastest growing threats to our network by performing
malicious activities such as email spamming or keylogging.
However, few bot detection techniques have been developed to
date. In this paper, we investigate a behavioural algorithm to
detect a single bot that uses keylogging activity. Our approach
involves the use of function calls analysis for the detection of the
bot with a keylogging component. Correlation of the frequency of
function calls made by the bot with other system signals during
a specified time-window is performed to enhance the detection
scheme. We perform a range of experiments with the spybot.
Our results show that there is a high correlation between some
function calls executed by this bot which indicates abnormal
activity in our system.

Index Terms– API function calls, Bot, Correlation, IRC

I. INTRODUCTION

For some time now, computers face different types of attacks
by malicious programs such as viruses and worms[11][22]. A
more recent threat is the presence of large numbers of com-
promised machines, known as bots, working in a coordinated
manner [13]. A bot, a term derived from robot, is a piece
of malicious software that is installed on a user machine,
usually without his knowledge. This malicious software is
programmed to respond to various instructions remotely by
the attacker through Command and Control (C&C) structure,
often using the Internet Relay Chat (IRC) network as a
communication channel. These instructions command the bot
on the infected machine to perform malicious activities. The
malicious activities include vulnerability scans to spread the
bot to other systems, email spamming, keylogging, packet
sniffing, phishing, rootkits and identity theft.

A bot spreads and propagates to other hosts by exploiting
known vulnerabilities in operating systems and applications.
The target host is infected by different means ranging from
worms, email viruses or phishing [21]. Once the bot is installed
on a victim’s machine, it changes the system configuration
to start itself each time the system boots. A bot might have
the functionality to spread itself by sending out more emails
or scanning more computers, thus, infecting other vulnerable
machines. After that, the bot connects to the IRC server and
joins the specified Command and Control channel. Having
joined the channel, the bot either executes the channel topic as
a default command or remains inactive waiting for botmaster

commands. The botmaster communicates with the bot through
IRC protocol[1]. The IRC protocol is a preferred due to its
flexibility in the management and control of bots. Additionally,
the IRC protocol provides the attackers with anonymous
control over their bots. The botmaster can also control the bots
using different types of communications such as the HTTP
protocol or through Peer to Peer networks.

Initially, bots were used to coordinate attacks across a
network of bot-infected machines. Nowadays, most bots are
implemented with keylogging features. Keylogging is a mean
of intercepting and subversively monitoring the user activities
such as typing keystrokes and mouse clicking. The intercepted
keystrokes are either saved to a log file or sent directly to the
botmaster. The log file can be sent to the attacker through
email, ftp or accessed remotely by the attacker. Other new
features added to the keylogging bot are the ability to capture
screen shots, and mouse logging [14].

Keylogging represents a serious threat to the privacy and
security of our systems. This is because the keylogger program
can collect the user’s personal information, passwords, credit
cards or other sensitive information. Unlike other attacks
performed by the bot, keylogging is difficult to detect as it runs
in hidden mode. Many Anti-Virus packages cannot detect a
stealthy keylogger running on the system. The user has no way
to determine if his machine is running a keylogger, therefore,
he could easily become a victim of the identity theft.

The focus of bot detection research is the analysis of net-
work traffic. To the best of our knowledge, no attempt has been
made within bot detection research to detect a single bot by
monitoring Application Programming Interface (API) function
calls. In this paper, we present an algorithm to detect a single
bot in the system based on correlating different behaviours
by monitoring specified API function calls executed by the
bot to perform keylogging activity. Invoking these functions
withing specified time window might represent a security risk
to computer systems. For example, calling GetKeyboardState
or GetAsyncKeyState by a program and writing data to a file
using the WriteFile function call usually indicates a keylogging
activity. In addition, the bot is designed to send the intercepted
keystrokes to the attacker, therefore, we may notice a large
volume of outgoing traffic during this period. Correlation of
the frequency of function calls generated by the bot during a
specified time-window could indicate abnormal activity in our
system. Overall, we believe that tracking and correlating the
keyboard events with other behaviour data such as accessing

1



files or sending packets will enhance the process of bot
detection.

The aim of this paper is to investigate the effect of cor-
relating different behaviours of a single bot represented by
API function calls within specified time-window. We focus
on three types of bot behaviour: keylogging activity, file
access and outgoing traffic. Our results show that correlating
different behaviours of a single bot enhance the bot detection
mechanism.

The remainder of this paper is structured as follows: section
two presents different algorithms used to detect bots and
keylogging activities. It also shows the problems which face
the current detection systems. Section three discusses the
design and implementation of our bot detection. In addition,
it explains different types of experiments that we perform to
our bot detection. We discuss our results in section four. We
conclude and present our future work in section five.

II. RELATED WORK

There are only a few existing techniques for bots detection.
Most of these techniques use signature-based detection by
analysing network traffic [10][9]. Although analysing network
traffic using a signature-based approach is a useful mechanism
for bot detection, it becomes more difficult if the botmaster’s
commands are encrypted. Different research performed by
Binkley [7] uses anomaly-based detection to detect the be-
haviour of the bot. The anomaly detection technique looks for
the deviation from a defined normal traffic. In this section, we
will present current related work in bot detection techniques
and the associated problems.

Recent work by Barford [5] represents a good introduction
to understanding and analysing the behaviours of the bots.
Most of the research conducted in this area concentrates
on detecting botnets rather than an individual bot [10][9][2]
and, to the best of our knowledge, little research has been
performed in this area. Freiling et al. [10][13] use a non-
productive resource such as honeypot to collect bot binaries.
Their approach is based on allowing the infected honeypot to
emulate the bot activities and analysing network traffic to shut
down the remote control network. Although honeypots allow
administrators to look at security events in more detail, they
cannot detect these events without receiving activity directed
against them [3]. In addition, the process of emulating the bot
action to penetrate the remote network can be discovered if the
botnet size is relatively small. To avoid these problems, our
work focuses on monitoring API function calls generated by
the bot and correlates these function calls within a specified
time-windows to detect malicious activities. In addition, host-
based detection is used to investigate the presence of the bot
in our system.

Cooke et al. [9] detect bots by analysing the communi-
cations between bots, and the communications between bots
and their controllers. They also investigate the bots payloads
using the pattern matching of known bot commands and look
for the behavioural characteristics of bots that differ from
non-human characteristics. They conclude that bots can run

on non-standard ports and that analysing encoded packets is
very costly on high throughput networks. Hence, there are
no simple characteristics of the bots communication channels
that can be used for detection. They also discuss the approach
of detecting bots by their propagation or attack behaviour
by correlating data from different sources. However, they
have not designed a correlation algorithm to show results of
this investigation. In this paper, we present one approach of
detecting bots based on correlating the frequency of different
bot’s behaviour such as keyboard events, files access and the
amount of outgoing traffic.

An approach for the analysis of IRC usage by bots is
presented by Stephane Racine [21]. This approach detects bots
by finding inactive clients through monitoring IRC PONG
messages and assigning them to a connection. The active
clients are then classified according to the channel that they
join. This approach is successful in detecting idle IRC activity,
but suffers from high false positive rates. In addition, searching
for IRC patterns can be costly when inspecting every packet
and could slow the detection mechanism. Furthermore, apply-
ing pattern matching is difficult when data is encrypted [9]. We
believe that monitoring and correlating different API function
calls will enhance the process of bots detection through this
correlation.

Research in keylogging has shown that is difficult to detect
but the literature on this topic is also sparse. TAN [23] suggests
disabling some function calls used by the keylogger such as
SetWindowsHookEx, GetKeyboardState and GetKeyState. This
can prevent the proper functioning of keyloggers. However,
disabling these functions will prevent legitimate software from
using these functions. In our work, we monitor calls to some of
these functions and other functions. Monitoring calls to these
functions will not affect their use by legitimate programs.

Other research suggests that embedding a sequence of
random characters between successive keys typed on the
browser will make the keylogging process difficult [12]. An-
other group [6] disassembles all running processes search-
ing for SetWindowsHookEx used by some keyloggers. One
problem with this method is that the keylogger developers
can use different methods to log the user activities other
than using SetWindowsHookEx. In addition, disassembling all
processes searching for SetWindowsHookEx is a tedious task.
Our approach is based on monitoring selected API function
calls for all running processes in our system in user mode.
By monitoring these functions, we will avoid the problems
mentioned above.

III. BOT DETECTION

A. Introduction

Existing research techniques detect the presence of bots via
network monitoring. Rather than attempting to detect bots via
network monitoring, our work focuses on a single bot detection
on a machine by monitoring and correlating different activities
on the system represented by executing different API function
calls that may indicate the presence of a bot on the system.

2



The API function calls executed by the bot is monitored in
a user-based environment. Our monitoring program intercepts
API function calls in the user-based environment. Direct
invocation kernel-based API functions will not be monitored
by our intercepting program. Monitoring kernel-based API
function calls will be investigated in our future work.

In order to detect the bot in the system different bot
behaviours are correlated to have a high correlation value,
which is represented by Spearman’s Rank Correlation (SRC)
value [8]. In our case, if the Spearman’s Rank Correlation
value exceeds the threshold level of 0.5, we have a high
correlation between the two different behaviours which may
reflect malicious activity in our system. The threshold level of
0.5 or more represents a strong correlation between two events
according to the Speaman’s Rank Correlation algorithm. We
hypothesize that one behaviour may not be enough to detect
malicious activity. This is explored in section IV. For example,
one behaviour of the bot is to send the intercepted informa-
tion from the keylogging process to the botmaster once the
botmaster issues the keylogging command. The intercepted
information is sent to the botmaster if the user of the infected
machine hits [ENTER] key, or closes the active window.
This action represents normal behaviour. Correlating different
actions enhance the process of detection. We are aware that
different keyloggers use different techniques to intercept and
store the keystrokes. Our work examines a keylogging activity
as our goal is to detect a bot rather than a keylogger.

B. Aims

The aim of our experiments is to verify the notion that
correlating different behaviours of a single process which
produces multiple API function calls within a specified time-
window, indicates abnormal activity. In addition, we apply the
monitoring and correlation scheme to a normal application
(e.g. mIRC client) to verify that the normal application exe-
cutes different function calls from the malicious process which
results in having different correlation value.

C. Design and Implementation

In our research, we focus on monitoring selected API
function calls executed by bots that perform the keylogging
task and send the intercepted keystrokes directly to the IRC
channel. To accomplish this task, we implement a program to
monitor some API function calls executed by the bot when
receiving commands from the botmaster. We focus on three
types of API function calls:

• Communications Functions (CommFunc): socket,
send, recv, sendto, recvfrom, and IcmpSendEcho [20].

• File Access Functions (FileAccess): CreateFile, Open-
File, ReadFile, and WriteFile[18].

• Keyboard State Functions (KeyboardState): GetKey-
boardState, GetAsyncKeyState, GetKeyNameText, and
keybd event[19].

We have implemented a ‘hook’ program to capture the API
functions executed by the bot. Hooking API functions is the

Algorithm 1: Bot Detection Algorithm using Spearman’s
Rank Correlation (SRC)

if KeyboardState function(s) is executed (i.e. keylogging activity) then
if SRC[KeyboardState,CommFunc] > Threshold and
SRC[KeyboardState,FileAccess] > Threshold then

Strong detection
else if SRC[KeyboardState,CommFunc] <
SRC[KeyboardState,FileAccess] < Threshold then

Weak detection
else if (SRC[KeyboardState,CommFunc] < Threshold and
SRC[KeyboardState,FileAccess] > Threshold) or
(SRC[KeyboardState,CommFunc] > Threshold and
SRC[KeyboardState,FileAccess] < Threshold) then

Normal detection
else

No detection and normal activity is considered
end

process of intercepting events (messages, keystrokes, mouse)
before they reach an application[15][16].

In our work, we captured selected API functions such as
GetKeyboardState, and GetAsyncKeyState used by bots which
implement keylogging feature. For example, the spybot[5]
is used for its ability to intercept the user’s keystrokes by
invoking GetAsyncKeyState. We search for all the running
processes in our system and inject our hooking program into
the running processes. An API hook is based on modifying the
process Import Address Table [4] to point to the replacement
function instead of the original function. Thus, we were able
to capture the functions made by the bot when it receives
commands from the botmaster.

We store the captured functions in a log file for further
processing. We use a Spearman’s Rank Correlation formula [8]
to find the correlation between different behaviours of the bot
such as intercepting the user keystrokes and sending it directly
to the IRC channel within specified time-window. In addition,
we also correlate the events of intercepting the user keystrokes
and file access. Our results show that the combination of these
correlated events can indicate suspicious activity in our system.

The algorithm of detecting the bot is described in Algo-
rithm 1.

D. Architecture

To perform our experiments, we set up a small virtual IRC
network on a VMWare machine. The VMWare machine runs
under a Windows XP P4 SP2 with a 2.4GHz processor and
1GB RAM. The virtual IRC network consists of two machines.
One machine runs Windows XP Pro SP2 and it is used as an
IRC server. The other machine runs Windows XP Pro SP2 as
an infected machine with spybot [5]. We do not have to have
a large network to implement our algorithm as our work based
on detecting the behaviour of a single bot on a machine.

E. Experiments

We have performed five experiments to verify our notion.
In the first experiment (E1), we allow the spybot to connect
to the IRC server and join the channel without receiving any
commands from the botmaster. In the second experiment (E2),
we follow the same procedure as in the first experiment, but in

3



this case the botmaster issues different commands to the bot,
excluding the keylogging activity. Note that our target machine
in these experiments is an idle infected machine. That is, the
user does not use the infected machine for any activity.

In the third experiment, we allow the bot to connect to
IRC server and join the specified channel. The bot on the
infected machine monitors the user’s typing activity, but does
not send any information to the botmaster. We monitor two
scenarios of typing. In the first scenario (E3.1), the user types
long sentences while in the second scenario (E3.2), the user
types short sentences. By monitoring two typing scenarios, we
are able to show the effect of different user’s activity on our
detection scheme.

In the fourth experiment, once the bot connects to the
IRC server and joins the channel, the botmaster starts the
keylogging activity. The same procedure is taken as in the
third experiment where we have two scenarios of typing: long
sentences (E4.1) and short sentences (E4.2).

The fifth and the final experiment (E5) involves applying the
monitoring program to another application (mIRC client [17])
to verify that mIRC client behaves differently from the bot.

Each experiment is performed five times which is suffi-
cient as the results from the repeated experiments produce
only small variations by using Chebyshevs Inequality due to
network delay and through using VMWare. Therefore, we
select a random experiment from the repeated experiments as
the base experiment. Each experiment runs for 15 minutes in
order to collect a reasonable number of function calls which
reflect most of botmaster execution commands. The monitored
API functions are saved into a log file. After that, we use
a Spearman’s Rank Correlation (SRC) method to correlate
different behaviour of the bot based on the frequency of API
function calls executed by the bot in our system within a
specified time-window. In our experiments, a time-window of
ten seconds is used between function calls samples. We notice
that monitoring function calls for a time-window of 60 seconds
will have variant idle periods depends on the bot activity. An
idle period is where no bot activity is detected and zero values
are assigned. Therefore, using a time-window of ten seconds
reduces the idle periods suitably.

Our assumption is that calling GetAsyncKeyState or
GetKeyboardState functions by an unknown running program
may represent abnormal keylogging activity in our system.
However, we consider that calling these functions generate
only a ‘weak’ alert because other programs may use the same
API calls. Therefore, we use Spearman’s Rank Correlation to
correlate different types of bot behaviour which enhances our
detection algorithm to form a ‘strong’ alert.

The Spearman’s Rank Correlation correlates two different
data sets. The first data set is the outgoing traffic from our
system (i.e., total number of bytes sent to the botmaster every
ten seconds) and the frequency of GetAsyncKeyState function
calls generated. The second data set is the frequency of GetA-
syncKeyState function calls and the frequency of WriteFile
function calls generated. These function calls are important for
monitoring bot behaviour because their invocation represents

Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 1. The results of experiment E1. The bot connects to the IRC server,
joins the specified channel and remains inactive waiting for the botmaster’s
commands.

abnormal behaviour within our system.

IV. RESULTS AND ANALYSIS

In this section, we analyse the results of the experiments
described in Section III-E. For all experiments, the x-axis
represents time in seconds while the y-axis represents the
normalized value of functions. The normalized function fre-
quency call values represent the total value we get during 10
seconds divided by the maximum value of the whole period
(900 seconds). In addition, we use a line graph which connects
the points to make our figures more readable.

In experiment E1, the bot is idle for the majority of the
duration. This means that no API function calls are executed
except the communication functions, specifically, send and
recv, as shown in Figure 1. From Figure 1, we notice that it
is difficult to detect the bot’s behaviour as there is no activity
in the system except the communications. We also notice that
there is a burst in the outgoing traffic. This burst is generated
due to spybot program which sends a bulk of words every
specified time intervals.

In experiment E2, the botmaster issues commands such as
info, list and passwords and the bot on the infected machine
responds to these commands. Each time the botmaster issues
a command, different API function calls are executed by the
bot. In this experiment, we noticed an increased amount of
outgoing traffic compared to experiment E1. In addition, few
WriteFile and ReadFile functions are generated during this
experiment. Conversely, no GetAsyncKeyState function calls
are generated, as shown in Figure 2.

The third experiment has two typing scenarios: (1) Long
sentences (E3.1) and (2) Short sentences (E3.2). Figure 3
represents the long sentences scenario E3.1. We notice that
even though we have many GetAsyncKeyState function calls
executed by the bot, which indicates keylogging activity,
there is almost no correlation between GetAsyncKeyState and
WriteFile. This is because the WriteFile function call is rarely
generated as it is only triggered when the user types long
sentences. To save the long sentences, the user has to press the
Enter key or close the application. In addition, no data is sent

4



Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 2. The results of experiment E2. The bot receives commands from the
botmaster. The amount of outgoing traffic increases as the bot responds to the
botmaster’s commands.

Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 3. The results from the third experiment - scenario E3.1. The botmaster
has not activated the keylogger command. The user on the infected machine
types long sentences.

to the botmaster which reduces the correlation value between
GetAsyncKeyState and the outgoing traffic. In scenario E3.2,
the user of the infected machine types short sentences. We
can see from Figure 4 that there is a high correlation between
GetAsyncKeyState and WriteFile function calls. This situation
is expected as each time the user types short sentences,
the functions GetAsyncKeyState and WriteFile are called to
intercept the user keystrokes and store them in a file. However,
there is still no traffic sent out and hence there is no correlation
with outgoing traffic.

In experiment 4, the botmaster starts the keylogging activity
and the intercepted keystrokes are sent to the botmaster. In this
case, we also have two typing scenarios: (1) Long sentences
(E4.1) and (2) Short sentences (E4.2). In scenario E4.1, we
expect there to be a high correlation between the outgoing
traffic and GetAsyncKeyState. However, the result from Fig-
ure 5 shows that there is a low correlation between the two.
This is because we correlate the two events (typing and saving
to a file) in two different 10 second time intervals. In addition,
the long sentences increase the idle time, and therefore reduce
the correlation value. Moreover, a low correlation between
GetAsyncKeyState and WriteFile is noticed. This situation
is expected as the user types long sentences which call few

Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 4. The results from the third experiment - scenario E3.2. The botmaster
has not activated the keylogger command. The user on the infected machine
types short sentences.

Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 5. The first scenario E4.1 in experiment four. The botmaster activates
the keylogger. The user on the infected machine types long sentences.

Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 6. The second scenario E4.2 in experiment four. The botmaster activates
the keylogger. The user on the infected machine types short sentences.

WriteFile functions.
In the second scenario E4.2, the user types short sentences

resulting in a high correlation between the outgoing traffic
with the GetAsyncKeyState function and between the GetA-
syncKeyState function and the WriteFile function as shown
in Figure 6. The high correlation in both cases increases the
amount of evidence for a bot spying on our system.

In addition, we test our monitoring program with the mIRC

5



Time[sec]
0 100 200 300 400 500 600 700 800 900

N
o

rm
a

liz
e

d
−

va
lu

e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 7. The results from Experiment E5. The mIRC client connects to the
IRC server. The client has normal conversation and simple commands with
another client.

program. The result in Figure 7 is optimistic as the program
did not call any GetAsyncKeyState or GetKeyboardState func-
tions.

Table I represents the value of Spearman’s Rank Correlation
between the two data sets, (GetAsyncKeyState, Bytes
Sent) and (GetAsyncKeyState, WriteFile), in each
experiment. In this table, we have two sets of results. In
the first set S1, we correlate all the captured data from our
algorithm including the idle period. In this period, no activity
is seen, therefore, we assign a zero value to this period. This is
represented by the with zero column in Table I. In the second
set S2, we remove all the idle periods which have zeros and
apply the Spearman’s Rank Correlation to the new data. The
reason for having the two sets is that we notice that having the
idle periods in our data increases the correlation value. This
is because there are many places where no activity is noticed
in both data sets, which may produce inaccurate correlation.
Therefore, we wanted to investigate the effect of having no
idle periods. Although we notice a reduction of the correlation
value by 0.35 in most cases when we remove the idle periods,
it gives us more accurate results.

The API Keylogging Activity column represents the situa-
tion where the process calls any function used to intercept
the keystrokes such as GetAsyncKeyState, GetKeyboardState,
GetKeyNameText and keybd event. Calling these functions
may indicate a keylogger activity. As a result, we classify our
detection scheme into four cases:

• No detection (N/A): the case where no keylogging activ-
ity is detected.

• Weak detection (Weak): the case where a keylogging
activity is detected but a low correlation is noticed in
both data sets.

• Normal detection (Normal): the case where a keylogging
activity is detected but a high correlation is noticed in
one data set.

• Strong detection (Strong): the case where a keylogging
activity is detected but a high correlation is noticed in
both data sets.

As mentioned in section III-A, a high correlation is con-

sidered if the Spreaman’s Rank Correlation value exceeds
the threshold (0.5). Conversely, a low correlation value is
considered if the Spearman’s Rank Correlation value is below
the threshold.

From Table I, we see a perfect correlation of GetAsyncK-
eyState and WriteFile function calls in experiment E1. The bot
called neither of these functions during its inactive period. We
also notice that there is a high Spearman’s Rank Correlation
value between the outgoing traffic (Bytes Sent) and GetA-
syncKeyState because the amount of outgoing traffic is equal
each time. This traffic belongs to the PONG message generated
by the bot to avoid disconnection from the IRC server.
Therefore, the correlation value is expected to be high as well.
In experiment E2, the high Spearman’s Rank Correlation value
is due to the correlation of GetAsyncKeyState and WriteFile
which are not invoked and zero values are assigned.

In experiment E3.1, we notice a call to GetAsyncKeyState
which indicates abnormal activity. On the other hand, a low
Spearman’s Rank Correlation value is generated in both data
sets. This situation is expected because the user types long
sentences which make only a few calls to WriteFile. In
addition no information is sent to the botmaster. As a result,
a weak detection is indicated. Experiment E3.2 detects a
keylogging activity and generates a high correlation between
GetAsyncKeyState and WriteFile executed by the bot due to
typing short sentences. On the other hand, no information
is sent to the botmaster which results in normal detection
according to our classification.

Experiment E4.1 shows similar activity to experiment E3.1
where the user types long sentences, but the information is sent
to the botmaster. We expect to have a high correlation between
the outgoing traffic and GetAsyncKeyState function. The result
shows there is no significant difference from experiment E3.1.
This is because the bot sends the information when the user
finishes typing long sentences. Experiment E4.2 is the best
case for detecting keylogging activity in our system. In this
experiment, we detect the keylogging activity and we have
high correlation values for both data sets which indicates
abnormal activity running in our network.

The last experiment E5 in Table I shows the result of the
Spearman’s Rank Correlation correlation on monitoring the
mIRC client. Even though we have a high correlation value
before and after removing idle periods on both experiments,
we did not detect the use of keylogging function calls. The
high correlation value between outgoing traffic and GetA-
syncKeyState relates to the number of of idle periods due to
the delay in responding to another client’s messages.

In summary, we notice that some experiments produce
high correlation values. There are many reasons for this.
The first reason is that different events occur in different
time-windows. Therefore, our algorithm produces inaccurate
results. The second reason is that we have many idle periods
in our data sets. The idle periods increase the correlation
value which affect our detection scheme. In order to improve
our detection scheme, we need to apply a more intelligent
correlation scheme.

6



TABLE I
SPEARMAN’S RANK CORRELATION (SRC) VALUE WHICH REPRESENTS

THE CORRELATION BETWEEN TWO DATA SETS.

SRC(GetAsyncKey, SRC(GetAsyncKey,
Exper- Bytes Sent) WriteFile) Keylog. API
iments with without with without Activity Detection

zeros zeros zeros zeros existence confidence
(S1) (S2) (S1) (S2)

E1 0.863 0.671 1.000 1.000 No N/A
E2 0.648 0.498 0.967 0.897 No N/A

E3.1 0.509 0.183 0.559 0.172 Yes Weak
E3.2 0.423 -0.003 0.928 0.618 Yes Normal
E4.1 0.506 0.189 0.560 0.089 Yes Weak
E4.2 0.927 0.579 0.957 0.663 Yes Strong
E5 0.594 0.499 0.983 0.958 No N/A

V. LIMITATION OF THE ALGORITHM

As our algorithm is based on bots detection by correlating
different behaviours within specified time window, it is pos-
sible for the botmaster to evade this detection technique by
allowing the bot to wait for a random time before performing
another task. In this situation, we need to increase the time
window and search for correlation of events within this time
window. Increasing the time window may have a negative
impact on our bots detection period.

Another important issue is that we focus on detecting a bot
based on its keylogging activity. Combining other bot activities
such as SYN attack or UDP attack with the keylogging
activities can increase the correlation between different events.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we develop a program to monitor some API
function calls of the spybot. We consider the execution of these
functions within specified time-window as a security risk to
our system. We highlight that looking at API function calls
alone is not sufficient as other normal applications can call the
same functions. As a result, the need for correlating different
behaviour data is recommended. We use a Spearman’s Rank
Correlation method to correlate our captured data. Although
the Spearman’s Rank Correlation is a simple method to
examine the correlation level, the results were promising. In
addition, our results show that including idle periods in our
correlation algorithm produces inaccurate results. This is due
to the fact that most of the situations examined had a large
number of idle periods which increases the correlation value.
A more intelligent way of correlating the data is to remove the
idle periods. Although removing the idle periods reduces the
correlation value, it produces more acceptable results. It would
be even better to remove only certain idle periods, something
we will consider in our future research.

Other experiments show a weak detection decision (low
correlation values). This is because different activities occur
in different time-windows. For example, the typing process
has a different time window than writing to a file or sending
information to the attacker. We believe that choosing a correct
time-window as well as the window size to correlate our data
will have a large effect on our detection algorithm. Currently,
we are using the Artificial Immune System approach for

correlating different activities within the same time window.
For future work, we will use the Artificial Immune system
correlation algorithm to detect the Peer-to-Peer bots.

ACKNOWLEDGMENT

The authors would like to thank Etisalat College of Engi-
neering and Emirates Telecommunication Corporation - ETI-
SALAT, for providing financial support for this work.

REFERENCES

[1] M. Abu Rajab, J. Zarfoss, F. Monrose and A. Terzis, A Multifaceted
approach to understanding the botnet phenonmenon, Proceedings of the
6th ACM SIGCOMM on Internet Measurement (IMC). Rio de Janeiro,
Brazil (October 25-27, 2006) 41–52

[2] Y. Al-Hammadi and U. Aickelin, Detecting Botnets Through Log Correla-
tion, Proceedings of MonAM 2006 - IEEE/IST Workshop on Monitoring,
Attack Detection and Mitigation. Tuebingen, Germany, (September 28–29
2006) 97–100.

[3] Y. Al-Hammadi and C. Leckie, Anomaly Detection for Internet Worms, In
Proceedings to the 9th IFIP/IEEE International Symposium on Integrated
Network Management. Nice, France, (May 2005) 133–126.

[4] API for hackers. http://sysspider.vectorstar.net/papers/api4hackers.txt
[5] P. Barford and V. Yegneswaran, An Inside Look at Botnets, Special

Workshop on Malware Detection Advances in Information Security,
Springer Verlag, (2006)

[6] M. Aslam, R. N. Idrees, M. M. Baig and M. A. Arshad, Anti-Hook
Shield against the Software Key Loggers, Proc. of Nat. Conf. of Emerging
Technologies (2004). 189–191.

[7] J. R. Binkley and S. Singh, An Algorithm for Anomaly-based Botnet
Detection, Proceedings of USENIX Steps to Reducing Unwanted Traffic
on the Internet Workshop (SRUTI) (July 2006) 43–48.

[8] G. Bancroft and G. O’Sullivan, MATHS AND STATISTICS FOR
ACCOUNTING AND BUSINESS STUDIES, 2nd ed. Published by
McGRAW-HILL Book Company (UK) Limited. (1988) 135–139

[9] E. Cooke, F. Jahanian and D. McPherson, The Zombie Roundup: Under-
standing, Detecting, and Disrupting Botnets, In Proceedings of Usenix
Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI
05). Cambridge, MA, (July 2005) 39–44.

[10] F. C. Freiling, T. Holz and G. Wicherski, Botnet Tracking: Exploring
a Root-Cause Methodology to Prevent Distributed Denial-of-Service At-
tacks, Technical Report AIB-2005-07, RWTH Aachen University, (April
2005)

[11] L. A. Gordon, M. P. Loeb, W. Lucyshyn and R. Ric son. CSI/FBI
COMPUTER CRIME AND SECURITY SURVEY 2006, Computer Secu-
rity Institute, September, 2006.

[12] C. Herley and D. Florencio, How To Login From an Internet Cafe
Without Worrying About Keyloggers, Symposium on Usable Privacy and
Security (SOUPS) 06. (July 2006).

[13] The Honeynet Project, Know your enemy: Tracking botnets, http://www.
honeynet.org/papers/bots/ , (March 2005).

[14] N. Ianelli and A. Hackworth, Botnets as a Vehicle for Online Crime.
CERT Coordination Center, (2005).

[15] I. Ivanov, API hooking revealed, http://www.codeproject.com/system/
hooksys.asp?df=100&forumid=3602&exp=0&select=1408110

[16] Y. Kaplan, API Spying Techniques for Windows 9x, NT and 2000, http:
//www.internals.com/articles/apispy/apispy.htm

[17] mIRC client application, http://www.mirc.com.
[18] MSDN - File Management Functions, http://msdn2.microsoft.com/

en-us/library/aa364232.aspx
[19] MSDN - Keyboard Input, http://msdn2.microsoft.com/en-us/library/

ms645530.aspx
[20] MSDN - Winsock Functions, http://msdn2.microsoft.com/en-us/library/

ms741394.aspx
[21] S. Racine, Analysis of Internet Relay Chat Usage by DDoS Zombies.

Master’s Thesis. Swiss Federal Institute of Technology Zurich. (April
2004).

[22] Security Stats, http://www.securitystats.com/
[23] C. K. TAN, Windows Key Logging and Counter-Measure.

7


