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ABSTRACT

A fast and robust gradient-based motion estimation technique

which operates in the frequency domain is presented. The

algorithm combines the natural advantages of a good feature

selection offered by gradient-based methods with the robust-

ness and speed provided by FFT-based correlation schemes.

Experimentation with real images taken from a popular data-

base showed that, unlike any other Fourier-based techniques,

the method was able to estimate translations, arbitrary rota-

tions and scale factors in the range 4-6.

Index Terms— Motion estimation, correlation methods

1. INTRODUCTION

The estimation of relative motions between two images finds

applications in a multitude of computer vision tasks such as

image registration, video compression and object recognition.

In this work, we propose a robust correlation-based scheme

which operates in the Fourier domain for the estimation of

large translations, rotations and scalings in images.

For the class of similarity transforms, a frequency domain

approach to motion estimation possesses several appealing

properties. First, through the use of correlation, it enables an

exhaustive search for the unknown motion parameters and,

therefore, large motions can be recovered with no a priori in-

formation (good initial guess). Second, the approach is global

which equips the algorithm with robustness to noise. Third,

the method is computational efficient. This comes from the

shift property of the Fourier transform (FT) and the use of

FFT routines for the rapid computation of correlations.

The basic principles for motion estimation in the fre-

quency domain were first introduced in [1]. Given two im-

ages related by a similarity transform, the relative scaling and

rotation affect only the magnitudes of the FTs of the two im-

ages. The magnitudes are represented in the log-polar Fourier

domain and, scaling and rotation are recovered first using

phase correlation [2]. Then, one of the images is scaled and

rotated and the residual translation is estimated using phase
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correlation in the spatial domain. Phase correlation is used

instead of standard correlation since it provides much better

localization accuracy. Conversion from Cartesian to log-polar

is performed using standard interpolation schemes.

The methods in [3],[4] are considered state-of-the art in

FFT-based motion estimation. Performance is improved by

introducing new sampling schemes which reduce the inaccu-

racies induced by resampling the magnitude of the FT on the

log-polar grid. To recover scalings and rotations, the method

in [3] relies on the pseudopolar FT which rapidly computes

a discrete FT on a nearly polar grid. The pseudopolar grid

serves as an intermediate step for a log-polar Fourier repre-

sentation which is obtained using nearest-neighbor interpola-

tion. The total accumulated interpolation error is decreased;

nevertheless the pseudopolar FFT is not a true polar Fourier

representation and the method estimates the rotation and scal-

ing in an iterative fashion. In [4], the log-polar DFT is approx-

imated by interpolating the pseudo-log-polar FT. The method

is non-iterative but the gain in accuracy is not significant.

In this work, we provide reasoning, intuition and exper-

imentation which show that accuracy in FFT-based motion

estimation depends on the image representation used and the

type of correlation employed rather than the method used to

approximate the log-polar DFT. In particular, image func-

tions (in both spatial and log-polar domain) are replaced by

edge maps which retain both magnitude and orientation infor-

mation and then gradient-based cross-correlation [5] is per-

formed to estimate the unknown motion parameters. Gradi-

ent cross-correlation was originally proposed in the context

of subpixel translation estimation. Here, we demonstrate that

the merits of a gradient-based approach are fully exploited

when large motions are to be considered. Contrary to com-

mon belief that FFT-based schemes are unable to handle large

motions for real images [6], evaluation with popular image

datasets [7] showed that the method was able to estimate scal-

ings in the range 4-6, arbitrary rotations and large translations.

2. ROBUST FFT-BASED MOTION ESTIMATION

Let Ii(x), x = [x, y]T ∈ R2, i = 1, 2 be two image functions.

We denote Îi(k), k = [kx, ky]T ∈ R2 the FT of Ii and Mi the
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magnitude of Îi. Polar and log-polar Fourier representations

are denoted using kp = [kr, kθ]T and kl = [log kr, kθ]T re-

spectively, where kr =
√

k2
x + k2

y and kθ = arctan (ky/kx).

2.1. Translation estimation

Given two images, I1 and I2, that are related by an unknown

translation t = [tx, ty]T ∈ R2, i.e.

I1(x + t) = I2(x) (1)

t can be recovered from the 2D cross-correlation function

C(u), u=[u, v]T ∈ R2 as argu max{C(u)}, where

C(u) = I1(x) � I2(−x) =
∫

x
I1(x)I2(x+u)dx (2)

From the convolution theorem of the FT, C is given by

C(u) = F−1{Î1(k)Î∗2 (k)} (3)

where F−1 is the inverse FT and ∗ denotes the complex con-

jugate operator. The shift property of the FT states that if the

relation between I1 and I2 is given by (1), then, in the fre-

quency domain, it holds

Î1(k)ejkT t = Î2(k) (4)

and therefore (3) becomes

C(u) = F−1{M1
2(k)e−jkT t} (5)

The above analysis summarizes the main principles of fre-

quency domain correlation-based translation estimation. For

finite discrete images, the FT is efficiently implemented using

FFT routines and the algorithm’s complexity is O(N2 log N),
where N is the length of the given images.

In this work, standard 2D Cartesian correlation is re-

placed by gradient cross-correlation (GC) defined as follows

GC(u) = G1(x) � G∗
2(−x) =

∫
x
G1(x)G∗

2(x+u)dx (6)

where

Gi = Gi,x + jGi,y (7)

and Gi,x = ∇xIi and Gi,y = ∇yIi are the gradients along

the horizontal and vertical direction respectively.

2.1.1. Spatial domain analysis

From the definition of GC and using (7), we can easily derive

GC(u) = G1,x(x) � G2,x(−x) + G1,y(x) � G2,y(−x)
+ j{−G1,x(x) � G2,y(−x) + G1,y(x) � G2,x(−x)}

The imaginary part in the above equation is equal to zero,

therefore

GC(u) = G1,x(x) � G2,x(−x) + G1,y(x) � G2,y(−x) (8)

Using the polar representation of complex numbers, we define

Ri =
√

G2
i,x + G2

i,y and Φi = arctan Gi,y/Gi,x. Based on

this representation, (8) can be written as

GC(u) =
∫

x
R1(x)R2(x + u) cos[Φ1(x) − Φ2(x + u)]dx

(9)

Each term in (9) has its own special importance. The mag-

nitudes Ri reward pixel locations with strong edge responses,

while the effect of areas of constant intensity level, which

do not provide any reference points for motion estimation,

is greatly reduced. Therefore only salient structures are con-

sidered in the computation of GC. Orientation information is

embedded in the cosine kernel. This term is responsible for

the dirac-like shape of the GC surface. This can be roughly

shown by ignoring the magnitude terms Ri in (9) and making

the reasonable assumption that ΔΦ(u) = Φ1(x)−Φ2(x + u)
at u �= t is uniformly distributed over [0, 2π). Then, ∀ u �= t
the integral in (9) will be equal to zero. This property equips

GC with excellent peak localization accuracy.

2.1.2. Frequency domain analysis

From (5), it can be seen that the phase difference term e−jkT t,

which contains the translational information, is weighted by

the magnitude M1. Then, the inverse FT is taken to yield the

standard 2D spatial correlation function C. In practise, where

(1) holds approximately and M1 �= M2, the translational dis-

placement is estimated through (3), and in this case, the phase

difference function is weighted by the term M1M2. Due to

the low pass nature of images, the weighting operation results

in a peak of large magnitude in C, however, at the same time,

good peak localization is inevitably sacrificed.

GC in the frequency domain is simply defined by replac-

ing Îi with Ĝi in (3). It can be easily shown that differentia-

tion in the spatial domain is equivalent to high-pass filtering in

the Fourier domain. Taking the FT in both parts of (7) yields

Ĝi(k) = jkxÎi(k) − ky Îi(k) (10)

The magnitude MGi is given by

MGi
(k) = krMi(k) (11)

and, in this case, the weighting operation results in a peak of

large magnitude in GC with very good localization accuracy.

2.2. Estimation of translations, rotations and scalings

Assume now that we are given two images, I1 and I2, that are

related by a translation t, rotation θ0 and scaling s, that is

I1(Dx + t) = I2(x) (12)

where D = s

[
cos(θ0) sin(θ0)
− sin(θ0) cos(θ0)

]
. In the Fourier do-

main, it holds

(1/s2)Î1(Dk/s)ejkT t = Î2(k) (13)
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Fig. 1. (a) “Lena” and (b) the 1D representations A (dashed

line) and AG (straight line).

Taking the magnitude in both parts and using the the log-polar

representation yields (ignoring the term 1/s2)

M1(kl − [log s, θ0]T ) = M2(kl) (14)

It can be seen that in the log-polar Fourier magnitude domain,

scaling and rotation reduce to a 2D translation which can be

estimated using correlation. After compensating for scaling

and rotation, the remaining unknown translation is recovered

using correlation in the spatial domain. Note that if θ̃0 is the

estimated rotation, then it can be shown that θ̃0 = θ0 or θ̃0 =
θ0 + π. To resolve the ambiguity, one needs to compensate

for both possible rotations, compute the correlation functions

and, finally, choose as valid solution the one that yields the

highest peak [1].

In the proposed scheme, M1 and M2 are replaced by MG1

and MG2 and then, after resampling on the log-polar grid,

scaling and rotations are estimated using GC. The robustness

of the proposed approach is attributed to both the nice prop-

erties of GC, as outlined before, and the representation MGi

used as a basis to perform correlation in the log-polar domain.

For the latter point, we give three reasons as follows.

First, MGi naturally emphasizes the frequency bands

which reflect the spatial structure of the image salient fea-

tures. Low frequencies do not provide any reference points

for the estimation of θ0 and s. To illustrate this, consider the

“Lena” image and the scenario where the motion is purely

rotational and is simply recovered by correlating the 1D
representation A(kθ) =

∫
M(kr, kθ)dkr over the angular

parameter. The image contains a wide range of frequencies

and, consequently, A (Fig. 1 (b), dashed line) is almost flat.

In this case, matching by correlation may become unstable.

In contrary, AG (Fig. 1 (b), straight line), obtained by av-

eraging MG, contains two distinctive peaks which can be

used as salient features to perform robust correlation. Addi-

tionally, we note that converting from Cartesian to log-polar

induces much larger interpolation error for low frequency

components. This is because near the origin of the original

Cartesian grid less data are available for interpolation. Over-

all, we conclude that discarding low frequencies from the

representation results in better registration accuracy.

Second, using FFT routines to approximate the Fourier

spectrum of images results in significant aliasing effects.

Rotations and scaling in images induce additional sources

of aliasing artifacts which are aggravated by the presence

of high frequencies [8]. Through the use of filters, which

exhibit band-pass spectral selection properties, to perform

differentiation in (7), MGi
is essentially little affected by

high-frequency noise and aliasing.

Third, due to the periodic nature of the FFT, in practice,

windowing should be applied to the input images to reduce

the effect of boundaries whose registration corresponds to

zero motion. Making the reasonable assumption that there

is no prior knowledge about the motion to be estimated, the

same window is typically placed at the center of both images.

In this case, windowing not only results in loss of informa-

tion but also attenuates pixel values in regions shared by the

two images in different ways. For large motions, the result

is a dramatic decrease in performance. On the other hand, it

can be observed that the proposed scheme is based on gra-

dient edge maps and, therefore, discontinuities due to peri-

odization appear only if very strong edges exist close to the

image boundaries. In practice, by selecting efficient differ-

entiation operators the boundary effect is greatly reduced and

the method does not apply any windowing to the input im-

ages.

3. RESULTS

Evaluation was performed using a popular database consist-

ing of 9 different datasets with real images [7]. Each dataset

contains a 650x850 reference image and a set of translated,

rotated and scaled images of the same resolution. Approxi-

mately 90 image pairs, covering a wide range of rotations and

scale factors up to 6, were considered.

The proposed scheme was implemented using central

differences of second order to perform differentiation, FFT

length equal to 1025 to compute MGi , and bilinear interpola-

tion to obtain the 512x512 log-polar Fourier representations.

No additional zero-padding was performed to compute GC
in the log-polar domain.

An overview of the results is given in Table 1. For each

dataset, we present the maximum scale factor ŝ and the cor-

responding rotation θ̂0 estimated by the algorithm along with

the ground truth s and θ0 as given in [7]. With the exception of

“Inria”, “Inria Model” and “Ensimag”, the algorithm was able

to correctly estimate the maximum scale change considered

for all datasets. Translations and rotations were estimated to

nearly one pixel and degree accuracy respectively. Two exam-

ples illustrating the accuracy of registration are given in Fig.

2, where the reference image is scaled, rotated and translated

according to the estimated motion parameters, and then super-

imposed on the target image. To show the gain in performance

compared to other FFT-based approaches, we have also im-

plemented an improved version of the state-of-the-art method

given in [3]. In particular, the pseudopolar FFT is replaced

with an accurate polar FFT [9]. Log-polar Fourier represen-
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Fig. 2. Registration accuracy achieved by the proposed scheme. (a) Ground truth: (s, θ0) = (4.36, 46.0◦), Estimates: (ŝ, θ̂0) =
(4.26, 45.7◦). (b) Ground truth: (s, θ0) = (5.89, 33.2◦), Estimates: (ŝ, θ̂0) = (5.85, 31.6◦).

Proposed scheme Polar FFT

Dataset (s, θ0) (ŝ, θ̂0) (s, θ0) (ŝ, θ̂0)
“Boat” (4.36, 46.0◦) (4.26, 45.7◦) (1.36, 39.8◦) (1.33, 39.6◦)

“East Park” (5.77, 0.6◦) (5.78, 0.4◦) (−) (−)
“East South” (5.09, 60.0◦) (5.18, 59.4◦) (1.41, 35.6◦) (1.37, 35.5◦)

“Inria” (4.03, 0.8◦) (3.91, 0.7◦) (−) (−)
“Inria Model” (4.79, 50.82◦) (4.82, 51.0◦) (−) (−)

“Laptop” (1.51, 45.4◦) (1.51, 45.0◦) (−) (−)
“Resid” (5.89, 33.2◦) (5.85, 31.6◦) (1.12, 32.4◦) (1.11, 32.5◦)
“UBC” (2.89, 9.6◦) (2.89, 9.5◦) (1.25, 51.9◦) (1.23, 51.9◦)

“Ensimag” (4.92, 40.7◦) (4.76, 41.5◦) (−) (−)

Table 1. The maximum scale factors and the corresponding

rotations recovered by the proposed scheme and the state-of-

the-art respectively.

tations are then obtained using bilinear interpolation. The re-

sults are given in Table 1. The method failed completely for

“East Park”, “Inria”, “Inria Model”, “Laptop” and “Ensimag”

datasets and was not able to recover scalings greater than 1.5.

4. DISCUSSION

We have presented a gradient-based approach for FFT-based

motion estimation which is able to estimate large motions in

real images. The dynamic range of the algorithm generally

depends on the application and the image resolution. For the

images used in this experiment, the method recovered scal-

ings in the range 4-6 and arbitrary rotations. For most ap-

plications, maximum scale changes are not expected to be

larger than 3-4. An additional advantage of the proposed ap-

proach is that the method is complimentary to other state-of-

the-art FFT-based image registration methods. On-going re-

search is focused on performance evaluation of such compos-

ite schemes.
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