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Abstract
We have evaluated the potential of plasma albumin to provide a sensitive biomarker of exposure
to commonly used organophosphorus pesticides in order to complement the widely used
measure of acetylcholinesterase (AChE) inhibition. Rat or human plasma albumin binding by
tritiated-diisopropylfluorophosphate (3H-DFP) was quantified by retention of albumin on glass
microfibre filters. Preincubation with unlabelled pesticide in vitro or dosing of F344 rats with
pesticide in vivo resulted in a reduction in subsequent albumin radiolabelling with 3H-DFP, the
decrease in which was used to quantify pesticide binding. At pesticide exposures producing
approximately 30% inhibition of AChE, rat plasma albumin binding in vitro by azamethiphos
(oxon), chlorfenvinphos (oxon), chlorpyrifos-oxon, diazinon-oxon and malaoxon was reduced
from controls by 991%, 6792%, 5692%, 5492% and 891%, respectively. After 1 h of
incubation with 19 mM 3H-DFP alone, the level of binding to rat or human plasma albumins
reached 0.011 or 0.039 moles of DFP per mole of albumin, respectively. This level of binding
could be further increased by raising the concentration of 3H-DFP, increasing the 3H-DFP
incubation time, or by substitution of commercial albumins for native albumin. Pesticide
binding to albumin was presumed covalent since it survived 24 h dialysis. After dosing rats with
pirimiphos-methyl (dimethoxy) or chlorfenvinphos (oxon) (diethoxy) pesticides, the resultant
albumin binding were still significant 7 days after dosing. As in vitro, dosing of rats with
malathion did not result in significant albumin binding in vivo. Our results suggest albumin may
be a useful additional biomonitor for moderately low-level exposures to several widely used
pesticides, and that this binding differs markedly between pesticides.
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Introduction

Exposure to organophosphorus (OP) pesticides can be estimated indirectly by

inhibition of erythrocyte acetyl- or plasma butyryl-cholinesterase, or by measurement

of urinary metabolites. In addition, a number of immune assays have been developed
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that are sufficiently sensitive to measure OP pesticides directly (Zhang et al. 2007).

However, none of these approaches are ideal. Most OP pesticides are rapidly

metabolised and eliminated from the body post-exposure. Cholinesterase inhibition,

although longer lasting, does not discriminate between different inhibitors. Similarly,

OP pesticides with very different toxic potential can share the same urinary

metabolites, and these are also relatively rapidly eliminated post-exposure. It can,

however, be important to be able to discriminate between exposures to different

specific OP pesticides, because their action on targets such as neuropathy target

esterase (Lotti 2002, Lotti & Moretto 2005), acylpeptide hydrolase (Richards et al.

2000) or other serine hydrolases (Ray & Richards 2001, Casida & Quistad 2004) does

not parallel their actions on acetylcholinesterase (AChE). This diversity of action

limits the value of AChE inhibition when used as the sole index of exposure. In

addition, there are other forms of ill-health that have been associated with low-level

exposure to OPs for which a molecular target has not yet been identified (Pope 1999,

Ray & Richards 2001, Lotti 2002, Abou-Donia 2003, Kamel et al. 2005, Costa 2006),

and for which it cannot be assumed that there is a parallel structure�activity

relationship to that seen for AChE inhibition. Hence there is value in developing

other additional biomarkers that have the potential to identify specific OP exposures.

For example, acylpeptide hydrolase has a similar sensitivity to diisopropylfluoropho-

sphate (DFP) exposure in vitro as butyrylcholinesterase (BuChE), but a markedly

lower rate of spontaneous reactivation in vivo, indicative of its potential as a monitor of

previous DFP or OP exposures (Quistad et al. 2005). This diversity of biological

targets has potential to be exploited by use of a spectrum of biomarkers to ‘fingerprint’

different OP exposures.

Another potential biomarker for discriminating OP pesticide exposures is serum

albumin. Albumin is adducted by DFP, and has been shown to bind a large number of

OP pesticides in vitro � at least when incubated with relatively high pesticide to

albumin molar ratios well beyond those likely to be encountered in vivo (Peeples et al.

2005). However, binding of pesticides to albumin may not always be covalent, notably

for phosphorothioates (Mourik & Jong 1978, Maliwal & Guthrie 1981, Sultatos et al.

1984). We have shown that albumin does display a sensitive and compound specific

OP pesticide binding at relatively low-exposure levels producing no more than 30%

inhibition of AChE activity (Carter et al. 2007) � a level commonly considered to

represent a just sub-symptomatic exposure for pesticide operators (Gallo & Lawryk

1991). An additional aspect of the binding of albumin by OPs is that albumin could

act as a significant decoy target, reducing toxicity by limiting the access of OPs to

functional targets in brain and muscle (Qiao et al. 2001).

Human serum albumin is the major blood protein, constituting 47% and 56% of rat

and human plasma protein, respectively (Davies & Morris 1993, Peters 1996).

Albumin functions to maintain colloidal osmotic pressure and pH, and is able to bind

and transport both endogenous compounds, such as fatty acids and bilirubin, and a

wide variety of exogenous compounds and drugs (Peters 1996). With its high

concentration in blood, and a half-life of approximately 20 days in humans and 3 days

in rats (Katz et al. 1961, Peters 1996), albumin displays suitable traits for a biomarker.

However, little is known about the potential for albumin binding by pesticides at

toxicologically relevant exposures, or of the susceptibility of OP-bound albumin to

elimination and spontaneous reactivation in vivo. We have addressed these issues by

evaluating the binding of rat and human plasma albumins in vitro by commonly used

344 M. H. Tarhoni et al.
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OP pesticides when present as their biologically active (oxon) forms: azamethiphos

(oxon), chlorfenvinphos (oxon), chlorpyrifos-oxon, diazinon-oxon and malaoxon. In

addition, we have dosed rats with chlorfenvinphos (oxon), and the thion forms of two

pesticides � pirimiphos-methyl and malathion � for bioactivation in vivo to their active

oxon counterparts. Our results demonstrate differential pesticide binding of albumin

both in vitro and in vivo at relatively low-level exposures. We further establish that rat

plasma albumin binding by bioactivated pirimiphos-methyl (dimethoxy-) or chlor-

fenvinphos (oxon) (diethoxy-) in vivo results in OP-albumin binding that is still

significant 7 days post-dosing, with a half-life similar to that for native rat albumin

in either case. Our demonstration of significant albumin binding at sub-symptomatic

exposure levels suggests that OP-albumin binding may indeed be suitable for

exploitation as a reasonably long-lived biomarker of exposure to several OPs.

Materials and methods

The organophosphorus pesticides azamethiphos (oxon) (S-6-chloro-2,3-dihydro-2-

oxo-1,3-oxazolo[4,5-b]pyridin-3-ylmethyl O,O-dimethyl phosphorothioate), chlorfen-

vinphos (oxon) (2-chloro-1-(2,4-dichlorophenyl)vinyl diethyl phosphate) and

malathion (diethyl (dimethoxyphosphinothioylthio)succinate) and its corresponding

oxon (malaoxon) were bought from QMX Laboratories Ltd., Thaxted, UK. All

compounds were at 95�99.5% purity. Chlorpyrifos (O,O-diethyl-O-(3,5,6-trichloro-

2-pyridyl)phosphorothioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyr-

imidin-4-yl phosphorothioate) as their corresponding oxons, and pirimiphos-methyl

(O-2-diethylamino-6-methylpyrimidin-4-yl O,O-dimethyl phosphorothioate) were

purchased from Greyhound Laboratories, Birkenhead, UK. All compounds were at

97.2�99.4% purity. For in vitro assays, pesticides were prepared as 100 mM stock

solutions in ethanol (Sigma, HPLC grade,B0.10% water), except azamethiphos

(oxon) which was at 50 mM, and were stored at 48C for up to 2 weeks. Pesticides were

diluted in phosphate-buffered saline to required concentrations just prior to use.

Tritiated-diisopropylfluorophosphate (3H-DFP) at a specific activity of 150 GBq

mmol�1 was purchased from Perkin Elmer, Boston, USA. The commercially purified

albumins used for in vitro assays; rat albumin (A6272, purity�96%) and human

albumin (A1653, purity 96�99%) were purchased from Sigma as were dithiothreitol

(DTT), polyethylenimine solution and recombinant human AChE (C1682).

Blood and tissue preparations

Fifty-two male F344 strain rats weighing between 200 and 230 g were used for

experiments. Rats were maintained in cages (four per cage) under controlled

temperature (21918C) and light (16 h light/8 h dark cycle) with ad libitum access

to food intake and water. All animal procedures were approved by the University of

Nottingham Local Ethical Review Committee and were carried out in accordance

with the Animals Scientific Procedures Act (UK) 1986.

Rats were dosed orally by gavage with OPs in arachis oil at 25% of their respective

LD50 values. Thus 15 rats were given 354 mg kg�1 pirimiphos-methyl; 10 rats 2.5 mg

kg�1 chlorfenvinphos (oxon); and 5 rats 450 mg kg�1 malathion. Control animals were

given 1 ml kg�1 arachis oil only (12 rats). In an additional experiment to investigate

different OP pesticide doses, 5 rats were given 1.25 mg kg�1 chlorfenvinphos (oxon)
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(12.5% of the LD50), and 5 others 8.0 mg kg�1 chlorfenvinphos (oxon) (80% of the

LD50). One day after dosing rats were anaesthetised with isoflurane and 100�500 ml of

blood removed from a tail vein. Alternatively, 1, 3 or 7 days after rat dosing

approximately 5 ml of blood was removed by terminal intracardiac puncture.

Heparinised blood was retained on ice before centrifugation at 2000g for 10 min at

48C to pellet the red blood cells. The supernatant plasma was removed and stored at

�808C, and likewise the erythrocytes were decanted and stored at �808C until

required. Control human blood (taken with University of Nottingham Ethical Review

Committee approval) from one of the authors (male, 39 years of age) was collected into

heparin and similarly centrifuged to prepare erythrocytes and plasma.

Thymus and brain tissues were removed from control or dosed rats after saline

perfusion, as described in Carter et al. (2007).

Protein concentrations

Protein concentrations were measured using the DC Protein assay (Biorad) using

bovine serum albumin as a protein standard.

Acetylcholinesterase measurements

Inhibition of erythrocyte, thymus, or brain tissue AChE activity was measured based

upon the spectrophotometric method described by Ellman et al. (1961). Spectro-

photometric measurements were conducted at 412 nm in a Perkin Elmer Lambda 2S

spectrophotometer operated using UV KinLab software. Replicate analyses for each

assay sample point were conducted for 5 min at 378C, with the rate of production of 5-

thio-2-nitro-benzoic acid calculated, and averaged for the replicate readings.

Erythrocytes were diluted 1:100 in 10 mM Tris/HCl pH 8.0 buffer for AChE

measurements, brain was diluted 1:10 with the same buffer, and thymus tissue was

used without dilution.

Vacuum filtration of radiolabelled albumin and quantitation of radiolabelling

Plasma radiolabelled with 3H-DFP was separated by filtration on GF/B (25 mm) glass

microfibre filters (Whatman) using a vacuum manifold. Filters were initially charged

by soaking in 0.3% (w/v) polyethylenimine for 30 min. Charged filters were then

applied to a vacuum manifold and washed with 10 mM Tris/HCl pH 8.0. Typically

10 mg of plasma proteins was loaded onto a single filter, washed with 50 ml of 10 mM

Tris/HCl pH 8.0, air dried, and then counted for radioactivity within inserts

containing 3 ml of scintillant. All assay points were performed in duplicate.

Tritiated-DFP which was retained on the membranes in the absence of plasma

proteins; approximately 1000 dpm, constituting 1590.3% of that for control plasma

radiolabelling, was used as a blank and subtracted from all values.

One-dimensional SDS-PAGE and albumin autoradiography

Typically 20 mg of plasma was incubated with pesticide or phosphate-buffered saline

as solvent for 20 min at room temperature. Proteins were then radiolabelled by

incubation in a final volume of 130 ml with 19 mM 3H-DFP (final concentration) for

1 h at 378C typically at a molar ratio of 3H-DFP:albumin of 8:1, or as described in

346 M. H. Tarhoni et al.
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individual figure legends. Proteins were heated for 10 min at 708C in sample buffer

(Novex) containing 100 mM DTT. Proteins were separated on 4�12% Bis-Tris

(Novex) gels run with 3-(N-morpholino)propanesulfonic acid (MOPS) buffer, then

electroblotted onto a polyvinylidene difluoride membrane, cross-linked, and 14C

markers applied to the blot to identify the positions of the molecular weight standards.

Blots were subjected to 7�24 h of autoradiography within a highly sensitive

microchannel plate detector as detailed in Carter et al. (2007). Protein radiolabelled

bands from autoradiographic images were quantified using Quant scan software (Beta

autoradiographic image acquisition software), with band intensities (in pixels) plotted

using excel to determine relative radiolabel incorporations.

Statistical analysis

For comparison of the levels of radioactivity incorporated into albumin, a one-way

analysis of variance (ANOVA) with post-hoc test was performed (Bonferroni’s multiple

comparison test).

Results

Albumin is differentially bound by organophosphorus pesticide-oxons in vitro at toxicologically

relevant doses

Rat plasma was diluted to 320 mg ml�1 and preincubated with pesticide-oxon or

solvent for 20 min in vitro at concentration/times confirmed to produce approximately

30% inhibition of thymus tissue AChE activity (Carter et al. 2007). The actual

concentrations used were: azamethiphos (oxon) 0.12 mM, chlorfenvinphos (oxon)

1.5 mM, chlorpyrifos-oxon 0.03 mM, diazinon-oxon 0.04 mM and malaoxon 0.1 mM.

Residual active hydrolase groups were then adducted by incubation with 19 mM 3H-

DFP for 1 h at 378C. Radiolabelled proteins (typically 10 mg per data point) were

loaded onto glass microfibre filters and washed extensively to remove extraneous

unincorporated 3H-DFP. After drying, filters were counted for radioactivity and both

the maximal level of 3H-DFP incorporation and the level of pesticide binding (fall in

radioactivity) quantified (Figure 1A). Alternatively, radiolabelled plasma proteins

were subjected to one-dimensional SDS-PAGE and autoradiography. After radiola-

belling of 20 mg of rat plasma only a single radiolabelled protein was present after

protein separation by denaturing SDS-PAGE. This radiolabelled albumin migrated as

a discrete band of approximate molecular weight 66 kDa at the leading edge of the

main Coomassie-stainable albumin (Figure 1B). This band was confirmed as serum

albumin by its removal by immunoprecipitation; localisation by Western blotting using

an antialbumin antibody (Autogen bioclear, ABN 192); and also by peptide mass

fingerprinting of the excised protein by matrix-assisted laser-desorption time-of-flight

mass spectrometry (results not included).

From either quantitation of 3H-DFP radiolabelled albumin retained on microfibre

filters (Figure 1A), or from autoradiography of gel-resolved protein (Figure 1B),

plasma albumin was shown to be bound in vitro by the oxons of chlorfenvinphos (679

2%), chlorpyrifos (5692%) and diazinon (5492%), but not azamethiphos (991%)

or malathion (891%) relative to controls. Comparison of the proportion of albumin

radiolabelled (by autoradiography) with the total protein present (visualised by

Coomassie blue protein staining) showed that only a small proportion of albumin

Albumin binding and exposure organophosphorus pesticides 347
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Figure 1. 3H-DFP incorporation into rat plasma albumin after preincubation with pesticide-oxons. Rat

plasma was incubated with pesticide-oxons or solvent at 20 min thymus tissue AChE IC30 concentrations.

Reactive hydrolase groups were then adducted by incubation with 3H-DFP for 1 h at 378C. (A) Ten

micrograms of radiolabelled plasma was loaded onto glass microfibre filters, washed, and the incorporation

of 3H-DFP determined. Results are presented as the mean9standard error from at least 16 independent

experiments with each pesticide. Results were significantly different from controls with chlorfenvinphos

(oxon), chlorpyrifos-oxon, and diazinon-oxon (***pB0.001). (B) Twenty micrograms of radiolabelled

plasma was resolved by SDS-PAGE, and then transferred to a polyvinylidene difluoride membrane. Proteins

were stained with Coomassie brilliant blue (left panel) or autoradiographed (right panel). The positions of

protein molecular weight markers are shown in the first two lanes of the gel and blot. A single radiolabelled

protein band was evident (marked with an arrowhead) which superimposed with the leading edge of the

albumin protein band detected from protein staining. Incubation with the pesticide-oxons of chlorfenvin-

phos, chlorpyrifos, and diazinon significantly reduced 3H-DFP incorporation in to this radiolabelled

protein.

348 M. H. Tarhoni et al.
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molecules were bound by 3H-DFP under the conditions employed. The level of 3H-

DFP binding was quantified as approximately 1% of albumin molecules using the

microfibre binding and quantitation method. This calculation assumes that protein

recovery by this method was 100%, and so may have somewhat underestimated the

true stoichiometry, but these filters are known to achieve high protein recovery (Bruns

et al. 1983).

To validate this stoichiometry calculation by an independent means, we also

radiolabelled rat plasma albumin with 3H-DFP alongside 3H-DFP radiolabelled

recombinant AChE. Radiolabelled proteins were then resolved by gel electrophoresis

and subjected to autoradiography using a microchannel plate detector, a device with

known autoradiographic signal linearity over six orders of magnitude (Richards & Lees

2002). Both proteins have a similar molecular weight but AChE can incorporate

organophosphates stochiometrically, i.e. one mole of organophosphate bound per

mole of AChE (Raveh et al. 1989). A signal of 3640 arbitrary pixel intensity units was

generated from 24 h autoradiography of 0.2 mg of 3H-DFP radiolabelled AChE,

whereas 3000 intensity units arose from 20 mg of 3H-DFP radiolabelled albumin

(images not included). Assuming 100% binding of 3H-DFP to AChE, 3H-DFP

binding to albumin was therefore quantified as 0.82% of available albumin molecules,

a value close to the 1% binding evidenced from retention of 3H-DFP radiolabelled

albumin on microfibre filters.

Since 3H-DFP binding to albumin survived denaturing SDS-PAGE, it was

presumed covalent in nature and not transient or readily reversible. That this was

also true of the unlabelled test pesticides was evidenced by the reduction in 3H-DFP

labelling of albumin produced by preincubation with pesticide being unchanged after

extensive (24 h) dialysis to remove free OP prior to 3H-DFP radiolabelling (results not

included).

The absolute level of in vitro albumin binding by 3H-DFP was related to the
3H-DFP:albumin molar ratio, time of incubation, and albumin source and purification

We sought an explanation of this relatively low 3H-DFP albumin binding stoichio-

metry, since other literature reports have suggested higher reactivity potential

(Murachi 1963, Means & Wu 1979). If the reaction with 3H-DFP was dependent

upon both the molar ratio of 3H-DFP to albumin, and also the time of incubation with
3H-DFP, then increasing either should increase the radiolabelling of albumin. We

incubated diluted rat plasma (320 mg ml�1 final concentration) with 3H-DFP at a

final concentration range of 5.5 mM to 19 mM. At this rat plasma dilution, albumin is

at a concentration of approximately 2.3 mM giving a molar ratio of approximately 2:1

to 8:1 moles of 3H-DFP:moles of albumin, respectively. Increasing the molar ratio of
3H-DFP to plasma albumin did indeed increase the level of 3H-DFP binding (Table I)

(control row). Across this range of 3H-DFP:albumin molar ratios, preincubation with

pesticides in vitro (under conditions producing approximately 30% thymus tissue

AChE inhibition) produced a similar differential binding pattern as that seen with

19 mM 3H-DFP (Table I, and Figure 1A, B). The absolute magnitude of the pesticide

binding increased with 3H-DFP concentration, although not proportionately. This

suggested that not all of the additional pesticide binding sites disclosed by the higher
3H-DFP concentrations were targeted by the pesticides (see Table I).
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To examine the effect of increasing the time of incubation of 3H-DFP with plasma

albumin at a given 3H-DFP:albumin molar ratio (8:1), 3H-DFP was incubated with

plasma albumin at 378C for a time course of up to 4 days. Plasma samples were

removed at time points during the incubation period, and the level of 3H-DFP

incorporation into albumin quantified by counting 3H-DFP-radiolabelled albumin

retained on microfibre filters. As 3H-DFP is unstable after 24 h in aqueous solutions

(Hobbiger 1951) additional 3H-DFP was added to the reaction mixture at intervals of

24 h. The level of 3H-DFP incorporation into rat plasma albumin increased in a

roughly linear fashion over the first 4 h but without a further increase at 24 h,

indicative of 3H-DFP hydrolysis. However, after supplementation with additional 3H-

DFP after the 24 h time point, and daily thereafter, an approximately linear 3H-DFP

incorporation was seen (Figure 2). This confirmed that albumin could be radi-

olabelled at a higher stiochiometry if incubation times with 3H-DFP were extended.

This increase in 3H-DFP radiolabelling was not a result of denaturation of albumin

over the time course, since preincubation of plasma albumin alone for 4 days prior to

radiolabelling had no influence on the level of subsequent 3H-DFP incorporation,

suggesting that the binding site was still intact and that the relatively low binding

stoichiometry was indeed a result of slow 3H-DFP binding (results not included).

Other groups have analysed the binding of DFP and/or pesticides in vitro using

commercially purified bovine or human albumin which are essentially fatty acid free

(Means & Wu 1979, Hagag et al. 1983, Peeples et al. 2005, Li et al. 2007).

Commercially available albumins (Fraction V) undergo purification conditions that

include a series of alcohol fractionations (Peters 1996), conditions that would be

expected to induce albumin conformational changes which may result in increased

susceptibility of the active site tyrosine to 3H-DFP binding. To test this hypothesis we

radiolabelled human plasma, and commercially purified rat and human albumins with

19 mM 3H-DFP for 1 h at 378C, and compared the level of radioactivity incorporated

with that from our rat plasma studies (Table II). Interestingly, human plasma albumin

was radiolabelled by 3H-DFP to a higher stiochiometry than rat plasma approaching

4% of albumin molecules, but the absolute reduction in labelling seen after OP

preincubations was not significantly greater, suggesting that these additional 3H-DFP

binding sites were not sensitive to the pesticides tested. For both rat and human

Table I. Stiochiometry of 3H-DFP incorporation into rat plasma albumin. Rat plasma albumin (2.3 mM)

was incubated with solvent or pesticide-oxons at 20 min AChE IC30 concentrations, and then radiolabelled

with 5.5, 10 or 19 mM 3H-DFP. Both the increase in albumin radiolabelling from increasing 3H-DFP

concentration, and the level of pesticide binding relative to controls was determined by quantifying the level

of radiolabelled albumin retained on glass microfibre filters.

Stoichiometry of subsequent 3H-DFP incorporation

(% moles 3H-DFP:moles albumin) Concentration of 3H-DFP employed

Preincubation 5.5 mM (n�4) 10 mM (n�5) 19 mM (n�16)

Solvent (control) 0.5590.01 (100%) 0.7090.01 (100%) 1.0890.03 (100%)

Azamethiphos (oxon) 0.4790.03 (8591.1%) ND 0.9990.03 (9191.1%)

Chlorfenvinphos (oxon) 0.0990.01 (1693.7%) 0.1690.01 (2292.8%) 0.3590.02 (3392.0%)

Chlorpyrifos-oxon 0.1290.01 (2291.6%) 0.2590.03 (3592.0%) 0.4790.03 (4491.7%)

Diazinon-oxon 0.1290.01 (2291.6%) 0.2890.02 (4091.8%) 0.4990.03 (4691.6%)

Malaoxon 0.5390.01 (9691.0%) ND 0.9990.03 (9291.1%)

ND, not determined.
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B
io

m
ar

ke
rs

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
ni

v 
of

 N
ot

tin
gh

am
 -

 P
er

io
di

ca
ls

 A
cq

 G
ro

up
 o

n 
04

/1
0/

14
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



commercial albumins, the level of 3H-DFP binding stoichiometry increased by

approximately 5-fold over the native forms, suggesting that commercial albumin

purification may result in albumin molecules with increased accessibility of their active

site to binding by 3H-DFP.

Table II. Stiochiometry of 3H-DFP incorporation into rat and human albumins. Rat or human albumin

(1�2 mM) was incubated with solvent or pesticide-oxons at 20 min AChE IC30 concentrations, and then

radiolabelled with 19 mM 3H-DFP. The level of albumin radiolabelling was quantified by counting

radiolabelled albumin retained on glass microfibre filters. For rat plasma albumin, n�16, and for all other

data points n�4�6 experiments.

Stoichiometry of 3H-DFP incorporation (% moles 3H-DFP:moles albumin)

Agent

Rat plasma

albumin

Human plasma

albumin

Purified Rat

albumin

Purified human

albumin

Solvent (control) 1.0890.03 3.8790.03 6.2090.14 19.0390.17

Azamethiphos (oxon) 0.9990.03 3.6790.06 5.9490.30 18.6590.26

Chlorfenvinphos (oxon) 0.3590.02 2.9690.07 4.8390.11 16.5090.09

Chlorpyrifos-oxon 0.4790.03 2.9790.06 5.2090.10 17.3290.33

Diazinon-oxon 0.4990.03 3.2490.17 5.3290.18 17.6390.31

Malaoxon 0.9990.03 3.3590.06 5.5690.07 18.2590.38

Figure 2. Time course of 3H-DFP incorporation into rat plasma albumin. Rat plasma (300 mg) was reacted

at 378C with 19 mM 3H-DFP (19 nmoles) in a buffer of 10 mM Tris/HCl pH 8.0 containing 1 mM EDTA,

5 mM DTT, 5% glycerol (1000 ml final volume). At intervals of 1, 2, 4, 24, 48, 72, and 96 h, replicate 50 ml

samples were removed and the level of 3H-DFP incorporated into albumin quantified by counting the

radiolabelled albumin retained on glass microfibre filters. To counter 3H-DFP hydrolysis during the time

course, the reaction mixture was supplemented with 7.2 nmoles of 3H-DFP after 24 h, 4.8 nmoles of 3H-

DFP after 48 h, and 2.4 nmoles of 3H-DFP after 72 h. Data points are mean9standard deviation from four

independent experiments.
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Albumin binding by pesticide-oxons in vitro was proportional to pesticide concentration, and

was of a comparable sensitivity to pesticide binding of AChE

The effect of varying concentrations of the albumin-binding pesticides chlorfenvin-

phos (oxon), chlorpyrifos-oxon and diazinon-oxon on the 3H-DFP radiolabelling of

rat plasma albumin and the inhibition of AChE activity were examined in parallel

incubations. Rat plasma (at a protein concentration of 203 mg ml�1), or recombinant

AChE, were preincubated with pesticides for 20 min over a concentration range of

1 nM � 200 mM for chlorfenvinphos (oxon), 1nM � 100 mM for chlorpyrifos-oxon, and

1nM � 100 mM for diazinon-oxon. The level of AChE inhibition was quantified by the

Ellman assay (Ellman et al. 1961). After pesticide preincubations rat plasma proteins

were radiolabelled with 17 mM 3H-DFP for 1 h at 378C, and the incorporation of

radioactivity into albumin quantified by counting 3H-DFP-radiolabelled albumin

retained on microfibre filters, and also visualised after autoradiography of SDS-PAGE

separated proteins (Figure 3A�C).

Both albumin binding and AChE inhibition were proportional to pesticide

concentrations. For chlorfenvinphos (oxon), the IC50 for AChE and albumin binding

were approximately 1.5 and 0.4 mM; for chlorpyrifos-oxon, 0.04 and 0.1 mM; and for

diazinon-oxon, 0.5 and 2 mM, respectively. Thus albumin exhibited an in vitro

sensitivity to binding by these pesticide-oxons that was similar to (and for

chlorfenvinphos (oxon) greater than) that of AChE inhibition.

Albumin is bound by pirimiphos-methyl and chlorfenvinphos (oxon) in vivo with half-lives

comparable to that of native rat albumin

Having established that albumin binding by certain pesticides is seen in vitro at

toxicologically relevant pesticide exposures, we investigated albumin binding in vivo,

and also whether pesticide binding to albumin is sufficiently stable to provide a

biomonitor of pesticide exposure.

Rats were dosed with solvent (controls), or with pesticides at 25% of their LD50:

354 mg kg�1 pirimiphos-methyl (a thion for bioactivation to its oxon counterpart in

vivo), and 2.5 mg kg�1 chlorfenvinphos (oxon). Rats remained asymptomatic at these

dose levels. Blood was removed at 1, 3, or 7 days after dosing, and plasma albumin

radiolabelled with 19 mM 3H-DFP for 1 h at 378C. The incorporation of radioactivity

into albumin was quantified by counting 3H-DFP-radiolabelled albumin retained on

microfibre filters (Figure 4A, B). In addition, radiolabelled albumin was resolved by

SDS-PAGE and visualised by autoradiography. An example of the level of radiolabel

incorporated into albumin in one rat from each group is also included in Figure 4A

and B (lower panels). Erythrocytes from the rats were used to determine the

corresponding level of AChE inhibition arising from each dose by the Ellman assay.

Figure 3. Comparison of pesticide binding of albumin with inhibition of AChE. Rat plasma (203 mg ml�1)

was incubated with pesticide or solvent for 20 min at room temperature over the pesticide concentration

ranges shown. Proteins were then radiolabelled with 17 mM 3H-DFP for 1 h at 378C. The radiolabel

incorporated into albumin was quantified by counting radiolabelled albumin retained on glass microfibre

filters. The corresponding inhibition of AChE at each concentration was quantified using the Ellman assay,

with the results presented graphically. Radiolabelling of albumin was also visualised after SDS-PAGE and

autoradiography and is shown in the lower panels. (A) Chlorfenvinphos (oxon), (B) chlorpyrifos-oxon, (C)

diazinon-oxon.
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Figure 3 (Continued)

Albumin binding and exposure organophosphorus pesticides 353

B
io

m
ar

ke
rs

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
ni

v 
of

 N
ot

tin
gh

am
 -

 P
er

io
di

ca
ls

 A
cq

 G
ro

up
 o

n 
04

/1
0/

14
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



When plasma albumin was analysed 1 day after dosing, both pirimiphos-methyl and

chlorfenvinphos (oxon) had inhibited approximately 50% of the erythrocyte AChE

activity, with a corresponding inhibition of binding of approximately 50% of the 3H-

DFP-radiolabelled albumin molecules. This level was comparable to the ‘maximal’

pesticide binding achieved from our in vitro studies. Analysis of the elimination

of pesticide binding to albumin over a 1 week post-dosing time course, revealed that

both pirimiphos-methyl (dimethoxy-) and chlorfenvinphos (oxon) (diethoxy-) binding

steadily returned toward control levels, but was still significant 3 and 7 days after dosing.

A natural logarithmic plot of the elimination of the pesticide binding to albumin for

pirimiphos-methyl or chlorfenvinphos (oxon) indicated half-lives of at least 3 days

(graph not included), suggesting that pesticide-bound albumin was not actively

Figure 4. Quantitation of dimethoxy- and diethoxy-pesticide binding of albumin in vivo. Rats were treated

with solvent (controls) or dosed with 25% of the LD50 of pirimiphos-methyl (A), or 25% of the LD50 of

chlorfenvinphos (oxon) (B). After radiolabelling with 3H-DFP the incorporation of radioactivity into

albumin was quantified by counting the radiolabelled albumin retained on glass microfibre filters. Results

are presented as the mean9standard error from at least four independent experiments from each rat.

Results were significantly different from controls at 1, 3, and 7 days after dosing (***pB0.001) for both

pesticides. Radiolabelled albumin was also resolved by SDS-PAGE, and an example of the level of

radioactivity incorporated into albumin for each dose condition displayed in the lower panels. The average

level of erythrocyte AChE inhibition for each dosing condition is also included.
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degraded or unstable, but followed a similar rate of turnover to that described for

native rat albumin (Peters 1996, Troester et al. 2002).

Albumin is not bound by malathion in vivo but is maximally bound by chlorfenvinphos

(oxon) even at low AChE inhibitions

To establish whether the differential pesticide binding of albumin that we have

documented in vitro was operable in vivo, rats were dosed with malathion (at

approximately 25% of the LD50), a thion for bioactivation in vivo to its oxon

counterpart, malaoxon � a pesticide that did not significantly bind albumin in vitro. In

addition, to determine if albumin binding by chlorfenvinphos (oxon) was increased at

a higher pesticide dose, or decreased with a lower dose, rats were given either 80% or

12.5% of the LD50. The higher dose, but not the lower dose, produced salivation and

muscle fasciculation in all rats. Twenty-four hours after dosing rat blood was removed,

and the level of albumin binding quantified by counting the 3H-DFP-radiolabelled

albumin retained on microfibre filters, and the corresponding levels of erythrocyte

AChE inhibition determined by the Ellman assay (Figure 5). For each of the

chlorfenvinphos (oxon) doses analysed, approximately 50% of the 3H-DFP radi-

olabelled albumin molecules were bound, suggesting that this level of binding was also

‘maximal’ for the in vivo exposure duration. Moreover, even at the lowest AChE

inhibition (22%) achieved with the lowest chlorfenvinphos (oxon) dose, albumin

binding was still maximal, supporting our in vitro studies that chlorfenvinphos (oxon)

Figure 5. Albumin is maximally bound across a range of chlorfenvinphos (oxon) doses in vivo, but is not

significantly bound by malathion in vivo. Rats were treated with solvent (controls) or dosed with 12.5%,

25%, and 80% of the LD50 of chlorfenvinphos (oxon), or approximately 25% of the LD50 of malathion.

Twenty-four hours after dosing plasma albumin was radiolabelled with 3H-DFP, and the incorporation of

radioactivity into albumin quantified by counting the radiolabelled albumin retained on glass microfibre

filters. Results are presented as the mean9standard error from at least four independent experiments from

each rat. Results significantly different from controls are marked (***pB0.001). Radiolabelled albumin was

also visualised by autoradiography after SDS-PAGE, and an example of the level of radioactivity

incorporated into albumin shown in the lower panels. The average level of erythrocyte AChE inhibition

for each dosing condition is also included.
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binding to albumin was at least, if not more, sensitive than binding to AChE. By

contrast, no significant binding of albumin by malathion was evident (despite 57%

AChE inhibition), also in agreement with our in vitro studies, that malathion, or its

bioactivated oxon (malaoxon), were not capable of significantly binding albumin.

Discussion

In order to assess the potential for albumin to act as a biomarker for a range of pesticides

in common use within the UK or USA, we used DFP labelling to quantify the levels of

pesticide binding to rat albumin primarily at sub-symptomatic OP exposure levels. After

pesticide preincubations in vitro sufficient to produce 30% thymus tissue AChE

inhibition, marked albumin binding was demonstrated with the oxons of chlorfenvin-

phos, chlorpyrifos and diazinon, but not with those of azamethiphos or malathion. This

binding was confirmed as covalent by extensive dialysis prior to 3H-DFP incubation.

The other major characterised 3H-DFP target proteins in plasma, AChE and BuChE,

are at very low concentrations relative to albumin so, although they will also have been

reacted with these pesticides, their contribution to the total level of binding calculated

would be insignificant. For comparison, albumin is at an approximate plasma protein

concentration of 32 mg ml�1 in rats and 42 mg ml�1 in humans (0.5�0.6 mM) (Davies

& Morris 1993), whereas the human concentration of plasma BuChE has been

estimated at 3.3 mg ml�1, or approximately 50�80 nM (Brimijoin & Hammond 1988,

van der Schans et al. 2004). For AChE, the human plasma concentration has been

estimated as 8 ng ml�1 (Brimijoin & Hammond 1988). That the binding of pesticides to

these two cholinesterases was not significant under our assay conditions was confirmed

experimentally by preincubation of plasma with the AChE inhibitor eserine (Sigma

E8375), or the BuChE inhibitor ethopropazine (Sigma L308765), which in neither case

lowered radioactivity incorporated into plasma albumin from that of control levels

(results not included).

In order to evaluate the functional significance of this albumin binding, it is

necessary to estimate the absolute stoichiometry; however, as radiolabelled pesticides

were not available, we achieved this indirectly via 3H-DFP binding. Clearly DFP is not

an ideal ligand for this purpose, since after 1 h incubation with 19 mM 3H-DFP only

approximately 1% of rat and 4% of human albumin molecules were radiolabelled via

calculation of the retention of 3H-DFP-radiolabelled albumin on microfibre filters.

However, increasing the molar ratio of 3H-DFP to albumin, extending the time

course with 3H-DFP or replacement of native with commercially purified albumin, all

increased the level of 3H-DFP radiolabelling of albumin. This concurs with the results

described by other groups detailing higher stoichiometries of binding after either

prolonged and/or high concentrations of inhibitor used under assay conditions of

above pH 8.0 which facilitate binding-site accessibility, and/or from incubations with

commercially prepared albumins from which fatty acids have been stripped (Murachi

1963, Means & Wu 1979, Hagag et al. 1983, Li et al. 2007). However, this higher

level of albumin binding would not be expected to be seen with native albumin in vivo.

The low stiochiometry of radiolabelling of albumin that we report may reflect an

inaccessibility of the active site to adduction by 3H-DFP. In contrast to the more usual

adduction of active-site serine hydrolases, DFP and OPs bind an active-site tyrosine in

serum albumin (tyrosine 411 of human or rat albumin) (Sanger 1963, Means & Wu

1979, Black et al. 1999, Schopfer et al. 2005, Li et al. 2007). Since this active-site
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tyrosine is also a point of ionic contact for associated molecules including both

monounsaturated oleic acid and polyunsaturated arachidonic acid, two fatty acids that

normally associate with albumin in serum (Petitpas et al. 2001), DFP binding may

certainly be conformationally restricted by the presence of these or similar fatty acids

(Means & Wu 1979, Petitpas et al. 2001), a restriction which may be lost in commercial

albumin preparations. We did not investigate this further, concentrating our studies on

interactions with the native, fatty acid bound albumin which is present in vivo.

Marked differences between the levels of binding of the different OPs to albumin were

evident from both our in vitro and in vivo results, in contrast to the uniform binding

shown by the majority of agents tested at the very high exposure levels used by others

(Peeples et al. 2005). The structures of the OPs used in this study are shown in Figure 6,

and divide into relatively low and high albumin-binding structures. Although these OPs

were selected on the basis of pesticide usage rather than structure, it is apparent that

those that possess an ester linkage to the leaving group readily bind albumin, whereas

those with a thioester are virtually unreactive. Hence we might predict that other

similarly structured dimethoxy triesters in which the leaving group is thioester linked,

such as azinphos-methyl and possibly its diethoxy triester counterpart azinphos-ethyl,

would be unreactive with albumin under conditions in which similarly structured esters

were reactive. This prediction, like the mechanistic basis for albumin’s differential

pesticide reactivity, will need to be tested via further experimentation.

The functional significance of albumin binding by OPs is unclear at present. There

are a number of enzymatic activities intrinsic to serum albumin that have the potential

to counter certain xenobiotics, of which the OP-binding or fatty acid binding site,

tyrosine 411, may also be an enzymatically active site residue (Means & Wu 1979,

Hagag et al. 1983, Sultatos et al. 1984, Sogorb et al. 1998, Watanabe et al. 2000,

Kragh-Hansen et al. 2002). However, the majority of these enzymatic activities are

relatively weak, or only operate in the absence of fatty acids and/or at pHs above the

normal physiological range (Ortigoza-Ferado et al. 1984). Nonetheless, irrespective of

its relative enzymatic inabilities, albumin does constitute the major plasma protein;

hence, if only 1% of albumin molecules in adults are physiologically active to sequester

OPs or catalytically hydrolyse OPs (act as an A-esterase) or other xenobiotics, albumin

will still exert considerable influence on the free circulatory OP/xenobiotic concentra-

tion, and therefore its tissue distribution, liberation, elimination, and thus detoxifica-

tion. This has recently been substantiated, at least in vitro, by a demonstration of the

detoxification of the carbamate pesticide carbaryl by bovine serum albumin at

toxicologically relevant concentrations (Sogorb et al. 2007). It is noteworthy that this

protection from neurotoxicity that binding of OPs to albumin affords, may well be

compromised in the fetus and newborn since they possess lower concentrations of

albumin and other serum proteins (Qiao et al. 2001).

The binding of OP pesticides to albumin will also have the potential to compete

and/or displace endogenous and exogenous albumin-bound compounds, including an

array of drugs that also bind albumin at the same region of the molecule, hence

influencing drug metabolism and pharmacokinetics (Watanabe et al. 2000, Kragh-

Hansen et al. 2002). Furthermore, since human albumin has the second highest

number of allelic mutants after haemoglobin including residues adjacent to the OP-

binding site (referenced at the Expasy website: http://au.expasy.org/uniprot/P02768,

or at http://www.albumin.org/), with some mutants influencing fatty acid (or drug)

binding (Nielsen et al. 1997), then presumably the binding of OPs to albumin may
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also be variable within the human population, and thereby influence an individual’s

ability to detoxify pesticides.

Once bound, an OP-adduct may undergo three fates: it may remain at the binding

site until the protein is either turned over or actively degraded; spontaneous removal

from the target by hydrolysis which results in the reformation of the native hydroxy

amino acid; or ageing, whereby an alkyl side chain of the inhibitor is lost (dealkylation)

Figure 6. Structures of low level and high level albumin-binding pesticides.
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and the resulting enzyme-inhibitor complex becomes resistant to enzyme regeneration

by fluoride ions or oximes. The relative rates of protein turnover/degradation,

spontaneous reactivation, or ageing will determine the persistence of OP binding,

and hence it’s usefulness as a biomarker of OP exposure.

The rates of ageing and spontaneous reactivation are specific to the bound

phosphoryl group. For AChE, the stability and resistance to spontaneous reactivation

of O,O’-dimethyl is less than O,O’-diethyl, which is less than O,O’-dipropyl bound

counterparts, but structurally similar phosphoryl groups should all reactivate at

approximately the same rate if bound to the same enzyme (Hobbiger 1951, Davison

1955). In the present study we examined dimethoxy- and diethoxy-albumin binding.

The diethoxy pesticide binding was greater than that for the dimethoxy pesticide at 3

and 7 days after dosing which presumably represents enhanced resistance to

spontaneous reactivation. However, for either pesticide the levels of pesticide binding

were still significant 7 days after dosing, indicating good potential for both structures

to provide post-exposure biomonitoring information. In the absence of sufficient data

collection points it is difficult to accurately calculate the true half-lives of this pesticide

to albumin binding, but since stable albumin adducts should follow a first-order rate

of elimination (Granath et al. 1992, Troester et al. 2002), it is clear that pesticide

albumin binding is not unstable but maintained at least as long as the approximately 3

day half-life of native rat albumin (Katz et al. 1961, Peters 1996).

By comparison, estimates of erythrocyte cholinesterase inhibited either in vitro or in

vivo indicate a half-life of spontaneous reactivation of 1�2 h with dimethoxy OPs

(Aldridge & Davison 1953, Vandekar & Heath 1956, Blaber & Creasey 1960, Worek

et al. 1999), and approximately 2 days with diethoxy pesticides (Blaber & Creasey

1960, Mason et al. 2000). Other estimates of spontaneous reactivation of erythrocyte

cholinesterase inhibited by dimethoxy pesticides have suggested a half-life of as much

as 37 h (Mason et al. 2000). The levels of inhibitor used in these assays may

contribute to the differences in the values attained for the dimethoxy phosphate esters

due to sustained enzyme inhibition, and in practice, inhibition can be prolonged by

ageing, but particularly for dimethoxy adducts plasma albumin clearly has a usefully

long duration of binding relative to AChE. It will remain for future studies to evaluate

the true rates of spontaneous reactivation of human albumin OP-bound in vivo.

Pesticide binding to albumin may not totally return to control levels due to ageing.

However, the usefulness of albumin for retaining OP adduct information has been

demonstrated from both in vitro and in vivo studies which have shown that albumin

was resistant to ageing (and thereby susceptible to fluoride or oxime reactivation) after

active-site occupancy by DFP, OPs or a number of nerve agents (Black et al. 1999,

Adams et al. 2004, Li et al. 2007, Williams et al. 2007).

Human albumin has an estimated half-life of approximately 20 days (Peters 1996,

Chaudhury et al. 2003), a life-span suitably persistent for biomarker sampling.

However, at present we can only presume that the pesticide albumin binding stability

that we observed for rats would also be seen in humans.

For comparison, the half-life of recovery of BuChE from the dimethoxy OP,

dichlorvos, was approximately 12 days (Mason 2000), similar to the estimates of this

protein’s half-life (Munkner et al. 1961, Ostergaard et al. 1988). Erythrocyte AChE,

undergoes a steady (linear) recovery from dichlorvos, returning to control levels after

approximately 82 days � a little prior to the life-span of an erythrocyte (approximately
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120 days), which demonstrates its value for monitoring relatively long-lasting OP

inhibitions (Mason 2000).

In summary, the results described in this paper quantify binding of low levels of

certain pesticides to rat serum albumin that persists beyond 7 days post-exposure, and

suggest that the relatively high protein concentration of albumin, coupled to its

relatively long half-life, make it a suitable biomonitor target for certain pesticides.

Currently, use of gas chromatography to identify products from fluoride reactivation

of BuChE-OP adducts provides a sensitive method for post-exposure OP detections

(Polhuijs et al. 1997, van der Schans et al. 2004). However, this method is not without

limitations, as OP-BuChE adducts are susceptible to ageing with associated loss of

amenability to the reactivation process. Conversely, albumin adducted by OPs and

some nerve agents is resistant to ageing thereby maintaining OP-adduct information

which has been detected by a number of mass spectrometry-based methods (Black

et al. 1999, Adams et al. 2004, Li et al. 2007, Williams et al. 2007). In future work it

will be important to determine the in vivo threshold at which pesticide binding to

albumin can be detected in order to further characterise albumin-binding sensitivity.

However, mass spectrometric methods, or an enzyme-linked immunosorbent assay

utilising antibodies specifically directed against albumin-OP adducts rather than the

parent OP compound, will probably provide a more practicable means for quantifying

the extent of OP-albumin binding, thereby avoiding the use of radioactive DFP.

The tendency of specific OP pesticides to differentially bind albumin and other

non-AChE targets could be exploited via a panel of immune assays to gain

information about the specific agents to which persons have been exposed. Thus

malaoxon would adduct AChE but not albumin or acylpeptide hydrolase (Richards

et al. 2000), whereas diazinon-oxon would bind albumin and AChE, but not

acylpeptide hydrolase. This approach may alleviate the base-line problems associated

with cholinesterase activity measurements that arise in the absence of pre-exposure

values, and therefore help to provide a better means of correlating specific OP

pesticide exposures with reported ill-health.
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