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Second-Order Elliptic PDE with Discontinuous Boundary Data
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We shall consider the weak formulation of a linear elliptiodel problem with discontinuous Dirichlet
boundary conditions. Since such problems are typicallywait-defined in the standatd! — H® setting,

we will introduce a suitable saddle point formulation imtsrof weighted Sobolev spaces. Furthermore,
we will discuss the numerical solution of such problems. c8mally, we employ arhp-discontinuous
Galerkin method and derive arf-norm a posteriori error estimate. Numerical experimeetsaehstrate
the effectiveness of the proposed error indicator in bothhthandhp-version setting. Indeed, in the
latter case exponential convergence of the error is atlaasghe mesh is adaptively refined.

Keywords Second-order elliptic PDE, discontinuous Dirichlet bdary conditions, inf-sup condition,
hp-discontinuous Galerkin FEM,2-norm a posteriori error analysis, exponential convergenc

1. Introduction

On a bounded polygonal domaid c R? with straight edges and > 1 cornersCy,Cy,...,Cn, We
consider the linear diffusion-reaction problem

—Au+cu=f in Q (1.1
u=g onl, (1.2

wherel” = dQ denotes the boundary @, c € L*(Q) is a nonnegative functionf, € L?(Q), and
g€ L?(dQ) is a possibly discontinuous function éhwhose precise regularity will be specified later.
Throughout the paper we shall use the following notatiorr. &domainD € R" (n= 1 orn = 2) we
denote byL?(D) the space of all square-integrable function€ymwith norm|| - lop- Furthermore, for
an integerk € No, we letH¥(D) be the usual Sobolev space of ordteon D, with norm || - [|xp and
semi-norm| - [p. The spacéil(Q) is defined as the subspacetd¥(Q) consisting of functions with
zero trace o Q.

Several variational formulations for elliptic problemshwdiscontinuous Dirichlet boundary condi-
tions exist. We mention theery weak formulatiomvhich is to find a solutiom € L?(Q) such that

—/ uAvdx+/ cuvdx:/ fvdx—/gDv-nds
Q Q Q r

for anyve H?(Q)n Ifil(Q), wheren denotes the unit outward normal vector to the boundart is
based on twofold integration by parts of (1.1) and incorpes¢he Dirichlet boundary data in a natural
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way. On the other hand, however, the numerical solution bgimeef a conforming finite element
discretisation would require continuously differentialést functions. In order to avoid this problem,
the following saddle point formulation can be used (seedsdt962)): provided thage HY>~¢(9Q),
for somes € [0,1/2), findu € H1¢(Q) with u|r = g such that

/Du-Dvdx+/ cuvdx:/ fvdx (1.3)
Q Q Q

for all ve H(Q)NH(Q). We note that the bilinear form on the left hand side is folymfmmetric
and corresponds to the standard form for the Poisson equdiar results dealing with related finite
element approximations, we refer to BabuSka (1971).

In the present paper, a new variational formulation forY4(1.2) is presented and analysed. Here,
the emphasis shall be on Dirichlet boundary conditions tvimiay exhibit (isolatediliscontinuities
and are essentially continuous otherwise. The formulatidhis article is closely related to the saddle
point formulation (1.3), however, it features Sobolev ggawhich describe the local singularities in
the analytical solution resulting from the discontinigtia the boundary data in a more specific way.
More preciselyweightedSobolev spaces which have been used in the context of régldtatements
for second-order elliptic boundary value problems, seag, 8abusSka & Guo (1988); Babuska & Guo
(1989); Guo & Schwab (2006), will be used. We will establishlivposedness of the weak formulation
in terms of an appropriaief-sup condition

In order to discretise the underlying PDE problem, we expgleé hp-version of the symmetric
interior penalty discontinuous Galerkin (dG) finite elernerethod, cf. Arnoldet al. (2001), and the
references cited therein. DG methods are ideally suiteddalisinghp-adaptivity for second-order
boundary-value problems, an advantage that has been reotgae in the recent development of these
methods; see, for example, Baumann & Oden (1999); Cockéuah. (2000); Houstoret al. (2002,
2007, 2008); Perugia & Schotzau (2002); Rivietel. (1999); Stamm & Wihler (2010); Wihlest al.
(2003) and the references therein. Indeed, working witkatisnuous finite element spaces easily
facilitates the use of variable polynomial degrees andl loesh refinement techniques on possibly ir-
regularly refined meshes—the two key ingredientshfpradaptive algorithms. A further advantage of
interior penalty dG formulations is that they incorporaiedhlet boundary conditions in a natural way
irrespective of their smoothness (in fatt-regularity is sufficient for well-posedness). With this in
mind, we shall derive a computable a posteriori bound foretiier measured in terms of thé—norm
on Q. On the basis of the resulting computable error indicatadsptiveh— andhp-mesh adapta-
tion strategies will be investigated for a model secondepetliptic PDE with discontinuous boundary
conditions. In particular, we shall show numerically thagpleiting hp-mesh refinement leads to expo-
nential convergence of tHé—norm of the error as the finite element space is enriched.

The article is organised as follows: In Section 2 the newatamnal formulation of (1.1)—(1.2) will
be presented. In addition, its well-posedness will be pdovéen, in Section 3, we will briefly review
hp-version discontinuous Galerkin discretisations for tlaplace operator and derive &A-norm a
posteriori error estimate. Additionally, the performarafethe corresponding local error indicators
is shown with a number of numerical experiments withinhenandh p-version adaptive framework.
Finally, a few concluding remarks are made in Section 4.
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2. Variational Formulation
2.1 Weighted Sobolev Spaces

Let o = {A;}{V'zl C dQ, A # A fori # |, be a finite set of points on the boundary of the polygonal
domainQ which are numbered in counter-clockwise direction al@igj; the points ine will signify
the locations of the discontinuities in the Dirichlet boang conditiong in (1.2). Furthermore, we
denote byl C I', i =1,2,...,M, the (open) subset df which connects the two point andA;.1;
here, we sef\y 11 = A;. Moreover, letwy € (0,271 signify the interior angle of the polyga@ atA;. To
eachA € «7,i=1,2,....M, we associate a weigla; € [0,1). These numbers are stored in a weight
vector

a=(ay,az,...,am) € [0,)M. (2.1)

Moreover, for any numbek € R, we use the notatioka = (kay,kas,... kau) anda +k = (a1 +
k,az+K,...,am +K). Furthermore, for a fixed number

n>o0, (2.2)

we introduce the following weight function a@:
M

g (X) = .rlri(x)“i, ri(x) = min{n "x — A|,1}.
e
Here, we assume thgtis small enough, so that the open sectors
S={xeQ:|x-A|<n}, i=212...,M, (2.3)
do notintersect, i.e§NS; = 0if i # j. There holds, fok € Q, that

r'(X)— rl_1|X—Ai| ifXGS,
AR ifxe Q\S,

andr; € C%(Q),i=1,2,...,M. Furthermore, setting
M —_
s=Js, =0\,
i=1
we have

(2.4)

o — i if xe S for somei =1,2,... M,
7)1 ifxe Qo

Note that®q is continuous om2. Furthermore, foarq, a, € RM, we have
Pa;+a, = Pa; Pa,, q);l =P_q.

Then, for any integenn > | > 0, we define the weighted Sobolev spaldéE (Q) as the completion

of the spac€”(Q) with respect to the weighted Sobolev norms

m
2 2 2
||UHH2"|(_Q) = Hu|||—l7.Q+kZ‘|u|H5|(_Q>’ l 2 17

m
2 _ 2
HUHHEIO(_Q) - k;|u|Hg,0(Q) .
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Here,

|U|ak.l(9)= > H<D0+k,||D"u|H2
o A=k 0,Q

is theHE’I -seminorm inQ, where
A]
phu= 97U
0xX}1 9%y
with A = (A1,A2) € Ng and|)\ | = A1+ Ao

1
In addition, form>1 > 1, let us define the :spa(td';,in 2!
equipped with the norm

1
2(@Q) as the trace space of™ (Q),

u = inf |lv .
T N L .0
Vigo=u

Finally, we denote byi" (Q) the subspace o (Q) consisting of functions with zero trace o2.

2.2 Inequalities in H(Q)

In order to describe the well-posedness of (1.1)—(1.2wighted Sobolev spa¢d%,‘l(Q) will play an
important role. In the sequel, we shall collect a few inejieal which will be used for the analysis in
this paper.

LEmMmMA 2.1 Letl = (a,b) C R, a< b, be an open interval. Then, there holds the Poincaré-fcesl
inequality

_a)2
[ ooax< =2 g/

for all ¢ € H'(a,b) with ¢(a) = ¢(b) = 0.

Proof. The bound follows from (Hardgt al,, 1952, Theorem 257) and a scaling argument. O
Applying the previous lemma, we shall prove the followingutk.

LEMMA 2.2 Consider a sect@= {(r,0): 0<r <R 6y < 8 < 8;} C R?, where(r, 8) denote polar co-
ordinates irR?, andR > 0, 0< 6y < 6y < 2rmare constants. Furthermore, et L?(S) with [r¥0uflgs<
o for somea € [0,1), andulgs. =0, wheredS. = {(r,0) :0<r <R,8 € {6o,6:}}. Then, there holds

PRy
/rz"*zu(x)zdxg M/rz"’mw2 dx.
s T s

Proof. Using integration in polar coordinates, we get

R 6
/rz"‘zu(x)zdx: / r2“—1/ " w2der. (2.5)
s 0 6
Then, since for any € (0, R) there holdsu(r, 6p) = u(r, 61) = 0, we can apply Lemma 2.1. This implies

6 _ 2 .0
/M%egM/lmeuFde, 0<r<R
o Us 6o
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Furthermore, noticing thadyu| < r|Oxu|, we obtain

0 62 . 8
/1u2d9< Mrzf "I0wfde,  0<r<R
& r &

Inserting this estimate into (2.5), leads to

_ 2 /R 6
/ 202y (x)2ax < (O ) / r2a-+1 / " |Oxul? d6 .
s T 0 6o

Changing back to Cartesian coordinaxesompletes the proof. O
LEMMA 2.3 Given a weight vectar € [0,1)M. Then, there holds
”(D*GUHO,Q < CHqu,Q

for anyu € H1(Q), where the consta > 0 only depends o and Q.

Proof. LetS,i=1,2,...,M, be the (sufficiently small) sectors from (2.3). Then, weatkthe property
(2.4) to write

M 2
2 2 2 2 —ai
[®-aullo.0 = [lUllo.0, + | ®-aullo.» = llullo.q, + > Hfi a'UHOS~ (2.6)
i= J

If, for some 1< i < M, we have thatrj > 0, then
el <c (s + [l ) <cluly;
' llos SN 0§ S

this follows from expressing the norms in terms of polar clates and from applying (Harat al.,
1952, Theorem 330). Inserting this into (2.6), gives thérddsnequality. O

LEMMA 2.4 Consider a function € ﬁé’l(Q), whereq; € [0,1),i=1,2,...,M. Then, there holds
110(@a) llg o < = max aiaa|ul
| a)lUlog < TT1<i<M 1A UKL 0)

Proof. LetS,i=1,2,...,M, be the (sufficiently small) sectors from (2.3). Then, dugtd), we have

0(Pg)| = |0(ra)| = airi"i—l if xe G forsomei=1,2,...,M, 27)
Yo if x € Q0. :
Hence,
M .
/Q |0(Pa)|?u?dx = Za?/ r22u?dx. (2.8)
i= S

Then, applying Lemma 2.2, we have

2a;—2 cqz
/ri G2 dx < —2/ r29i | Ou|? dx.
S mJs
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Thus,
2,2

max a; w
/15 |2u2dx<Z "‘*/ 2 Ou? ks S [ @2 jnu2ax
Q
as required. O
Furthermore, there holds the following Poincaré-Friglalsiinequality.

LEMMA 2.5 Consider a weight vectar € [0,1)M andy C dQ with J,ds> 0. Then, there exists a
constanC > 0 depending only oy, Q, anda such that

”u”O,Q < C|U|H;=1(Q)

for all functionsu € HE*(Q) with uly = 0 (in the trace sense). In particular, we have thﬁgp,l(m isa
a
norm onHa'(Q).

Proof. We first note that the embeddikg'1(Q) — L?(Q) is continuous for Lipschitz polygons i&?
(cf., e.g., (Adams & Fournier, 2003, Theorem 4.12)). Heltleere exists a consta@it> 0 depending
on Q such that

HUHOQ C||UHW11

Moreover, applying the Poincaré-Friedrichs mequahtwm( ), it follows that
lullo,o < Cllullwrig) < C' [0l 1q)

for a constan€’ > 0 depending oy andQ. Therefore, using Holder’s inequality, we obtain

1 1
<C' [ |Ouldx<C O20x ) 2 0u dx )
ullo.q < Q| uldx < [, Pa” X A a |0ul” dx

Then, employing (2.4) yields

/cb de_z/ r 2% dx + 1dx

and using integration in polar coordinates, it follows ttiet above integrals are all bounded i< 1,
i=1,2,...,M. This completes the proof. O
To close this section, we shall prove the following Greeyysetformula:

LEMMA 2.6 Leta < [0,1)M be a weight vector, and consider two functians Hal;l(Q) andg €
H2(Q). In addition, suppose that the traceupfo € L?(dQ). Then,

/Awudx:/ (D(p-n)uds—/ Og- Oudx (2.9)
Q 2Q Q

holds true, wher@& denotes the outward unit vectord@?.

Proof. Due to the density o8*(Q) in H3*(Q) we can choose a sequens }n=o C C*(Q) such that
lIMp_e ||lU— un||H1,1(Q> = 0. Then, using Green'’s formula for smooth functions, we have
a

/A(pundx:/ (qu-n)unds—/ O - Oundx
Q 2Q Q
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for any functiong € C*(Q). Furthermore, there holds

n—oo

\ [ 80 —uax <19l g u-uiloq 50

and, using Lemma 2.3,

0 Dun - 01| < 90Tl | @a0(u - t)log

nN—oo

<Cllollzo (u- UnHHg-l(Q) — 0.

Furthermore, applying the trace theorenwWi'(Q), yields

/ (- N)(Un— u) ds
Q

< supl0¢| fu—Unll 10
Q
< Csup|g| (HU — Unllpagg) + [1B(u— Un)|||_1(9))
Q

<Csup 9| (Jlu—thllo + 1 ®-alloq | Palu—unloq)
Q

n—oo

< Csup|Ug| lu— un||Hé,1(Q> — 0.
0

This implies the identity (2.9) fou € I—I_g’l(Q) andp € C*(Q).
Forpe H2(Q), the density o£®(Q) in H?(Q) guarantees the existence of a sequeigeén-o C
C*(Q) with limp e || gh — @[], o = 0. Then,

/A(pnudX:/ (D(pn-n)uds—/ O - Oudx
Q Q Q

forallue Hé‘l(Q). Similarly, as before, we have

n—oo

[ 4@ 01u < v olzalulog "0

and, with Lemma 2.3,

‘/Q O(@n— @) - Oudx

< || P-al(gh— @)[lo.q [|Palullg o

nN—oo

Sl —@llz o lullyzr g — O

Moreover, using the trace theorem again, we obtain

| (0@~ @)-nucs
2Q

< [10(eh — D)l 290) Ull290)

nN—oo

<Clln—oll20 Ul 2(90) — O

This completes the proof. O
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2.3 Weak Formulation

The aim of this section is to introduce a weak formulationtfer boundary value problem (1.1)—(1.2)
and to discuss its well-posedness.

11
Letge HZ'2(0Q) in (1.2), wherex is the weight vector from (2.1) witky; € [0,1),i =1,2,...,M.
Then, we call € Hé’l(Q) with u|30 = g a weak solution of (1.1)—(1.2) if

/Du-DvdX+/ cuvdx:/ fvdx e R (Q). (2.10)
Q Q Q

Writing the solution in the formu = up+ G, whereup € Ha'(Q) andG € Hz3*(Q) is a lifting of the
boundary data, i.e.,G|r = g, there holds

/Duo-Dvdx+/ cuovdx:/ fvdx—/ DG-DvdX—/ cGvdx Vvve Iflfﬁ(Q).
Q Q Q Q Q

We note that this is a saddle point formulation Hg'(Q) x H*3(Q). Its well-posedness will be
discussed in the following.
We first show that the bilinear form

a(u,v) :/ Ou- Dvdx+/ cuvdx
Q Q
and the linear functional
(V) :/ fvdx—/ 0G- Dvdx—/ chdx:/ fudx — a(G,v)

Q Q Q Q

are continuous. Here, we suppose that the lifBig chosen such that
1Glhgia) <Cllall 33 (2.11)

for some fixed constai@ > 1 independent o.
PrRoPOSITION2.1 There is a consta@t> 0 (depending o2 anda) such that

a(uv)| < Clulyrr ) Ve o
° o 11
forallue HZ'(Q), ve U2 (Q). Furthermore, foff € L2(Q) andg € HZ'2(I") we have
1 <c(Iloa+10l, 35, ) Mhasca

foranyv e Iflf’é(Q).
Proof. There holds
[a(u,v)| < [[@alullg o [[P-a V(g o + €]l L=(q) [[Ullo.o [IVlo,0

<C (|U|H§~1(Q) |V|Hf§(9) +lullo.o HV”O.Q) :
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Furthermore, using the Poincaré-Friedrichs inequaltity kemma 2.5, we get
”uHO.Q ”VHO,Q < C|U|Hg.1(9> |V|1,Q < C|U|Hg-1(g> |V|H}~g(g)'

Hence,

@V < Clulya o) V11 o) -

9 of 23

Moreover, employing the previous estimate and proceedimg#ore to estimate tHe&-norm, we obtain

€] < IflloalVllo.0 + [AGY)| < [ flolVlis g, +ClBlt g Myt )

Then, applying (2.11), yields the stability bound for
Furthermore, the following inf-sup stability holds.

O

PROPOSITION2.2 Leta < [0,1)M be a weight vector. Suppose that the weights = 1,2,...M, are

sufficiently small so that

_ max aiw < =
H-= TT1<i<M i@ 2

Then, there holds
a(u,v)

inf sup >0,

0£ueAEH(@) ozverit () MUz o) VIntE ()

where
1-2u

V2D

6:

Furthermore, we have that

sup a(uv)>0 We Iflf’g(Q),v;—é 0.
ueﬁg’l(Q)

Proof. Forue Hi'(Q), we define? = ®2u. Then, there holds
2
s g = /Q @2 | W2 dx < 2/Q 5 (|0(@3) [P+ @4 |Tu?) ok

2.2 2
<2<4/Q|cha| u dx+|u|Hg.1<Q>).
Hence, applying Lemma 2.4, results in

2 2 2
|\7|Hf’é((2) < 2(4“ + 1) |U|H;71(Q) .

In particular, it follows that/ < Hf’é(Q).
Moreover, we observe that

a(u,\“i):/ Du-DdeJr/ cqux:/ Ou- 0 (®Zu) dx+/ cPZ U dx.
Q Q Q Q

(2.12)

(2.13)

(2.14)
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Thus, since > 0, we get
a(u,v) 2/ (Ou-O (@) u+ @3|0uf?) dx
Q
:2/ <DaDu-|Z|(<Da)udx+/ @2 |Oul?dx
Q Q
1
> ——/ |D(<Da)|2u2dx+(1—u)/ ®2|0uf?dx.
uJja Q
Recalling Lemma 2.4, leads to
2 2 2
a(u,v) > —Hufias o+ (1= p) Ul o) > (1= 20) [ulaa o) - (2.15)
Now, combining (2.14) and (2.15), it follows that

sup a(u.v) Uit a(uy)
veritd (@) Mgt Vinti o)

2 =
MHE@(@ |u|Hé’1(Q)

foranyu € ﬁ,},’l(Q), u # 0. Taking the infimum over all € I—olal,’l(Q) results in (2.12).
In addition, letv € Hf’;(Q), v#0. Then,

sup a(u,v))a(v,v)}/ |Ov|? dx.
uelflé‘l(Q) Q

Due tov|r = 0 andv # 0, there hold$ Ov||o.o > 0, and hence (2.13) holds. O
The above results, Propositions 2.1 and 2.2, imply the pedledness of the variational formula-
tion (2.10); cf., e.g., (Schwab, 1998, Theorem 1.15).

THEOREM2.3 Leta < [0,1)M be a weight vector, witlw;, i = 1,2, ..., M sufficiently small such that

T
max aiw < =
1<i<M 2

11
is satisfied. Furthermore, suppose thatHg'2(dQ) andf € L?(Q) in (1.1)—(1.2). Then, there exists
exactly one solution of the weak formulation (2.10)1&71(9).

3. Numerical Approximation

We shall now discuss the numerical approximation of the jgrab(1.1)—(1.2). To this end, we will
considerhp-version interior penalty discontinuous Galerkin finiterakent methods. Particularly, we
will derive anL?-norm a posteriori error estimate which can be applied fapéide purposes.

3.1 Meshes, Spaces, and Element Edge Operators

We consider shape-regular mesh#sthat partitionQ C RR? into open disjoint triangles and/or paral-
lelograms{K}kc, i.e., Q = UKE%K. Each elemenK € ;, can then be affinely mapped onto the
reference triangld = {(Xy): —1<X<1,-1<y< —X} orthe reference squae= (—1,1)?, respec-
tively. We allow the meshes to be 1-irregular, i.e., elermenay contain hanging nodes. By, we
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denote the diameter of an eleméht %,. We assume that these quantities are of bounded variation,
i.e., there is a constapt > 1 such that

Pt < e/ < 3.1)

wheneverK; andK, share a common edge. We store the elemental diameters irta hegiven by
h=1{hg : Ke %}. Similarly, to each elemerK € ;, we assign a polynomial degrgg > 1 and
define the degree vectgr= {px : K € 9}. We suppose that is also of bounded variation, i.e., there
is a constanp, > 1 such that

PEl < Pry/px, < P2, (3.2)

wheneveK; andK, share a common edge.

Moreover, we shall define some suitable element edge opstatd are required for the dG method.
To this end, we denote h§, the set of all interior edges of the partitioh, of Q, and by&’» the set of
all boundary edges off,. In addition, let&” = & U&». The boundargK of an elemenK and the sets
0K\ 0Q anddK N aQ will be identified in a natural way with the corresponding sets ofé&’.

LetK; andK, be two adjacent elements af;,, andx an arbitrary point on the interior edges & »
given bye = dK; N dK,. Furthermore, lev andq be scalar- and vector-valued functions, respectively,
that are sufficiently smooth inside each elemens. By (v, /,), we denote the traces 6f,q) one
taken from within the interior oK, ,, respectively. Then, the averages/@indq atx € e are given by

1 1
(v) = E(Vﬁ +V,), (a) = E(qﬁ +4q,),
respectively. Similarly, the jumps efandq atx € e are given by
[[V]] =V nKt +V nK\,’ [[q]] = q]j ' nKt +q,- nKbv

respectively, where we denote h;(ﬁ " the unit outward normal vector odK; ,, respectively. On a
boundary edge € &5, we set(v) =v, (q) = q, and[[v] = vn, [d] = g-n, with n denoting the unit
outward normal vector on the boundat(.

Given a finite element meshf, and an associated polynomial degree veg@er (pk)ke .5, With
pk > 1for allK € ;, consider thénp-discretisation space

Voo (h, ) = {V€ L?(Q) : V[ € Sp(K),K € T}, (3.3)

for the dG method. Here, fdk € %, Sy (K) is either the spac&p, (K) of all polynomials of total
degree at mostk onK or the spac&p, (K) of all polynomials of degree at mopk in each coordinate
direction onK.

3.2 hp-dG Discretisation

We will now consider the followindpp-dG formulation for the numerical approximation of (1.1)-2):
find upg € Vba (%, p) such that

apc(Upg;V) =fpg(V) YV &€ Vpg(h, P)- (3.4)

Here,

aoo(wy) = | Dhw- Onvax— [ (0w - [ds— | w]- (O ds+y [ ow]-[jds  (35)
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and
lo6(V) = / Fudx— / (Onv-n)gds+y / ogvds (3.6)
Q & €y

arehp-version symmetric interior penalty dG forms. In these ferhi, denotes the elementwise gradi-
ent operatory > 0 is a stability constant, and the function

p
== T
o= (37
is defined by means of the two functiong L* (&) andp € L*(&) given by
h(X) = min(th,th) forx € 0Ky NIK, € &y,
o forx € IKNIQ € &y,

(%) = max(pk,, pk,) forxe dK;NdK, € &y,
PP e forx e dKNIQ € &.

REMARK 3.1 Provided thay > 0 is chosen sufficiently large (independently of the locah&nt sizes

and polynomial degrees), it is well-known that the dG fawg is coercive. More precisely, there is a
constanC > 0 independent of}, and p such that

aoclv) > (ICwl o+ | ollvas)

for anyv € Vg (%, p). In particular, the dG method (3.4) admits a unique solutisg € Voc (%, P);
see, e.g., Stamm & Wihler (2010) and the references therein.

3.3 A Posteriori Error Estimation in the 3:Norm

We shall now derive a residual-badep-a posteriori error estimate in thé-norm for the dG formula-
tion (3.4). In this section we suppose that the dual problem

—AQ+cp=epg in Q, (3.8)
=0 onl, (3.9)

has a solutiorp € H?(Q) N Ifll(Q) with continuous dependence on the data, i.e., there existhia
stantC > 0 such that
[@llh2(0) < Cllenslloo - (3.10)

This is the case, for example,d is a convex polygon since theh: H2(Q)N Ifll(Q) — L2(Q)is an
isomorphism; cf. BabuSka & Guo (1988); Dauge (1988); Guig\(1985). Heregpg = U— Upg denotes
the error, wherei € H,},’l(Q) is the solution of (1.1)—(1.2) andpg € Vpa(%h, P) is the dG solution
defined in (3.4).

Furthermore, we assume that the Dirichlet boundary daisfiest

g=u|r e L(I).

We start the development of thé-norm a posteriori error estimate by writing

lenall5.q =/Q(—A<p+0<p)eoedX=/Q(—AprrCfp)udX—/Q(—A<p+0<p)uDde.
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Applying Lemma 2.6 in the first integral and integrating bytpaelementwise in the second integral,
and noticing thafJ¢]] = 0 on&» results in

||eDGH%.Q:/ (DU'D<P+CU(P)dX—/Q(DhUDG-D(P+CUDG(P)dX
+/, O¢- [upg] ds— /{; (O@-n)(u—upg)ds
© %
—/ fodx— / Onupc - D¢+ cupg @) dx
+ [, 10} [uoelds— | (Op-n)(g—uoc)ds.
&y Ep
Moreover, for an arbitrary functiog, € Vpc (%, p), exploiting (3.4) withv = @, gives
lencllf.q Z/Q f(fp—%)dx—/Q(DhUDG-D((P—%)+CUDG(<P—%))dX

+ /{0 {06} - [uoclds— [ (Cp-m)(g—uoc) ds

© %

+ gﬁ(g% )gds— y/ og@,ds— /<<[|hUDG>> (] ds

~ [ Onanp - luocl ds+ v | oluoc])- [ ds.

Using Green’s formula in the second integral, leads to

/DhUDG O(¢—¢n)d /AhUDG P—@dx+ /K(DUDG-nK)(Q’—%)dS
Kegh

=~ [ Anoc(@— @) ax+ [ (Chuoc) - [0 @l ds
+ [ [Onioc]io— ) ds
&y
where4, is the elementwise Laplace operator. Hence, using[inpe 0 oné&’, yields

lencllg.o
= [ (F+ Btio — ctoe) (9~ g dx— [ [Chuoc]{@— gn) s
Q &

S

+ <<D<P>>-[[UDG]]dS—/ (Dfp-n)(g—uDe)dSJr/@(Dh%-n)gds

Ey S

_ y/g% og%ds—[g<ﬂh%> - [upg] ds+ V/ga[[uoe]] @] ds

= / (f + Anupc — Cupg) (@ — @) dX — / [Chupc] (@ — @) ds
o &

> 7

+ [, (Oh(o— @) - [uoslds— [ (On(@— @) m)(g- o) ds

55

~v[, oa-tos) @ - @)dsty [ oluc] - [ar—alds
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Now, applying the Cauchy-Schwarz inequality and noting he> 1, K € %, gives

leocllé.a << > hipc?lIf +Anuos — collg o + Y kP IlITnuocll g ok 00
KEZh K<
+(P+1) Y hepx Tupc]lIf ka0
Ke g

1

2
+(¥+1) > hkpxllg— UDG|g,dedQ>
Ke

( S ek lo—mllok+ S hiplle— g ox
Ke Ke
1

2
+ > hKlpKIIDh(fp—%)llé,aK> :
Ke

Then, choosingy, € Vb (%, p) to be an elementwise optimiap-interpolant (see, e.g., BabuSka & Suri
(1987a,b)), i.e., forani € F,,

Pk 119~ @3k + i ®PE 19— @3 o + i Pl On(@ — @) I3 o < Cll@lei

and recalling the regularity estimate (3.10), gives

1
2
||eDG|S.Q<cneDG||o.Q< 5 né) 7

Ke
with
_ 2 . 2
Nk = > hi P [| f + Antioe — cubglg.0 + > h?kaB||[[DhUDG]]||o,aK\aQ
Ke%, Ke7h (3 11)
2 2 :
+ > ek lluoc]lig ko + > kP9 —Upellooknoq -
Ke Ke

Hence, dividing both sides of the above inequality|eyc||o o leads to the following result.

THEOREM3.1 Suppose that the dual problem (3.8)—(3.9) fulfils (3.46¥ that the Dirichlet boundary
datag € L2(I"). Furthermore, letipg € Vps(.%h, p) denote thenp-dG solution from (3.4), andi €
Hé’l(Q) the analytical solution of (1.1)—(1.2) for some weight wea < [0,1)M. Then, the following
a posteriori error estimate holds

lu-upcllso <C Y Nk,

Ke

whereC > 0 is a constant independent of the local element dizaisd polynomial degregs, and the
local error indicatorgik, K € ., are defined in (3.11).

REMARK 3.2 We observe a slight suboptimality with respect to the/pomial degree in the last two
terms of the local error indicatorg defined in (3.11). This results from the fact that due to thespale
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presence of hanging nodes i#},, a honconforming interpolant is used in the proof of Theofefn
Indeed, in the absence of hanging nodes, the factbk pk can be improved tbk p,zl. We point out
that the energy norm a posteriori error indicators deriveHaoustonet al. (2007, 2008), for example,
suffer from a similar suboptimality with respect to the dpaloorder.

3.4 Numerical Example
On the rectangl® = (—1,1) x (0,1), we consider the PDE problem: finsuch that

—Au=0 in Q,
u=g onrl .

We choose the Dirichlet boundary datén such a way that the analytical solution is given by
1
u(r,0) = I—Te,

where(r,8) denote polar coordinates R?. Note thatg is smooth ordQ, except at the point0,0).
Indeed, in Cartesian coordinates we have that

1 forx<O

, X,y) € 0Q.
0 forx>0 (ey)

g(x,y=0)={

In addition, we remark that ¢ H(Q). However, there holds ¢ H§71(Q) foranya € (0,1), where the
weight function for this problem is given b9, (x) = |x|?. Furthermorey is analytic away fron{0,0)
and belongs to the BabuSka-Guo space (see, e.g., BabuSke &1988))

BL(Q) = {ve L2Q): Vlpks ) < Cdk! vk > 1, and constant§,d ¢ R}.

)
With this in mind, we might therefore be able to achieve exgdial convergence whemp-mesh re-
finement is employed; cf. Schotzau & Schwab (2001).

Firstly, however, we investigate the practical performeaatthe a posteriori error estimate derived
in Theorem 3.1 within an automatle-version adaptive refinement procedure which is based on 1-
irregular quadrilateral elements. Theadaptive meshes are constructed by marking the elemants fo
refinement/derefinement according to the size of the locat erdicatorsik; this is done by employing
the fixed fraction strategy, with refinement and derefinerfractions set to 25% and 10%, respectively.

In Figure 1(a) we show the initial mesh and computed dG smiutiased on employing = 2,
i.e., biguadratic polynomials. Furthermore, the compaiteti mesh and dG solution are depicted in
Figures 1(b) & (c) after 4 and 9 adaptive refinements have beelertaken, respectively. Here, we
observe that the mesh has been significantly refined in theityiof the discontinuity present ig, as
we would expect. Figure 2(a) shows the history of the actdlestimated.?(Q)—norm of the error on
each of the meshes generated based on empldyiadaptive mesh refinement. Here, we observe that
the a posteriori bound over-estimates the true error by aistmt factor. Indeed, the effectivity index
tends to a value of around 16 as the mesh is adaptively refifidgigure 2(b).
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FiG. 1. h—Refinement. (a) Initial mesh and solution with 8 elementssMand solution after: (b) 4 adaptive refinements, with 86
elements; (c) 9 adaptive refinements, with 1286 elements.
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FiG. 2. h-Refinement. (a) Comparison of the actual and estimzté@ )—norm of the error with respect to the number of degrees
of freedom; (b) Effectivity indices.
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FiG. 3. hp-Refinement. (a) Comparison of the actual and estimiaté®)—norm of the error with respect to the (third root of
the) number of degrees of freedom; (b) Effectivity indices.
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FIG. 4. Comparison betwedn- andhp-refinement.

We now turn our attention tthp-mesh adaptation. Here, we again mark elements for refine-
ment/derefinement according to the size of the local ermicatorsnk based on employing the fixed
fraction strategy, with refinement and derefinement frastiget to 25% and 10%, respectively. Once an
elemenK € %, has been flagged for refinement or derefinement, a decisionbausade whether the
local mesh sizé or the local degreex of the approximating polynomial should be adjusted accord-
ingly. The choice to perform eithdrrefinement/derefinement prrefinement/derefinement is based
on estimating the local smoothness of the (unknown) arealysolution. To this end, we employ the
hp-adaptive strategy developed in Houston & Suli (2005), ihbe local regularity of the analytical
solution is estimated from truncated local Legendre expassof the computed numerical solution;
see, also, Houstoet al. (2003).

In Figure 3(a) we present a comparison of the actual and atith?(Q )—norm of the error versus
the third root of the number of degrees of freedom in the fieieanent spac¥ps (5, p) on a linear-
log scale, for the sequence of meshes generated by tadaptive algorithm. We remark that the
third root of the number of degrees of freedom is chosen orb#sés of the a priori error analysis
carried out in Wihleret al. (2003); cf., also, Schotzau & Wihler (2003). Here, we obsehat the
error bound over-estimates the true error by a (reasonabhgistent factor; indeed, from Figure 3(b),
we see that the computed effectivity indices are in the rditgel9 as the mesh is refined. Moreover,
from Figure 3(a) we observe that the convergence lines ugrgefinement are (roughly) straight on
a linear-log scale, which indicates that exponential cagmece is attained for this problem. We point
out that the slight suboptimality with respect to the polymal degree in the last two terms of the
local error indicatomk defined in (3.11) does not adversely affect the quality ofltlzal indicators,
cf. Remark 3.2. Indeed, computations based on employingdifi|d local indicatory, wherefjk is
defined in an analogous fashionnjg with the factor ofhk pk in the last two terms in (3.11) replaced
by hk p,zl, leads to quantitatively similar behaviour of th& Q)—norm of the error as the finite element
space is enriched, cf. Houste al. (2008). Indeed, for this particular example, the sequelfidepe
refined meshes generated by the proposed adaptive algdsitld@ntical when either local indicator,
i.e., Nk or Ak, is employed. However, the effectivity indices are slighthproved to between 13-19
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FiIG. 5. hp-Mesh distribution after 9 adaptive refinements, with 12trents and 2002 degrees of freedom:hianesh alone;
(b) hp-mesh; (c) Zoom of (b).
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FiG. 6. hp—Mesh distribution after 14 adaptive refinements, with 2@nents 4904 degrees of freedom: lfajmesh alone; (b)
hp-mesh; (c) Zoom of (b).
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when Nk is employed, in contrast to those computed usirg For brevity, these results have been
omitted.

In Figure 4, we present a comparison between the atf{&)-norm of the error employing both
h— andhp-mesh refinement. Here, we clearly observe the superidriggynploying a grid adaptation
strategy based on exploitirgp-adaptive refinement: on the final mesh, tf¢Q)-norm of the er-
ror usinghp-refinement is around three orders of magnitude smallertth@icorresponding quantity
computed wheih-refinement is employed alone.

Finally, in Figures 5 & 6 we show the mesh generated using tbpgsechp-version a posteriori
error indicator stated in Theorem 3.1 after 9 andhi¥adaptive refinement steps, respectively. For
clarity, we also show thb—mesh alone, as well as a zoom of the mesh in the vicinity obtiggn. Here,
we observe thdt-refinement of the mesh has been performed in the vicinityeéliscontinuity present
in g, cf. above. Within this region, the polynomial degree hasrbleept at 2. Away from this region,
thehp-adaptive algorithm increases the degree of the approkxigyptecewise polynomials where the
analytical solution is smooth.

4. Conclusions

In this work, we have introduced a new variational frameworkinear second-order elliptic PDE with
discontinuous Dirichlet boundary conditions based onllgageighted Sobolev spaces. In particular,
we have proved the well-posedness of the new setting by nefaans inf-sup condition. In addition,
we have proposed the use of symmeliis-version interior penalty discontinuous Galerkin methfoads
the numerical approximation of such problems. For thisreigsation scheme, we have derivedlZr
norm a posteriori error estimate whose performance withiandh p-adaptive refinement procedures
has been displayed with a model numerical experiment. Ewtork will deal with some extensions of
the present setting to systems such as, e.g., the Stokesosgifar cavity flow problems.
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