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Abstract 

Interactions between brain regions are necessary for compound activities to take place. 

Accordingly, evaluating hemispheric information processing during skilled behaviour 

provides valuable knowledge about brain regulation. To this end, the present study 

assessed the neural changes in response to task complexity and visuomotor discrepancy 

during motor (drawing) actions. EEG phase synchronization, expressing interregional 

communication, showed that visuomotor discordance perturbed information processing 

across both hemispheres, whereas task complexity induced pronounced adjustments in the 

left (dominant) hemisphere. However, the effects of task complexity and sensorimotor 

conflict interacted, and suggested that the main process of spatiotemporal integration was 

localized within the left hemisphere. Furthermore, a significant association between left 

hemisphere couplings and performance accuracy proposed that connectivity strength and 

behavioural output are linked with one another. These results suggest that functional 

connectivity patterns provide higher-order associations for information coding during skilled 

actions. 
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 Daily life activities require skilled movements with various degrees of complexity. In 

this respect, movement complexity can be expressed in a number of ways, and has 

previously been associated with factors such as accuracy and speed [10], sequence length 

[5,20,26], sequence difficulty [6,16], and motor predictability [8]. Overall, complexity co-

varies with the pattern of brain activation [25], and thus the degree of information 

processing. Commonly, there is increased activity (effort) for complex as compared to 

simple movements, and this effect has been strongly associated with the left (dominant) 

hemisphere, which is also supported from patient work [13,33,36]. The latter denotes 

hemispheric specialization for motor complexity. Conversely, the right hemisphere is clearly 

involved in visuo-spatial regulation [11,14,21]. This distinction of lateralized function 

implies that each hemisphere will contribute in a specific manner to goal-directed activities 

[30,31]. It further specifies that interregional communication is necessary for aggregate 

behaviour to take place. Based on the previous, the argument is made that evaluating 

changes in hemispheric information processing as a function of the task demands will 

provide valuable knowledge about brain regulation. In particular, it is argued that targeting 

hemispheric functions will evoke specific neural modifications in order to manage the task 

requirements. 

 In the present experiment, motor behaviour with two levels of task complexity was 

examined in a normal feedback and sensorimotor conflict situation. Here, the hypothesis 

was made that the experimental manipulations of task complexity and sensorimotor conflict 

would induce specific information processing in both hemispheres. Moreover, based on 

lateralization of function, it was hypothesized that task complexity would impact on the left 

hemisphere, whereas sensorimotor conflict would influence both hemispheres due to 

disturbed visuoproprioceptive processing and perturbed visuomotor regulation [22]. As an 

approach to describe brain activity, the data analysis focused on functional connectivity in 

the frequency domain as determined by EEG techniques. In this respect, the concept of 

functional connectivity refers to the concurrent activity of brain regions and is usually 

quantified through patterns of synchronization at different neural sites. It is based on the 

premise that functional coupling of neural activity provides a means for integrating task-

related information. In the context of motor behaviour, EEG functional connectivity 
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measures have proven to be sensitive indicators for evaluating the dynamics of 

interregional interactions [e.g., 4,7,15,28], including an association between connectivity 

strength and behavioural output [3,15,18,29]. 

Twelve right-handed individuals (age range: 23±6 years, five male) participated in 

the experiment. To assess handedness, the participants were asked to report on their hand 

preference, according to the Edinburgh handedness inventory [24]. Based on the individual 

responses, a handedness quotient was calculated by means of the formula: 

[100 × (Right − Left)/(Right + Left)], which ranges between −100 (pure left-handedness) 

and +100 (pure right-handedness). The mean score was 94±5, thus indicating strong 

right-handedness. The participants had no history of neurological disease and did not have 

any artistic experience. In accordance with the declaration of Helsinki, the participants gave 

informed consent to take part in the study, which was approved by the local ethics 

committee. The participants were asked to perform drawing movements with their right 

hand according to two degrees of complexity (Fig. 1). The distinction of complexity was set 

by the topological nature of the tasks (i.e., number of directional changes at corner points), 

which determines drawing time [22]. The tasks were executed under 2 conditions; normal 

vision (control) and mirror-inverted vision, and involved patterns with similar kinematics. 

Subjects first performed the control conditions followed by the mirror conditions. The order 

within the control and mirror conditions was counterbalanced. The drawing tasks were 

performed on a digitizing graphic tablet (Wacom, Intuos3), using an ink- and wireless pen. 

The pen trajectories were acquired in x- and y-coordinates by using E-Prime software 

(Psychology Software Tools Inc., Pittsburgh, USA). The templates of the drawings to be 

performed were placed behind the graphics tablet. In the mirror-reversed condition, a 

mirror with semi-silvered coated properties was placed between the template and tablet. 

Subjects were instructed to copy the templates continuously for the duration of the trial 

starting from a fixed position, as fast and as accurately as possible. Trials lasted 35 s each, 

and there were 2 trials per task condition. Practice with and without the mirror was 

provided. There were small breaks in between trials. As an estimate of behavioural 

performance, path velocity and accuracy (RMS) of the drawings were determined for each 

task condition. 
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Insert Fig. 1 about here 

 

 Continuous EEG was recorded using the Electrical Geodesics Inc. 128-channel 

system. EEG signals were amplified, band-pass filtered 0.05 Hz–100 Hz, and sampled at 

250 Hz with a vertex reference. Data pre-processing was carried out using BESA software 

(MEGIS Software GmbH, Gräfelfing, Germany), and epochs contaminated by artifacts such 

as eye movements and EMG-related activity were corrected for using its algorithm. A 

reference-free montage was subsequently used for further analysis with the EEGLAB Matlab 

Toolbox [9]. The trials were segmented into epochs of 800 ms, excluding the first and last 

epoch, and subjected to a threshold-based rejection of epochs resulting in an average of 

138 epochs per subject and task condition. A wavelet analysis extracted time–frequency 

complex phases using three cycles at frequencies in the low beta band (13-21 Hz), based 

on earlier work of visuomotor behaviour [7]. A sliding window of 260 ms was used, 

generating 134 time points with a resolution of 1 Hz. Thereafter, phase synchronization 

was calculated as an estimate of functional connectivity between brain areas in the 

frequency domain. It was estimated for all specified time points and frequencies, and 

subsequently averaged for each subject and task condition. As a measurement of coupling 

between two signals at any given frequency, phase synchronization varies between 0 (no 

correlation) and 1 (perfect correlation). To measure indices of cortical activity, a region of 

interest approach was adopted that focused on a restricted number of electrodes. The 

electrodes were selected based on earlier EEG studies [7,16,28] and were estimated to 

overlie prefrontal, premotor, sensorimotor, parietal and occipital areas. The division of 

electrodes resulted in the following connectivity groupings: intrahemispheric left (F3-FC3, 

F3-C3, F3-CP3, F3-P3, F3-O1, FC3-C3, FC3-CP3, FC3-P3, FC3-O1, C3-CP3, C3-P3, C3-O1, 

CP3-P3, CP3-O1, P3-O1), intrahemispheric right (F4-FC4, F4-C4, F4-CP4, F4-P4, F4-O2, 

FC4-C4, FC4-CP4, FC4-P4, FC4-O2, C4-CP4, C4-P4, C4-O2, CP4-P4, CP4-O2, P4-O2), 

interhemispheric (F3-F4, FC3-FC4, C3-C4, CP3-CP4, P3-P4, O1-O2). Before statistical 

operations were conducted, scores were transformed using the inverse hyperbolic tangent 

to stabilize variances. All the processed data were analyzed using Statistica software 

(StatSoft Inc., Tulsa, USA). Adjustments were made in case of violation of the sphericity 
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assumption by using the Greenhouse–Geisser procedure. Post-hoc testing included 

corrections for multiple comparisons. The analyses involved 2 x 2 ANOVAs on task 

complexity (easy, complex) and sensorimotor conflict (no mirror, with mirror).  

THE EEG phase synchronization data were analyzed separately for intrahemispheric 

right, intrahemispheric left, and interhemispheric couplings. For intrahemispheric right 

connectivity, the ANOVA showed a significant main effect of sensorimotor conflict 

[F(1,11)=6.82, p<0.03, =.22], which indicated higher coupling in the no mirror than with 

mirror conditions. The mean scores (± SD) were .348±.027 and .334±.033 for the no 

mirror and mirror tasks, respectively. For intrahemispheric left connectivity, the ANOVA 

revealed a significant main effect of sensorimotor conflict [F(1,11)=4.99, p<0.05, =.29] 

and a significant task complexity x sensorimotor conflict interaction [F(1,11)=17.88, 

p<0.01, =.11]. Post-hoc analysis indicated that increased task complexity resulted in 

higher coupling in the no mirror condition (with normal vision) whereas the opposite effect 

was noted with mirror-reversed vision (p<0.05), (Fig. 2A). This underlines that the left 

hemisphere couplings became disrupted as task complexity augmented under mirror-

reversed vision. Combined the intrahemispheric data suggest a disturbance of the 

functional balance between both hemispheres when complexity is stringent. This premise is 

supported from examining the ratio of left vs. right hemisphere activation for the complex 

task. The ratio, which provides an indication about hemispheric balance, dropped 

significantly from 1.005 (no mirror) to .977 (with mirror), [t(11)=2.45, p<0.04]. For 

interhemispheric connectivity, the ANOVA demonstrated a significant main effect of 

sensorimotor conflict [F(1,11)=5.89, p<0.04, =.58], and denoted higher coupling in the 

no mirror than with mirror conditions. The mean scores (± SD) were .262±.026 and 

.253±.024 for the no mirror and mirror tasks, respectively. 

The behavioural data were analyzed separately for path velocity and accuracy. For 

path velocity, the ANOVA revealed a significant main effect of task complexity 

[F(1,11)=6.29, p<0.03, =.91], and sensorimotor conflict [F(1,11)=19.67, p<0.01, 

=.03]. The mean scores (± coefficient of variation) were 190±9% (no mirror) and 

92±17% (with mirror), 150±11% (easy task) and 132±16% (complex task). For path 
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accuracy, the ANOVA showed a significant main effect of task complexity [F(1,11)=5.56, 

p<0.04, =.25] and a significant task complexity x sensorimotor conflict interaction 

[F(1,11)=19.34, p<0.01, =.45]. Post-hoc analyses demonstrated that error increased 

strongly when the complex as compared to the easy task was performed with mirror-

inverted vision (p<0.05), (Fig. 2B). A correlation analysis between the left hemisphere 

couplings and error scores for the complex task in the mirror condition provided a 

significant correlation (r=-0.65, p<0.05). This indicates that more errors associated with 

low intrahemispheric coupling in the dominant hemisphere. 

 

Insert Fig. 2 about here 

 

 The brain’s functional architecture involves neural processing within segregated 

areas. Accordingly, the involvement of wide-spread regions is necessary for compound 

behaviour to occur [30,31]. In the present study, hemispheric information processing was 

evaluated, using functionally connectivity measures, during motor tasks that involved 

drawing actions. Previously, it has been established that drawing behaviour engages 

distributed brain regions [19]; an observation that is supported from patient work that has 

shown that visuo-spatial tasks are impaired following left as well as right hemisphere 

lesions [12,36]. However, the intricacy of the drawing activity depends on a number of 

factors such as feedback availability (normal vs. degraded) and task complexity 

(characterized by the topology of the figure and spatial characteristics of the components). 

Both factors will selectively affect the functional activation profiles and influence the quality 

of visuomotor mapping that is required for successful drawing behaviour. Of note is that 

different types of drawing activities exist, integrating distinct task constraints and neural 

regulation [e.g., 23,32]. In the current experiment, the drawing tasks required copying of 

templates, which implied that the visual model and movement trajectory were in different 

locations. Therefore, an indirect spatial association between model and trajectory subsisted 

such that visuomotor transformations from template to drawing space were necessary to 

perform the assignment skilfully [2]. Relevant in the present context is to distinguish 

copying from tracing during which the template and trajectory overlap, enabling continuous 



   

                                                                                                                                  8 

visual guidance of the hand in local space [2]. Accordingly, it is argued that the defined 

demands of the drawing activity will affect the weighting of the sensory signals as well as 

the adopted strategies (i.e., shifts between model and trajectory), especially in the case of 

visuomotor incongruence during which the reference frames between the eyes and hand 

are misaligned [27]. 

The EEG data revealed that intrahemispheric coupling in the low beta frequency 

band changed in response to both experimental factors. First, visuomotor discordance 

perturbed information processing within and between hemispheres. It is argued that 

disturbed visuospatial processing including sensory recalibration occurred in the right 

hemisphere [17,35], whereas disrupted sensorimotor planning took place in the left 

hemisphere [22]. Besides changes in intrahemispheric connectivity, the functional transfer 

between the hemispheres was affected due to visuomotor incongruence, which underlines 

that interhemispheric interactions are a relevant communication pathway for movement 

regulation [34]. 

Second, task complexity impacted on the left (dominant) hemisphere. This finding is 

in agreement with previous data that have shown that left hemisphere dominance exists for 

complex actions [13,33]. However, there was also evidence that task complexity and 

sensorimotor conflict interacted, which is in line with the idea that the main process of 

spatiotemporal integration occurs within the left hemisphere [1]. That the functional 

balance between both hemispheres became disturbed due to the combined effect of task 

complexity and visuomotor discongruence further supports this premise, and suggests that 

efficient processing and integration between both hemispheric sides is necessary for 

optimal brain functioning. Furthermore, the significant association between the left 

hemisphere couplings and performance accuracy provides an indication that connectivity 

strength and behavioural output are functionally linked with one another. It denotes that a 

particular magnitude of interregional coupling is necessary to obtain a successful 

performance. Besides the mutual effect of complexity and conflict on drawing accuracy, it 

was also shown that both factors reduced drawing speed. In this respect, slowing down of 

performance is likely due to an increased supervision of the task demands.  
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Together, the data from the intra- and interhemispheric couplings have provided 

evidence for context-dependent responses to situations of sensorimotor incongruence and 

task complexity. The adaptation of functional connectivity profiles, whether decreased or 

increased, hints at explicit adjustments in view of the task constraints. In particular, 

reduced synchrony points to disrupted or abnormal interregional communication, whereas 

increased synchrony reflects tightened or compensatory interactions. Both effects hint at 

segregation or integration of information processing across brain areas. 

 In conclusion, daily life activities require complex motor behaviour, and involve 

various control processes that engage distributed brain regions. In case of intricate 

situations, optimal information processing can be disturbed and lead to deteriorated 

performance. In the present study, it was shown that visuomotor incongruence and task 

complexity modulated interregional communication in a distinctive manner. Accordingly, 

the data suggest that interactions between brain areas provide higher-order information 

coding in view of skilled behaviour. 
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Figure Caption 

 

Fig. 1. The templates used in the experiment, which included two versions of an easy task 

(left-sided panels) and complex task (right-sided panels).  

 

Fig. 2. Intrahemispheric connectivity of the left hemisphere (A) and drawing error (B) as a 

function of task complexity (easy vs. complex) and sensorimotor conflict (no mirror 

condition with normal vision vs. mirror condition with mirror-inverted vision). The means ± 

SE are illustrated. 
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