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Abstract. The current work aims to unveil the neural circuits under-
lying visual search over time and space by using a model-based analysis
of behavioural and fMRI data. It has been suggested by Watson and
Humphreys [31] that the prioritization of new stimuli presented in our
visual field can be helped by the active ignoring of old items, a process
they termed visual marking. Studies using fMRI link the marking pro-
cess with activation in superior parietal areas and the precuneus [4, 18,
27, 26]. Marking has been simulated previously using a neural-level ac-
count of search, the spiking Search over Time and Space (sSoTS) model,
which incorporates inhibitory as well as excitatory mechanisms to guide
visual selection. Here we used sSoTS to help decompose the fMRI signals
found in a preview search procedure, when participants search for a new
target whilst ignoring old distractors. The time course of activity linked
to inhibitory and excitatory processes in the model was used as a regres-
sor for the fMRI data. The results showed that different neural networks
were correlated with top-down excitation and top-down inhibition in the
model, enabling us to fractionate brain regions previously linked to vi-
sual marking. We discuss the contribution of model-based analysis for
decomposing fMRI data.

1 Introduction

1.1 Human visual search over space and time.

The visual world contains a vast amount of information, only some of which is
relevant to our behaviour. It is therefore essential to employ selection processes
to enable us to separate relevant from non-relevant information. In order to
understand both the functional mechanisms of selection, and the underlying
neural substrates, investigators are increasingly combining behavioural studies
with fMRI analyses which reflect functional activity in different brain regions as
selection takes place. However, given the limited spatial and temporal resolution
of fMRI, it is often difficult to separate the different functional processes that
may contribute to visual selection. Moreover different functional processes can
combine to influence selection. For instance, selection may be contingent on both
excitatory processes that guide attention to a target and on inhibitory processes
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that guide attention away from distractors [5]. In such cases, fMRI contrasts
between (say) easy and difficult search operations fail to distinguish the different
functional operations involved. One way to advance the functional analysis of
fMRI data in such cases is to link the data to an explicit model of performance,
which does distinguish between the different functional processes, and which can
be used to predict the variation in fMRI signal as the different processes take
place. Here we present an example of this using the spiking Search over Time
and Space (sSoTS) model of visual search [23]. We show how sSoTS can be used
to pull-apart fMRI signals associated with excitatory and inhibitory processes
in search, providing a more detailed analysis of the relations between cognitive
and neuronal function.

It is well known that humans utilize ”selection by space” to process only in-
formation at certain locations. However, only recently have studies been designed
to examine how temporal cues can be used to guide visual selection. Tradition-
ally, in visual search tasks participants are asked to find a known target item
amongst irrelevant distractor items, and the time it takes participant to identify
the target is measured (the reaction time (RT)). The slope of the search function
(RT relative to the display size of distractors) depends on the spatial features
of the target and distractor items. Watson and Humphreys [31] devised a new
version of visual search where the temporal as well as the spatial features of
targets and distractors were varied. They adapted a standard colour-form con-
junction task, but presented half of the distractors (the preview) prior to the
other distractors and the target (when present). They showed that this preview
search condition was facilitated relative to the standard conjunction search, with
search efficiency approximating that found when the new items were presented
alone (the ’single feature baseline’). Watson and Humphreys [31] proposed that
temporal prioritisation in search tasks depends, at least in part, on the active
ignoring of old items – a process they termed visual marking. Humphreys et
al. [17] showed that visual marking is disrupted when a secondary task must
be conducted during the preview, consistent with the secondary task disrupt-
ing top-down ignoring of old items. In addition this, there is also evidence for
top-down excitatory biases influencing search. For example a positive bias for
expected target properties can offset the effects of an inhibitory bias against the
features of old distractors [16] (induced by, for example, instructions or changes
in display).

There is now considerable evidence that search is contingent on a network
of neural circuits in frontal and parietal cortex that control both voluntary and
reflexive orienting of attention to visual information [7]. These neural regions also
overlap with areas involved in selecting targets on the basis of their temporal
properties [20, 8] , suggesting that common neural processes may mediate search
not only across space but also across time – as when we prioritise the selection
of new over old stimuli. The inter-play between the different parts of this fronto-
parietal circuit however remains much less understood.

There have now been several brain imaging studies of preview search [27,
26] which converge in demonstrating that the preview period is associated with
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activation within the superior parietal cortex and the precuneus. Allen et al. [4]
examined preview search both when a preview task was carried out alone and
under conditions of secondary task load (a visual memory task was interleaved
with preview search). In a single feature baseline, the participant had to locate
a blue house target amongst red house distractors. In a conjunction condition,
the same target had to be found amongst blue faces and red house distractors.
In the preview condition, the preview items (blue faces) appeared 2 sec before
the search display (red houses and blue house target). In the visual memory task
participants had to memorise the positions of dots presented before the preview
display. The, after the presentation of the preview, either the dots re-appeared
or the search display was presented. When the dots re-appeared the task was to
judge whether one had moved location. When the search display appeared the
task was to locate the target (left or right of screen). Figure 1 shows the different
conditions. This study used faces and houses as search items rather that the
typical lines or letters. This allowed Allen et al [4] to draw conclusions about the
activity in stimulus-specific cortex (e.f. fusiform face area). Although there are
differences in behaviour with these more complex stimuli, crucially, Allen et al.
found a behavioural advantage for preview search which decreased when there
was a memory load. Active ignoring of the preview display was associated with
activation in a network of brain areas in posterior parietal cortex. These same
regions were active during the visual memory task and decreased their activation
for preview displays when the memory task was imposed.

Fig. 1. This figure presents the displays for the 3 conditions in Allen et al. [4], for the
three scans (Search scan, Preview scan, and Working Memory scan).
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1.2 Modelling search.

Over the past ten years, increasingly sophisticated computational models of vi-
sual search and selection have been proposed [15, 9, 19, 24]. The importance of
these models is that they generate a system-level account of performance, emerg-
ing from interactions between different local components. This provides a means
of examining how interactions within a complex network generate coherent be-
haviour.

The majority of models to-date have used relatively high-level connectionist
architectures, where (e.g.) activity within any processing unit typically mimics
the behaviour of many hundreds rather than individual neurons [see [15] for an
example]. Such models not only operate at a level of abstraction across indi-
vidual neurons (operating at a ‘mean field’ levels; see [15] ), but they also very
often include network properties divorced from real neuronal structures (e.g.,
with units being both excitatory and inhibitory, depending on the sign of their
connection to other units). One exception to this approach comes from the work
of Deco and colleagues [9, 11] who have simulated aspects of human attention
with models based on ‘integrate and fire’ neurons. These networks utilise biolog-
ically plausible activation functions and generate outputs in terms of neuronal
spikes (rather than, e.g., a continuous value, as in many connectionist systems).
Deco and colleagues have shown how classic ‘attentional’ (serial) aspects of hu-
man search can be simulated by such models even when the models have a
purely parallel processing architecture. This provides an existence proof that a
model incorporating details of neuronal activation functions can capture aspects
of human visual attention.

One attempt to simulate human search over time as well as space has been
made using the spiking Search over Time and Space model (sSoTS) [22, 23] ,
which represents an extension of the original work of Deco and Zihl [9]. sSoTS
uses a system of spiking neurons modulated by NMDA, AMPA, GABA trans-
mitters along with an IAHP current, as originally presented by Deco and Rolls
[27, 26] (see also Brunel and Wang [6]). sSoTS is separated into processing units
that encode the presence of independently coded features (e.g. colour and form)
(see Figure 2). The feature maps can be thought as high-level representations
for groups of low level of features. There is in addition a ‘location map’ in which
units respond to the presence of any feature at a given position. At each location
(in the feature maps and the location map), there is a pool of spiking neurons,
providing some redundancy in the coding of visual information. The feature
maps may correspond to collections of neurons in the posterior ventral cortex
(e.g., V4), while the location map may correspond to collections of neurons in
dorsal (posterior parietal) cortex. There are inhibitory interactions across differ-
ent pools in the feature maps, representing a form of lateral inhibition between
like elements. There are also inhibitory interactions between pools corresponding
to the same location in different feature maps in the same feature domain (e.g.,
between blue and green units, but not between blue and H units), so that a given
location will tend to support only one feature value within a domain. Search for
a specific item is simulated by giving additional activity into the feature maps
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corresponding to the properties of the target; this corresponds to an expectation
of the target. This activity combines with activity from the stimuli presented in
the search display, and the output from each pool of neurons in each feature map
is fed-forward into the map of locations. Activity in the location map provides
an index of ‘saliency’ irrespective of the feature values involved (cf.[19]), since
the location units represent the strength of evidence for ‘something’ occupying
each position, but they are ‘blind’ to the features present (which are summed
across the feature maps). There is then also feedback activation from the pool
of units corresponding to each position in the map of locations to units at the
corresponding location in the feature maps, supporting the selection of features
that are linked to the highest saliency value. Over time, the model converges
upon a target, with reaction times (RTs) based on the real-time operation of the
neurons.

Fig. 2. The architecture of the sSoTS model: The maps outlined in bold (Blue and
House maps) receive top-down excitation (for the expected target) and the maps linked
to the external inhibitory pool (the Blue and Face maps) receive the top-down inhibi-
tion (for the features of the preview).

Search efficiency in sSoTS is determined by the degree of overlap between
the features of the target and those of distractors, with RTs lengthening as
overlap increases and competition for selection increases. Consequently, search
for a conjunction target (having no unique feature and sharing one feature with
each of two distractors) is more difficult than search for a feature-defined target
(differing from the distractors by a unique feature). Mavritsaki et al. [22, 23]
showed that search in the conjunction condition also increased linearly as a
function of the display size, mimicking ‘serial’ search.

In addition to modelling spatial aspects of search, sSoSTs also successfully
simulated data on human search over time, in the preview search paradigm [1,
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20]. Provided the interval between the initial items and the search display is
over 450ms or so, the first distractors in preview search have little impact on
behavioural performance [31, 32]. The sSoTS model generated efficient preview
search when there was an interval of over 500ms between the initial preview and
the final search display. sSoTS mimics the behavioural time course due to the
contribution of two processes: (i) a spike frequency-adaptation mechanism gen-
erated from a slow Ca2+ -activated K+ current, which reduces the probability of
spiking after an input has activated a neuron for a prolonged period [21] , and (ii)
a top-down inhibitory input that forms an active bias against known distractors.
The slow action of frequency-adaptation simulates the time course of preview
search. The top-down inhibitory bias matches data from human psychophysical
studies where the detection of probes has been shown to be impaired when they
fall at the locations of old, ignored distractors [3, 4]. In addition, in explorations
of the parameter space for sSoTS, Mavritsaki et al. [22, 23] found that active in-
hibition was necessary to approximate the behavioural data on preview search.
These results, using the sSoTS model, indicate that processes of co-operation
and competition between processing units may not be sufficient to account for
the full range of data on human selective attention and that factors such as fre-
quency adaptation are required in order to simulate the temporal dynamics of
visual attention.

1.3 Linking the model to fMRI

. As we have noted, imaging studies have shown a network of regions in pos-
terior parietal cortex (PPC) (including superior parietal cortex and precuneus,
extending into occipital cortex) associated with successful prioritisation of the
new target and successful ignoring of the old distractors. However, the increased
activation in these regions found in preview search is inherently ambiguous, be-
cause preview search is influenced by both positive expectancies for targets and
inhibitory suppression of distractors [5]. This ambiguity is not apparent in the
sSoTS model, though, where effects of top-down expectancies and inhibitory bi-
ases against distractors can be distinguished. For example, the map associated
with the feature of the old distractors that does not re-occur in the search dis-
play (i.e., the map for face stimuli, in the experiment of Allen et al. [4]) uniquely
receives top-down inhibition in sSoTS. The map corresponding to the feature of
the target not present in the old distractors (i.e. houses in Allen et al [4]) uniquely
receives top-down activation. The changes in activity over time in these maps
may be used to predict changes in the fMRI signal linked, respectively, to top-
down expectancies and inhibition in preview search. The distinct time courses
of activation in the model may then be used to pull-apart activity from within
the regions linked to preview search, allowing us to isolate the neural regions
concerned with excitatory and inhibitory modulation of processing. We report
an analysis of fMRI data on preview search taking this approach.
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2 The architecture of sSoTs

sSoTS consists of spiking neurons organised into pools containing a number
of units with similar biophysical properties and inputs. The simulations were
based on a highly simplified case where there were six positions in the visual
field, allowing up to 6 items in the final search displays. sSoTS has three layers
of retinotopically-organised units, each containing neurons that are activated on
the basis of a stimulus falling at the appropriate spatial position. There is one
layer for each feature dimension (”colour” and ”form”) and one layer for the
location map (Figure 2). The feature maps encode information related to the
features of the items presented in an experiment – in this case, Allen et al. [4].
For Allen et al. [4], the two different features encoded are colour and object
shape, which in this case is house or face. Here the feature dimension ”colour”
encoded information on the basis of whether a blue or red colour was presented
in the visual field at a given position i, (i=1,...,6) (creating activity in the red
and blue feature maps). The feature dimension “form” encoded information on
the basis of whether there is a house or face present in the visual field at a
given position i (i=1,..,6). The pools in the location map sum activity from the
different feature maps to represent the overall activity for the corresponding
positions in the visual field. Each of the layers contains one inhibitory pool (see
also [11]) and one non-specific pool, along with the feature maps.

The system used and the connections are illustrated in Figure 2.More details
about the architecture of sSoTs and the organisation of the units (neurons) in
the network can be found in Mavritsaki et. al [22].

The units in the model are integrate-and-fire neurons with sub-threshold
given by the equation

Cm

dV (t)

dt
= −gm(V (t) − VL) − Isyn(t) + IAHP (1)

Where Cm is the membrane capacitance where different values are given for
excitatory Cmex and inhibitory Cmin neurons; gm is the membrane leak con-
ductance where different values are also given for excitatory gmex and inhibitory
gmin neurons; VL is the resting potential; Isyn is the synaptic current and IAHP

is the current term for the frequency adaptation mechanism. The values for the
above parameters as well as the threshold Vtbr and the reset potential can be
found in Mavritsaki et al. [23] . The description of the synaptic currents used
(NMDA, GABA, AMPA ) can also be found in Mavritsaki et al. [7].

The parameters for the simulations were established in baseline conditions
with ‘single feature’ and ‘conjunction’ search tasks as reported by Watson and
Humphreys[31] and Allen et al. [4] (conjunction search: blue house target vs. red
houses and blue faces distractors; feature search: blue face target vs. red houses
distractors). The generation of efficient and less efficient (linear) search functions
in these conditions replicates the results of Allen et al. [4]. These same parameters
were then used to simulate preview search. The parameter w+ represents the
strength of connections between the neurons in each pool, while w− represents
the strength of connections between the pools within and across each feature
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map. The target also benefited from an extra top-down input λatt given to those
feature maps that represent the target’s characteristics (i.e., the colour blue and
the letter H). The presence of an object in the visual field was signified by adding
an additional λin value given to the external input that the system received.
Overall the input that a pool could receive was vext = vext + (λin + λatt)/Next.
In preview search top-down attention (λatt) was applied to the target’s feature
maps at the onset of the search display.

RTs were based on the time taken for the firing rate of the pool in the location
map to cross a relative threshold (thr). If the selected pool corresponded to the
target then the search was successful (a hit trial). If the pool that crossed the
threshold corresponded to a distractor rather than the target then the target
was ‘missed’. Note, however, that if the parameters were set so that the target’s
pool was the winner on every trial, only small differences in the slopes were
observed between conjunction and single feature search, due to target activation
saturating the system. Accordingly, search was run under conditions in which
some errors occurred, mimicking human data. Detailed simulations, were run
at the spiking level only, to match the experimental results [4]. Additionally, to
simulate the working memory effect, we reduced slightly the top-down inhibition
during the ‘working memory’ trials – assuming this is equivalent to the effects
generated when human participants hold another stimulus in working memory
during the preview period.

3 Applying the sSoTS model to fMRI data

3.1 Extraction of activation maps for top down inhibition and
excitation.

During the preview period activation in the model is affected by several factors:
top-down excitation (for the target), top-down inhibition (for old distractors)
and passive inhibition caused by frequency adaptation. In order to be able to
compare the fMRI data with the activation patterns in the model we extracted
activation maps from the model related to the above mechanisms. For example,
consider preview search for a new blue house target amongst previewed blue
faces and new red houses distractors (see[4]). In sSoTS there is a positive bias
applied to maps representing the features of targets, for Allen et al. [4] the tar-
get is the blue house, therefore the map that encodes the shape “house” and
the map that encodes the colour “blue” receive top-down excitation. Further-
more, there is an inhibitory bias applied to maps representing the features of old
distractors (distractors presented before the presentation of the search display),
these distractors are blue faces, so the map that encodes the shape ”face” and
the map that encodes the colour ”blue” both receive top-down inhibition. By
tracing activity in the house, face and blue maps, we can correlate brain activ-
ity with active excitatory and inhibitory biases in the model. Note that we are
interested in activity relating to these biases and processes, not to the distractor
features or colours.
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To extract the brain activity relating to these processes, we first extracted a
time course of the activity in each of the sSoTS maps (2 x shape, 2 x feature and
the location map) over the experiment of Allen et al [4]. These time courses were
convolved with a standard estimate of the heamodynamic function and used as
regressors for the fMRI activity (see below). To estimate the activations asso-
ciated with positive biases for targets and inhibitory biases against distractors
(see Table 1) we compared the activations found for each map (for both the
conjunction and preview search conditions). Thus, for conjunction search, the
positive top-down bias was given by:

(Target form – distractor form)
+

(Target colour – Distractor Colour)

i.e: (House – Face+ Blue – Red)

For preview search the top-down excitation was given by:
(Map with only Positive Bias –Map with no bias)

+
(Map with Positive and Negative Bias- Map with only Negative Bias)

i.e: (House–Red+Blue–Face)

For preview search the top-down inhibition was given by:
(Map with only Negative Bias – Map with no Bias)

+
(Map with Positive and Negative Bias – Map with only Positive Bias)

i.e: (Face–Red+Blue–House)

Table 1. Map Extraction.

Single Feature and Conjunction Map Extraction Preview Map Extraction

Maps Positive Bias SF and CJ Inhibitory Bias PV Positive Bias PV

Face NO YES NO

House YES NO YES

Blue YES YES YES

Red NO NO NO

3.2 Comparison of fMRI data with model bold responses

Activation in sSoTS was linked to the human fMRI data by taking into account
the delay that is present in the fMRI bold signal (about 5-9 sec) [12]. To do this,
activity in the model was convolved with a haemodynamic response function [13,
14, 10]. Previous work by Gorchs and Deco [13] simulated the bold response by
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taking the average pool activity in a given location in the model and convolved
this with a Poisson distribution. The result from the convolution was then com-
pared with bold responses taken from the fMRI data (from the corresponding
simulated region). Furthermore, instead of using the average pool activity the
synaptic activity can also be employed. Deco et al. [10] used the synaptic activ-
ity from his model and convolved it with the haemodynamic response function
suggested by Glover [14]. In our effort to compare our theoretical data with the
fMRI experimental data we used the average synaptic activity from the pools in
the model’s feature maps. This average synaptic pool activity was then directly
compared with the observed bold data from Allen et al. [4], using the synaptic
activity as regressors for the fMRI analysis.

We note that there was no top-down inhibitory bias applied during con-
junction search. However, activity in the same maps was examined in order to
provide a baseline with the preview search task. After extracting the activity
maps from the model, we averaged over 20 trials for each condition and we took
the changing time course of activity reflecting top-down inhibition and top-down
excitation activity for each condition. This activity was convolved using an as-
sumed haemodynamic response function [10] to create a time series of predicted
bold activity. This time series was then used as a regressor for the fMRI data in
the contrasting search conditions.

fMRI analysis was done using FEAT, part of fsl (www.fmrib.ox.ac.uk/fsl).
The data were pre-processed as in Allen et al. [4], including correction for head
movement, within scan signal intensity normalisation, high pass temporal filter-
ing (to remove slow wave artifacts). The time course for each map in the model
was entered as a separate regressor. Positive and negative biases were estimated
by combining the regressors for each map as desribed above. Z (Gaussianised
T/F) statistic image were thresholded using clusters determined by Z>2.3 and
a (corrected) cluster significance thresholded of P=0.05.

4 Results

The behavioural results generated by sSoTS matched the classical findings on
single feature, conjunction and preview search [31]. In the single feature condition
(the half set baseline), the search slope was 14 ms/item; for the preview condition
it was 12 ms/item, and it was 46 ms/item for the conjunction condition (the
full set baseline). When a working memory task was added (the loaded search
condition), the slope of the preview condition increased to 19 ms/item (see Figure
3).

We then took the time courses of activation reflecting the top-down excitatory
and inhibitory activity in sSoTS’s feature maps and applied these as regressors
to the fMRI data associated with the preview condition reported by Allen et al.
[2]. In this study we sought areas where BOLD activity was related to excitatory
and inhibitory activity. Allen et al. [4] reported activation in posterior parietal
cortex (superior parietal lobe and precuneus) linked to the dummy preview con-
dition. We found a reliable correlation (p<0.001 for all correlations) in right
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Fig. 3. The slopes generated by sSoTS for single feature search (the half set baseline),
conjunction search (the full set baseline), standard preview search and preview search
with a working memory load (the loaded search condition). On the left we present the
preview and the loaded search conditions compared with the half set baseline, with
the display size matched to the number of items in the second search display in the
preview condition. On the right we show the preview and the loaded search conditions
in comparison with the full set baseline, with the display size matched to the number
of items on the final screen of the preview condition (preview + search items).

lateral parietal cortex for top-down excitatory activity predicted by sSoTS. In
contrast, top-down inhibitory activity in the model was correlated with fMRI
activation in the medial precuneus (Z=50) (Figure 4). Here the model-based
analysis distinguishes two functionally different operations taking place when
observers attempt to ignore the preview and to prioritise search to new items
[5].

We also examined the differences between bold activity in the preview and
conjunction search conditions in relation to the activation differences between
the these conditions apparent in sSoTS (comparing activity in the critical maps
in preview and conjunction search). In sSoTS these activation differences are
driven by the application of top-down inhibition in preview search. The results
showed a reliable correlation between the activation differences in sSoTS and
increased activation in the precuneus in preview search compared with the con-
junction condition. There was also a correlation between differences in activity
in the conjunction and preview conditions in sSoTS and increased activity for
the conjunction condition over the preview condition in lateral parietal cortex
(Z=52) (see Figure 5). This may reflect the increased role of excitatory guidance
to the target in the conjunction condition.

Finally, we evaluated the differences in activity between the standard preview
condition and preview search conducted with a memory load. The differences
in activity between these two conditions in sSoTS was correlated with (i) an
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Fig. 4. This figure presents the areas that show bold activity correlated with top-
down inhibition in sSoTS (white with black outline) and those where bold activity
correlated with top-down excitation in the model (black with white outline). Top-down
inhibition in the model (maps: (1-4)+(3-2)) was associated with activity the medial
precuneus, while top-down excitation in the model (maps: (2-4)+(3-1)) was associated
with activity in the lateral parietal cortex (right hemisphere).

increase in bold activity in the standard preview compared with the working
memory condition in the precuneus, and (ii) an increase in bold activity in
the working memory condition compared with the standard preview in lateral
parietal cortex (Z=50) (Figure 6). These results fit with there being reduced
inhibitory activity under conditions of working memory load, along with an
increased role for top-down activation for the target under the more difficult
working memory condition.

Fig. 5. Comparisons between preview and conjunction search (the full set baseline).
The white with black outline regions reflect correlations between (i) top-down in-
hibitory activity in sSoTS and (ii) increased activation in preview compared with con-
junction search. The black with white outline regions reflect correlations between (i)
top-down inhibitory activity in sSoTS and (ii) greater activation in conjunction search
compared with preview search.
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Fig. 6. Comparisons between the standard preview condition and the condition where
preview search was conducted with a working memory load (the loaded search condi-
tion) [4]. The white with black outline regions reflect correlations between (i) top-down
inhibitory activity in sSoTS and (ii) increased activation in standard preview search
compared with the loaded search condition. The blue with white outline regions re-
flect correlations between (i) top-down inhibitory activity in sSoTS and (ii) increased
activation in the loaded search condition compared with standard preview search.

5 Conclusions

sSoTS replicated successfully the behavioural results from Allen et al. [4]. Ac-
tivity in the model linked to top-down excitation and inhibition also correlated
with the bold signal in posterior parietal cortex. Prior fMRI studies have demon-
strated increased activity in posterior parietal cortex linked to preview search,
but differences in excitatory and inhibitory influences have not been separated.
In sSoTS the activation associated with top-down excitation and inhibition can
be distinguished. We showed that bold activity in the precuneus was associated
with top-down inhibition in the model, while activity in more lateral parietal
areas (particularly in the right hemisphere) correlated with top-down excitation
in the model. Activation in these two regions also changed across the search
conditions in accord with changes in sSoTS. Higher activation in the precuneus
in preview search compared with (i) conjunction search and (ii) the working
memory condition was correlated with greater inhibitory activity in the model.
In contrast, there was increased activity in lateral parietal cortex associated
with increased activation in (i) conjunction search and (ii) the working memory
condition, compared to standard preview search, linked to increased top-down
excitation in sSoTS. These data suggest that top-down inhibition may play a
driving role in generating efficient preview search compared with less efficient
search conditions (conjunction search and preview search with a working mem-
ory load). Top-down activation, on the other hand, appears to play a greater role
in inefficient search (conjunction search, preview search with a working mem-
ory load) than in efficient preview search. This may reflect the more prolonged
search taking place, which enables a greater role for top-down excitation, for the
target, to emerge. The analysis demonstrates that the model-based analysis can
help to identify the functional role of different brain regions in search, providing
a more accurate account of the neural substrates of visual selection.
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It now remains for empirical studies to test the predictions arising from this
modelling-fMRI study. For example, damage to inferior parietal cortex ought to
mean that patients are impaired at exploiting any positive expectancy for up-
coming targets, to facilitate search. In contrast, patients with damage to more
medial and superior parietal regions (including the precuneus) ought to have
problems in suppressing irrelevant distractors. While damage to posterior pari-
etal cortex has been shown to disrupt preview search [25], the precise factors
involved, and whether they might differ across patients, has not been explored.
The analysis with sSoTS predicts that differences should emerge as finer-grained
analyses of patient sub-groups is undertaken.
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