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Second-Order Elliptic PDE with Discontinuous Boundary Data
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We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet
boundary conditions. Since such problems are typically notwell-defined in the standardH1−H1 setting,
we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore,
we will discuss the numerical solution of such problems. Specifically, we employ anhp–discontinuous
Galerkin method and derive anL2-norm a posteriori error estimate. Numerical experiments demonstrate
the effectiveness of the proposed error indicator in both the h– andhp–version setting. Indeed, in the
latter case exponential convergence of the error is attained as the mesh is adaptively refined.
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1. Introduction

On a bounded polygonal domainΩ ⊂ R2 with straight edges andN > 1 cornersC1,C2, . . . ,CN, we
consider the linear diffusion-reaction problem

−∆u+cu= f in Ω (1.1)

u = g onΓ , (1.2)

whereΓ = ∂Ω denotes the boundary ofΩ , c ∈ L∞(Ω) is a nonnegative function,f ∈ L2(Ω), and
g∈ L2(∂Ω) is a possibly discontinuous function onΓ whose precise regularity will be specified later.
Throughout the paper we shall use the following notation. For a domainD ⊂ Rn (n = 1 or n = 2) we
denote byL2(D) the space of all square-integrable functions onD, with norm‖·‖0,D. Furthermore, for

an integerk ∈ N0, we let Hk(D) be the usual Sobolev space of orderk on D, with norm‖ · ‖k,D and
semi-norm| · |k,D. The spaceH̊1(Ω) is defined as the subspace ofH1(Ω) consisting of functions with
zero trace on∂Ω .

Several variational formulations for elliptic problems with discontinuous Dirichlet boundary condi-
tions exist. We mention thevery weak formulationwhich is to find a solutionu∈ L2(Ω) such that

−

∫

Ω
u∆vdxxx+

∫

Ω
cuvdxxx=

∫

Ω
f vdxxx−

∫

Γ
g∇v ·nds

for anyv∈ H2(Ω)∩ H̊1(Ω), wheren denotes the unit outward normal vector to the boundaryΓ . It is
based on twofold integration by parts of (1.1) and incorporates the Dirichlet boundary data in a natural
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way. On the other hand, however, the numerical solution by means of a conforming finite element
discretisation would require continuously differentiable test functions. In order to avoid this problem,
the following saddle point formulation can be used (see Nečas (1962)): provided thatg∈ H1/2−ε(∂Ω),
for someε ∈ [0,1/2), find u∈ H1−ε(Ω) with u|Γ = g such that

∫

Ω
∇u ·∇vdxxx+

∫

Ω
cuvdxxx=

∫

Ω
f vdxxx (1.3)

for all v∈H1+ε(Ω)∩H̊1(Ω). We note that the bilinear form on the left hand side is formally symmetric
and corresponds to the standard form for the Poisson equation. For results dealing with related finite
element approximations, we refer to Babuška (1971).

In the present paper, a new variational formulation for (1.1)–(1.2) is presented and analysed. Here,
the emphasis shall be on Dirichlet boundary conditions which may exhibit (isolated)discontinuities
and are essentially continuous otherwise. The formulationin this article is closely related to the saddle
point formulation (1.3), however, it features Sobolev spaces which describe the local singularities in
the analytical solution resulting from the discontinuities in the boundary data in a more specific way.
More precisely,weightedSobolev spaces which have been used in the context of regularity statements
for second-order elliptic boundary value problems, see, e.g., Babuška & Guo (1988); Babuška & Guo
(1989); Guo & Schwab (2006), will be used. We will establish well-posedness of the weak formulation
in terms of an appropriateinf-sup condition.

In order to discretise the underlying PDE problem, we exploit the hp–version of the symmetric
interior penalty discontinuous Galerkin (dG) finite element method, cf. Arnoldet al. (2001), and the
references cited therein. DG methods are ideally suited forrealisinghp–adaptivity for second-order
boundary-value problems, an advantage that has been noted early on in the recent development of these
methods; see, for example, Baumann & Oden (1999); Cockburnet al. (2000); Houstonet al. (2002,
2007, 2008); Perugia & Schötzau (2002); Rivièreet al. (1999); Stamm & Wihler (2010); Wihleret al.
(2003) and the references therein. Indeed, working with discontinuous finite element spaces easily
facilitates the use of variable polynomial degrees and local mesh refinement techniques on possibly ir-
regularly refined meshes—the two key ingredients forhp–adaptive algorithms. A further advantage of
interior penalty dG formulations is that they incorporate Dirichlet boundary conditions in a natural way
irrespective of their smoothness (in fact,L1-regularity is sufficient for well-posedness). With this in
mind, we shall derive a computable a posteriori bound for theerror measured in terms of theL2–norm
on Ω . On the basis of the resulting computable error indicators,adaptiveh– andhp–mesh adapta-
tion strategies will be investigated for a model second–order elliptic PDE with discontinuous boundary
conditions. In particular, we shall show numerically that exploiting hp–mesh refinement leads to expo-
nential convergence of theL2–norm of the error as the finite element space is enriched.

The article is organised as follows: In Section 2 the new variational formulation of (1.1)–(1.2) will
be presented. In addition, its well-posedness will be proved. Then, in Section 3, we will briefly review
hp–version discontinuous Galerkin discretisations for the Laplace operator and derive anL2-norm a
posteriori error estimate. Additionally, the performanceof the corresponding local error indicators
is shown with a number of numerical experiments within anh– andhp–version adaptive framework.
Finally, a few concluding remarks are made in Section 4.
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2. Variational Formulation

2.1 Weighted Sobolev Spaces

Let A = {Ai}
M
i=1 ⊂ ∂Ω , Ai 6= A j for i 6= j, be a finite set of points on the boundary of the polygonal

domainΩ which are numbered in counter-clockwise direction along∂Ω ; the points inA will signify
the locations of the discontinuities in the Dirichlet boundary conditiong in (1.2). Furthermore, we
denote byΓi ⊂ Γ , i = 1,2, . . . ,M, the (open) subset ofΓ which connects the two pointsAi andAi+1;
here, we setAM+1 = A1. Moreover, letωi ∈ (0,2π ] signify the interior angle of the polygonΩ atAi . To
eachAi ∈ A , i = 1,2, . . . ,M, we associate a weightαi ∈ [0,1). These numbers are stored in a weight
vector

ααα = (α1,α2, . . . ,αM) ∈ [0,1)M. (2.1)

Moreover, for any numberk ∈ R, we use the notationkααα = (kα1,kα2, . . . ,kαM) andααα + k = (α1 +
k,α2 +k, . . . ,αM +k). Furthermore, for a fixed number

η > 0, (2.2)

we introduce the following weight function onΩ :

Φααα(xxx) =
M

∏
i=1

r i(xxx)
αi , r i(xxx) = min{η−1|xxx−Ai|,1}.

Here, we assume thatη is small enough, so that the open sectors

Si = {xxx∈ Ω : |xxx−Ai| < η}, i = 1,2, . . . ,M, (2.3)

do not intersect, i.e.,Si ∩Sj = /0 if i 6= j. There holds, forxxx∈ Ω , that

r i(xxx) =

{
η−1|xxx−Ai| if xxx∈ Si ,

1 if xxx∈ Ω \Si,

andr i ∈C0(Ω), i = 1,2, . . . ,M. Furthermore, setting

S =
M⋃

i=1

Si , Ω0 = Ω \S ,

we have

Φααα =

{
rαi
i if xxx∈ Si for somei = 1,2, . . .M,

1 if xxx∈ Ω0.
(2.4)

Note thatΦααα is continuous onΩ . Furthermore, forααα1,ααα2 ∈ RM, we have

Φααα1+ααα2 = Φααα1Φααα2, Φ−1
ααα = Φ−ααα .

Then, for any integersm> l > 0, we define the weighted Sobolev spacesHm,l
ααα (Ω) as the completion

of the spaceC∞(Ω) with respect to the weighted Sobolev norms

‖u‖2
Hm,l

ααα (Ω)
= ‖u‖2

l−1,Ω +
m

∑
k=l

|u|2
Hk,l

ααα (Ω)
, l > 1,

‖u‖2
Hm,0

ααα (Ω)
=

m

∑
k=0

|u|2
Hk,0

ααα (Ω)
.
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Here,

|u|2
Hk,l

ααα (Ω)
= ∑

|λλλ |=k

∥∥∥Φααα+k−l |D
λλλ u|
∥∥∥

2

0,Ω

is theHk,l
ααα -seminorm inΩ , where

D
λλλ u =

∂ |λλλ |u

∂xλ1
1 ∂xλ2

2

,

with λλλ = (λ1,λ2) ∈ N2
0 and|λλλ | = λ1 + λ2.

In addition, form > l > 1, let us define the spaceH
m− 1

2 ,l− 1
2

ααα (∂Ω) as the trace space ofHm,l (Ω),
equipped with the norm

‖u‖
H

m− 1
2 ,l−1

2
ααα (∂Ω)

= inf
v∈Hm,l

ααα (Ω)

v|∂ Ω =u

‖v‖
Hm,l

ααα (Ω)
.

Finally, we denote bẙHm,l
ααα (Ω) the subspace ofHm,l

ααα (Ω) consisting of functions with zero trace on∂Ω .

2.2 Inequalities in H1,1
ααα (Ω)

In order to describe the well-posedness of (1.1)–(1.2), theweighted Sobolev spaceH1,1
ααα (Ω) will play an

important role. In the sequel, we shall collect a few inequalities which will be used for the analysis in
this paper.

LEMMA 2.1 LetI = (a,b) ⊂ R, a < b, be an open interval. Then, there holds the Poincaré-Friedrichs
inequality

∫ b

a
φ(x)2 dx 6

(b−a)2

π2

∫ b

a
(φ ′(x))2 dx

for all φ ∈ H1(a,b) with φ(a) = φ(b) = 0.

Proof. The bound follows from (Hardyet al., 1952, Theorem 257) and a scaling argument. �

Applying the previous lemma, we shall prove the following result.

LEMMA 2.2 Consider a sectorS= {(r,θ ) : 0< r < R,θ0 < θ < θ1} ⊂R2, where(r,θ ) denote polar co-
ordinates inR2, andR> 0, 06 θ0 < θ1 6 2π are constants. Furthermore, letu∈ L2(S) with ‖rα ∇u‖0,S<
∞ for someα ∈ [0,1), andu|∂S<

= 0, where∂S< = {(r,θ ) : 0 < r < R,θ ∈ {θ0,θ1}}. Then, there holds

∫

S
r2α−2u(xxx)2dxxx 6

(θ1−θ0)
2

π2

∫

S
r2α |∇u|2 dxxx.

Proof. Using integration in polar coordinates, we get

∫

S
r2α−2u(xxx)2dxxx =

∫ R

0
r2α−1

∫ θ1

θ0

u2dθ dr. (2.5)

Then, since for anyr ∈ (0,R) there holdsu(r,θ0) = u(r,θ1) = 0, we can apply Lemma 2.1. This implies

∫ θ1

θ0

u2dθ 6
(θ1−θ0)

2

π2

∫ θ1

θ0

|∂θ u|2 dθ , 0 < r < R.
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Furthermore, noticing that|∂θ u| 6 r |∇xxxu|, we obtain

∫ θ1

θ0

u2dθ 6
(θ1−θ0)

2

π2 r2
∫ θ1

θ0

|∇xxxu|
2 dθ , 0 < r < R.

Inserting this estimate into (2.5), leads to

∫

S
r2α−2u(xxx)2dxxx 6

(θ1−θ0)
2

π2

∫ R

0
r2α+1

∫ θ1

θ0

|∇xxxu|
2 dθ dr.

Changing back to Cartesian coordinatesxxx, completes the proof. �

LEMMA 2.3 Given a weight vectorααα ∈ [0,1)M. Then, there holds

‖Φ−αααu‖0,Ω 6 C‖u‖1,Ω

for anyu∈ H1(Ω), where the constantC > 0 only depends onααα andΩ .

Proof. Let Si , i = 1,2, . . . ,M, be the (sufficiently small) sectors from (2.3). Then, we recall the property
(2.4) to write

‖Φ−αααu‖2
0,Ω = ‖u‖2

0,Ω0
+‖Φ−αααu‖2

0,S = ‖u‖2
0,Ω0

+
M

∑
i=1

∥∥∥r−αi
i u

∥∥∥
2

0,Si
. (2.6)

If, for some 16 i 6 M, we have thatαi > 0, then

∥∥∥r−αi
i u

∥∥∥
2

0,Si
6 C

(
‖u‖2

0,Si
+
∥∥∥r1−αi

i ∇u
∥∥∥

2

0,Si

)
6 C‖u‖2

1,Si
;

this follows from expressing the norms in terms of polar coordinates and from applying (Hardyet al.,
1952, Theorem 330). Inserting this into (2.6), gives the desired inequality. �

LEMMA 2.4 Consider a functionu∈ H̊1,1
ααα (Ω), whereαi ∈ [0,1), i = 1,2, . . . ,M. Then, there holds

‖|∇(Φααα)|u‖0,Ω 6
1
π

max
16i6M

αiωi |u|H1,1
ααα (Ω)

.

Proof. Let Si , i = 1,2, . . . ,M, be the (sufficiently small) sectors from (2.3). Then, due to(2.4), we have

|∇(Φααα)| =

{
|∇(rαi )| = αi r

αi−1
i if xxx∈ Si for somei = 1,2, . . . ,M,

0 if xxx∈ Ω0.
(2.7)

Hence,
∫

Ω
|∇(Φααα )|2u2dxxx =

M

∑
i=1

α2
i

∫

Si

r2αi−2
i u2dxxx. (2.8)

Then, applying Lemma 2.2, we have

∫

Si

r2αi−2
i u2dxxx 6

ω2
i

π2

∫

Si

r2αi |∇u|2 dxxx.
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Thus,
∫

Ω
|∇(Φααα )|2u2dxxx6

M

∑
i=1

α2
i ω2

i

π2

∫

Si

r2αi |∇u|2 dxxx6

max
16i6M

α2
i ω2

i

π2

∫

Ω
Φ2

ααα |∇u|2 dxxx,

as required. �

Furthermore, there holds the following Poincaré-Friedrichs inequality.

LEMMA 2.5 Consider a weight vectorααα ∈ [0,1)M andγ ⊆ ∂Ω with
∫

γ ds> 0. Then, there exists a
constantC > 0 depending only onγ, Ω , andααα such that

‖u‖0,Ω 6 C|u|
H1,1

ααα (Ω)

for all functionsu∈ H1,1
ααα (Ω) with u|γ = 0 (in the trace sense). In particular, we have that| · |

H1,1
ααα (Ω)

is a

norm onH̊1,1
ααα (Ω).

Proof. We first note that the embeddingW1,1(Ω) →֒ L2(Ω) is continuous for Lipschitz polygons inR2

(cf., e.g., (Adams & Fournier, 2003, Theorem 4.12)). Hence,there exists a constantC > 0 depending
on Ω such that

‖u‖0,Ω 6 C‖u‖W1,1(Ω) .

Moreover, applying the Poincaré-Friedrichs inequality in W1,1(Ω), it follows that

‖u‖0,Ω 6 C‖u‖W1,1(Ω) 6 C′ ‖∇u‖L1(Ω) ,

for a constantC′ > 0 depending onγ andΩ . Therefore, using Hölder’s inequality, we obtain

‖u‖0,Ω 6 C′
∫

Ω
|∇u| dxxx 6 C′

(∫

Ω
Φ−2

ααα dxxx

) 1
2
(∫

Ω
Φ2

ααα |∇u|2 dxxx

) 1
2

.

Then, employing (2.4) yields

∫

Ω
Φ−2

ααα dxxx =
M

∑
i=1

∫

Si

r−2αi
i dxxx+

∫

Ω0

1dxxx,

and using integration in polar coordinates, it follows thatthe above integrals are all bounded forαi < 1,
i = 1,2, . . . ,M. This completes the proof. �

To close this section, we shall prove the following Green’s type formula:

LEMMA 2.6 Let ααα ∈ [0,1)M be a weight vector, and consider two functionsu ∈ H1,1
ααα (Ω) andφ ∈

H2(Ω). In addition, suppose that the trace ofu|∂Ω ∈ L2(∂Ω). Then,
∫

Ω
∆φ udxxx=

∫

∂Ω
(∇φ ·nnn)uds−

∫

Ω
∇φ ·∇udxxx (2.9)

holds true, wherennn denotes the outward unit vector to∂Ω .

Proof. Due to the density ofC∞(Ω) in H1,1
ααα (Ω) we can choose a sequence{un}n>0 ⊂C∞(Ω) such that

limn→∞ ‖u−un‖H1,1
ααα (Ω)

= 0. Then, using Green’s formula for smooth functions, we have

∫

Ω
∆φ undxxx =

∫

∂Ω
(∇φ ·nnn)unds−

∫

Ω
∇φ ·∇undxxx
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for any functionφ ∈C∞(Ω). Furthermore, there holds
∣∣∣∣
∫

Ω
∆φ (un−u)dxxx

∣∣∣∣6 ‖φ‖2,Ω ‖u−un‖0,Ω
n→∞
−→ 0,

and, using Lemma 2.3,
∣∣∣∣
∫

Ω
∇φ ·∇(un−u)dxxx

∣∣∣∣6 ‖Φ−ααα ∇φ‖0,Ω ‖Φααα ∇(u−un)‖0,Ω

6 C‖φ‖2,Ω ‖u−un‖H1,1
ααα (Ω)

n→∞
−→ 0.

Furthermore, applying the trace theorem inW1,1(Ω), yields
∣∣∣∣
∫

∂Ω
(∇φ ·nnn)(un−u)ds

∣∣∣∣6 sup
Ω

|∇φ |‖u−un‖L1(∂Ω)

6 Csup
Ω

|∇φ |
(
‖u−un‖L1(Ω) +‖∇(u−un)‖L1(Ω)

)

6 Csup
Ω

|∇φ |
(
‖u−un‖0,Ω +‖Φ−ααα‖0,Ω ‖Φααα ∇(u−un)‖0,Ω

)

6 Csup
Ω

|∇φ |‖u−un‖H1,1
ααα (Ω)

n→∞
−→ 0.

This implies the identity (2.9) foru∈ H1,1
ααα (Ω) andφ ∈C∞(Ω).

For φ ∈ H2(Ω), the density ofC∞(Ω ) in H2(Ω) guarantees the existence of a sequence{φn}n>0 ⊂
C∞(Ω ) with limn→∞ ‖φn−φ‖2,Ω = 0. Then,

∫

Ω
∆φnudxxx =

∫

∂Ω
(∇φn ·nnn)uds−

∫

Ω
∇φn ·∇udxxx

for all u∈ H1,1
ααα (Ω). Similarly, as before, we have

∣∣∣∣
∫

Ω
∆(φn−φ)udxxx

∣∣∣∣6 ‖φn−φ‖2,Ω ‖u‖0,Ω
n→∞
−→ 0,

and, with Lemma 2.3,
∣∣∣∣
∫

Ω
∇(φn−φ) ·∇udxxx

∣∣∣∣6 ‖Φ−ααα ∇(φn−φ)‖0,Ω ‖Φααα ∇u‖0,Ω

6 ‖φn−φ‖2,Ω ‖u‖
H1,1

ααα (Ω)

n→∞
−→ 0.

Moreover, using the trace theorem again, we obtain
∣∣∣∣
∫

∂Ω
(∇(φn−φ) ·nnn)uds

∣∣∣∣6 ‖∇(φn−φ)‖L2(∂Ω) ‖u‖L2(∂Ω)

6 C‖φn−φ‖2,Ω ‖u‖L2(∂Ω)
n→∞
−→ 0.

This completes the proof. �
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2.3 Weak Formulation

The aim of this section is to introduce a weak formulation forthe boundary value problem (1.1)–(1.2)
and to discuss its well-posedness.

Let g∈ H
1
2 , 1

2
ααα (∂Ω) in (1.2), whereααα is the weight vector from (2.1) withαi ∈ [0,1), i = 1,2, . . . ,M.

Then, we callu∈ H1,1
ααα (Ω) with u|∂Ω = g a weak solution of (1.1)–(1.2) if
∫

Ω
∇u ·∇vdxxx+

∫

Ω
cuvdxxx=

∫

Ω
f vdxxx ∀v∈ H̊1,1

−ααα(Ω). (2.10)

Writing the solution in the formu = u0 + G, whereu0 ∈ H̊1,1
ααα (Ω) andG ∈ H1,1

ααα (Ω) is a lifting of the
boundary datag, i.e.,G|Γ = g, there holds

∫

Ω
∇u0 ·∇vdxxx+

∫

Ω
cu0vdxxx =

∫

Ω
f vdxxx−

∫

Ω
∇G ·∇vdxxx−

∫

Ω
cGvdxxx ∀v∈ H̊1,1

−ααα(Ω).

We note that this is a saddle point formulation onH̊1,1
ααα (Ω)× H̊1,1

−ααα(Ω). Its well-posedness will be
discussed in the following.

We first show that the bilinear form

a(u,v) =

∫

Ω
∇u ·∇vdxxx+

∫

Ω
cuvdxxx

and the linear functional

ℓ(v) =

∫

Ω
f vdxxx−

∫

Ω
∇G ·∇vdxxx−

∫

Ω
cGvdxxx=

∫

Ω
f vdxxx−a(G,v)

are continuous. Here, we suppose that the liftingG is chosen such that

‖G‖
H1,1

ααα (Ω)
6 C‖g‖

H
1
2 , 1

2
ααα (Γ )

(2.11)

for some fixed constantC > 1 independent ofg.

PROPOSITION2.1 There is a constantC > 0 (depending onΩ andααα) such that

|a(u,v)| 6 C|u|
H1,1

ααα (Ω)
|v|

H1,1
−ααα (Ω)

for all u∈ H̊1,1
ααα (Ω), v∈ H̊1,1

−ααα(Ω). Furthermore, forf ∈ L2(Ω) andg∈ H
1
2 , 1

2
ααα (Γ ) we have

|ℓ(v)| 6 C

(
‖ f‖0,Ω +‖g‖

H
1
2 , 1

2
ααα (Γ )

)
|v|

H1,1
−ααα (Ω)

for anyv∈ H̊1,1
−ααα(Ω).

Proof. There holds

|a(u,v)| 6 ‖Φααα ∇u‖0,Ω ‖Φ−ααα ∇v‖0,Ω +‖c‖L∞(Ω) ‖u‖0,Ω ‖v‖0,Ω

6 C
(
|u|

H1,1
ααα (Ω)

|v|
H1,1
−ααα (Ω)

+‖u‖0,Ω ‖v‖0,Ω

)
.
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Furthermore, using the Poincaré-Friedrichs inequality and Lemma 2.5, we get

‖u‖0,Ω ‖v‖0,Ω 6 C|u|
H1,1

ααα (Ω)
|v|1,Ω 6 C|u|

H1,1
ααα (Ω)

|v|
H1,1
−ααα (Ω)

.

Hence,
|a(u,v)| 6 C|u|

H1,1
ααα (Ω)

|v|
H1,1
−ααα (Ω)

.

Moreover, employing the previous estimate and proceeding as before to estimate theL2-norm, we obtain

|ℓ(v)| 6 ‖ f‖0,Ω‖v‖0,Ω + |a(G,v)|6 ‖ f‖0,Ω |v|
H1,1
−ααα (Ω)

+C|G|
H1,1

ααα (Ω)
|v|

H1,1
−ααα (Ω)

.

Then, applying (2.11), yields the stability bound forℓ. �

Furthermore, the following inf-sup stability holds.

PROPOSITION2.2 Letααα ∈ [0,1)M be a weight vector. Suppose that the weightsαi , i = 1,2, . . .M, are
sufficiently small so that

µ :=
1
π

max
16i6M

αiωi <
1
2
.

Then, there holds

inf
06≡u∈H̊1,1

ααα (Ω)

sup
06≡v∈H̊1,1

−ααα (Ω)

a(u,v)
|u|

H1,1
ααα (Ω)

|v|
H1,1
−ααα (Ω)

> δ , (2.12)

where

δ =
1−2µ√

2(4µ2 +1)
.

Furthermore, we have that

sup
u∈H̊1,1

ααα (Ω)

a(u,v) > 0 ∀v∈ H̊1,1
−ααα(Ω),v 6≡ 0. (2.13)

Proof. Foru∈ H̊1,1
ααα (Ω), we definẽv = Φ2

αααu. Then, there holds

|ṽ|2
H1,1
−ααα (Ω)

=

∫

Ω
Φ2

−ααα |∇ṽ|2dxxx 6 2
∫

Ω
Φ−2

ααα

(∣∣∇(Φ2
ααα)
∣∣2u2 + Φ4

ααα |∇u|2
)

dxxx

6 2

(
4
∫

Ω
|∇Φααα |

2u2dxxx+ |u|2
H1,1

ααα (Ω)

)
.

Hence, applying Lemma 2.4, results in

|ṽ|2
H1,1
−ααα (Ω)

6 2(4µ2+1) |u|2
H1,1

ααα (Ω)
. (2.14)

In particular, it follows that̃v∈ H1,1
−ααα(Ω).

Moreover, we observe that

a(u, ṽ) =

∫

Ω
∇u ·∇ṽdxxx+

∫

Ω
cuṽdxxx =

∫

Ω
∇u ·∇

(
Φ2

αααu
)

dxxx+

∫

Ω
cΦ2

αααu2dxxx.
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Thus, sincec > 0, we get

a(u, ṽ) >

∫

Ω

(
∇u ·∇

(
Φ2

ααα
)

u+ Φ2
ααα |∇u|2

)
dxxx

= 2
∫

Ω
Φααα ∇u ·∇(Φααα)udxxx+

∫

Ω
Φ2

ααα |∇u|2dxxx

> −
1
µ

∫

Ω
|∇(Φααα ) |2u2dxxx+(1− µ)

∫

Ω
Φ2

ααα |∇u|2dxxx.

Recalling Lemma 2.4, leads to

a(u, ṽ) > −µ |u|2
H1,1

ααα (Ω)
+(1− µ) |u|2

H1,1
ααα (Ω)

> (1−2µ) |u|2
H1,1

ααα (Ω)
. (2.15)

Now, combining (2.14) and (2.15), it follows that

sup
v∈H̊1,1

−ααα (Ω)

a(u,v)
|u|

H1,1
ααα (Ω)

|v|
H1,1
−ααα (Ω)

>
|u|

H1,1
ααα (Ω)

|ṽ|
H1,1
−ααα (Ω)

a(u, ṽ)

|u|2
H1,1

ααα (Ω)

> δ

for anyu∈ H̊1,1
ααα (Ω), u 6≡ 0. Taking the infimum over allu∈ H̊1,1

ααα (Ω) results in (2.12).
In addition, letv∈ H̊1,1

−ααα(Ω), v 6≡ 0. Then,

sup
u∈H̊1,1

ααα (Ω)

a(u,v) > a(v,v) >

∫

Ω
|∇v|2 dxxx.

Due tov|Γ = 0 andv 6≡ 0, there holds‖∇v‖0,Ω > 0, and hence (2.13) holds. �

The above results, Propositions 2.1 and 2.2, imply the well-posedness of the variational formula-
tion (2.10); cf., e.g., (Schwab, 1998, Theorem 1.15).

THEOREM 2.3 Letααα ∈ [0,1)M be a weight vector, withαi , i = 1,2, . . . ,M sufficiently small such that

max
16i6M

αiωi <
π
2

is satisfied. Furthermore, suppose thatg∈ H
1
2 , 1

2
ααα (∂Ω) and f ∈ L2(Ω) in (1.1)–(1.2). Then, there exists

exactly one solution of the weak formulation (2.10) inH1,1
ααα (Ω).

3. Numerical Approximation

We shall now discuss the numerical approximation of the problem (1.1)–(1.2). To this end, we will
considerhp-version interior penalty discontinuous Galerkin finite element methods. Particularly, we
will derive anL2-norm a posteriori error estimate which can be applied for adaptive purposes.

3.1 Meshes, Spaces, and Element Edge Operators

We consider shape-regular meshesTh that partitionΩ ⊂ R2 into open disjoint triangles and/or paral-
lelograms{K}K∈Th, i.e., Ω =

⋃
K∈Th

K. Each elementK ∈ Th can then be affinely mapped onto the

reference trianglêT = {(x̂, ŷ) : −1< x̂< 1,−1< ŷ< −x̂} or the reference squarêS= (−1,1)2, respec-
tively. We allow the meshes to be 1-irregular, i.e., elements may contain hanging nodes. ByhK , we
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denote the diameter of an elementK ∈ Th. We assume that these quantities are of bounded variation,
i.e., there is a constantρ1 > 1 such that

ρ−1
1 6 hK♯/hK♭

6 ρ1, (3.1)

wheneverK♯ andK♭ share a common edge. We store the elemental diameters in a vector hhh given by
hhh = {hK : K ∈ Th}. Similarly, to each elementK ∈ Th we assign a polynomial degreepK > 1 and
define the degree vectorppp = {pK : K ∈ Th}. We suppose thatppp is also of bounded variation, i.e., there
is a constantρ2 > 1 such that

ρ−1
2 6 pK♯/pK♭

6 ρ2, (3.2)

wheneverK♯ andK♭ share a common edge.
Moreover, we shall define some suitable element edge operators that are required for the dG method.

To this end, we denote byEI the set of all interior edges of the partitionTh of Ω , and byEB the set of
all boundary edges ofTh. In addition, letE = EI ∪EB . The boundary∂K of an elementK and the sets
∂K \ ∂Ω and∂K ∩∂Ω will be identified in a natural way with the corresponding subsets ofE .

Let K♯ andK♭ be two adjacent elements ofTh, andxxx an arbitrary point on the interior edgee∈ EI

given bye= ∂K♯ ∩ ∂K♭. Furthermore, letv andqqq be scalar- and vector-valued functions, respectively,
that are sufficiently smooth inside each elementK♯/♭. By (v♯/♭,qqq♯/♭), we denote the traces of(v,qqq) on e
taken from within the interior ofK♯/♭, respectively. Then, the averages ofv andqqq at xxx∈ e are given by

〈〈v〉〉 =
1
2
(v♯ +v♭), 〈〈qqq〉〉 =

1
2
(qqq♯ +qqq♭),

respectively. Similarly, the jumps ofv andqqq atxxx∈ e are given by

[[v]] = v♯ nnnK♯
+v♭ nnnK♭

, [[qqq]] = qqq♯ ·nnnK♯
+qqq♭ ·nnnK♭

,

respectively, where we denote bynnnK♯/♭
the unit outward normal vector on∂K♯/♭, respectively. On a

boundary edgee∈ EB, we set〈〈v〉〉 = v, 〈〈qqq〉〉 = qqq, and[[v]] = vnnn, [[qqq]] = qqq · nnn, with nnn denoting the unit
outward normal vector on the boundary∂Ω .

Given a finite element meshTh and an associated polynomial degree vectorppp = (pK)K∈Th, with
pK > 1 for all K ∈ Th, consider thehp-discretisation space

VDG(Th, ppp) = {v∈ L2(Ω) : v|K ∈ SpK (K),K ∈ Th}, (3.3)

for the dG method. Here, forK ∈ Th, SpK (K) is either the spacePpK (K) of all polynomials of total
degree at mostpK onK or the spaceQpK (K) of all polynomials of degree at mostpK in each coordinate
direction onK.

3.2 hp-dG Discretisation

We will now consider the followinghp-dG formulation for the numerical approximation of (1.1)–(1.2):
find uDG ∈VDG(Th, ppp) such that

aDG(uDG,v) = ℓDG(v) ∀v∈VDG(Th, ppp). (3.4)

Here,

aDG(w,v) =
∫

Ω
∇hw ·∇hvdxxx−

∫

E

〈〈∇hw〉〉 · [[v]]ds−
∫

E

[[w]] · 〈〈∇hv〉〉ds+ γ
∫

E

σ [[w]] · [[v]]ds, (3.5)
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and
ℓDG(v) =

∫

Ω
f vdxxx−

∫

EB

(∇hv ·nnn)gds+ γ
∫

EB

σgvds (3.6)

arehp-version symmetric interior penalty dG forms. In these forms,∇h denotes the elementwise gradi-
ent operator,γ > 0 is a stability constant, and the function

σ =
p2

h
(3.7)

is defined by means of the two functionsh ∈ L∞(E ) andp ∈ L∞(E ) given by

h(xxx) =

{
min(hK♯

,hK♭
) for xxx∈ ∂K♯ ∩∂K♭ ∈ EI ,

hK for xxx∈ ∂K ∩∂Ω ∈ EB,

p(xxx) =

{
max(pK♯

, pK♭
) for xxx∈ ∂K♯ ∩∂K♭ ∈ EI ,

pK for xxx∈ ∂K ∩∂Ω ∈ EB.

REMARK 3.1 Provided thatγ > 0 is chosen sufficiently large (independently of the local element sizes
and polynomial degrees), it is well-known that the dG formaDG is coercive. More precisely, there is a
constantC > 0 independent ofTh andppp such that

aDG(v,v) > C

(
‖∇hv‖2

0,Ω + γ
∫

E

σ |[[v]]|2ds

)

for anyv∈VDG(Th, ppp). In particular, the dG method (3.4) admits a unique solutionuDG ∈VDG(Th, ppp);
see, e.g., Stamm & Wihler (2010) and the references therein.

3.3 A Posteriori Error Estimation in the L2-Norm

We shall now derive a residual-basedhp–a posteriori error estimate in theL2-norm for the dG formula-
tion (3.4). In this section we suppose that the dual problem

−∆φ +cφ = eDG in Ω , (3.8)

φ = 0 onΓ , (3.9)

has a solutionφ ∈ H2(Ω)∩ H̊1(Ω) with continuous dependence on the data, i.e., there exists acon-
stantC > 0 such that

‖φ‖H2(Ω) 6 C‖eDG‖0,Ω . (3.10)

This is the case, for example, ifΩ is a convex polygon since then∆ : H2(Ω)∩ H̊1(Ω) → L2(Ω) is an
isomorphism; cf. Babuška & Guo (1988); Dauge (1988); Grisvard (1985). Here,eDG = u−uDG denotes
the error, whereu ∈ H1,1

ααα (Ω) is the solution of (1.1)–(1.2) anduDG ∈ VDG(Th, ppp) is the dG solution
defined in (3.4).

Furthermore, we assume that the Dirichlet boundary data satisfies

g = u|Γ ∈ L2(Γ ).

We start the development of theL2-norm a posteriori error estimate by writing

‖eDG‖
2
0,Ω =

∫

Ω
(−∆φ +cφ)eDGdxxx =

∫

Ω
(−∆φ +cφ)udxxx−

∫

Ω
(−∆φ +cφ)uDGdxxx.
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Applying Lemma 2.6 in the first integral and integrating by parts elementwise in the second integral,
and noticing that[[∇φ ]] = 0 onEI results in

‖eDG‖
2
0,Ω =

∫

Ω
(∇u ·∇φ +cuφ)dxxx−

∫

Ω
(∇huDG ·∇φ +cuDGφ)dxxx

+

∫

EI

∇φ · [[uDG]]ds−
∫

EB

(∇φ ·nnn)(u−uDG)ds

=
∫

Ω
f φ dxxx−

∫

Ω
(∇huDG ·∇φ +cuDGφ)dxxx

+

∫

EI

〈〈∇φ〉〉 · [[uDG]]ds−
∫

EB

(∇φ ·nnn)(g−uDG)ds.

Moreover, for an arbitrary functionφh ∈VDG(Th, ppp), exploiting (3.4) withv = φh, gives

‖eDG‖
2
0,Ω =

∫

Ω
f (φ −φh)dxxx−

∫

Ω
(∇huDG ·∇(φ −φh)+cuDG(φ −φh))dxxx

+

∫

EI

〈〈∇φ〉〉 · [[uDG]]ds−
∫

EB

(∇φ ·nnn)(g−uDG)ds

+

∫

EB

(∇φh ·nnn)gds− γ
∫

EB

σgφhds−
∫

E

〈〈∇huDG〉〉 · [[φh]]ds

−

∫

E

〈〈∇hφh〉〉 · [[uDG]]ds+ γ
∫

E

σ [[uDG]] · [[φh]]ds.

Using Green’s formula in the second integral, leads to
∫

Ω
∇huDG ·∇(φ −φh)dxxx = −

∫

Ω
∆huDG(φ −φh)dxxx+ ∑

K∈Th

∫

∂K
(∇uDG ·nnnK)(φ −φh)ds

= −
∫

Ω
∆huDG(φ −φh)dxxx+

∫

E

〈〈∇huDG〉〉 · [[φ −φh]]ds

+

∫

EI

[[∇huDG]]〈〈φ −φh〉〉ds,

where∆h is the elementwise Laplace operator. Hence, using that[[φ ]] = 000 onE , yields

‖eDG‖
2
0,Ω

=

∫

Ω
( f + ∆huDG−cuDG)(φ −φh)dxxx−

∫

EI

[[∇huDG]]〈〈φ −φh〉〉ds

+

∫

EI

〈〈∇φ〉〉 · [[uDG]]ds−
∫

EB

(∇φ ·nnn)(g−uDG)ds+

∫

EB

(∇hφh ·nnn)gds

− γ
∫

EB

σgφhds−
∫

E

〈〈∇hφh〉〉 · [[uDG]]ds+ γ
∫

E

σ [[uDG]] · [[φh]]ds

=

∫

Ω
( f + ∆huDG−cuDG)(φ −φh)dxxx−

∫

EI

[[∇huDG]]〈〈φ −φh〉〉ds

+
∫

EI

〈〈∇h(φ −φh)〉〉 · [[uDG]]ds−
∫

EB

(∇h(φ −φh) ·nnn)(g−uDG)ds

− γ
∫

EB

σ(g−uDG)(φh−φ)ds+ γ
∫

EI

σ [[uDG]] · [[φh−φ ]]ds.
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Now, applying the Cauchy-Schwarz inequality and noting that pK > 1, K ∈ Th, gives

‖eDG‖
2
0,Ω 6

(

∑
K∈Th

h4
K p−4

K ‖ f + ∆huDG−cuDG‖
2
0,Ω + ∑

K∈Th

h3
K p−3

K ‖[[∇huDG]]‖2
0,∂K\∂Ω

+(γ2 +1) ∑
K∈Th

hK pK ‖[[uDG]]‖2
0,∂K\∂Ω

+(γ2 +1) ∑
K∈Th

hK pK ‖g−uDG‖
2
0,∂K∩∂Ω

) 1
2

×

(

∑
K∈Th

h−4
K p4

K ‖φ −φh‖
2
0,K + ∑

K∈Th

h−3
K p3

K ‖φ −φh‖
2
0,∂K

+ ∑
K∈Th

h−1
K pK ‖∇h(φ −φh)‖

2
0,∂K

) 1
2

.

Then, choosingφh ∈VDG(Th, ppp) to be an elementwise optimalhp-interpolant (see, e.g., Babuška & Suri
(1987a,b)), i.e., for anyK ∈ Th,

h−4
K p4

K ‖φ −φh‖
2
0,K +h−3

K p3
K ‖φ −φh‖

2
0,∂K +h−1

K pK‖∇h(φ −φh)‖
2
0,∂K 6 C‖φ‖2

H2(K) ,

and recalling the regularity estimate (3.10), gives

‖eDG‖
2
0,Ω 6 C‖eDG‖0,Ω

(

∑
K∈Th

η2
K

) 1
2

,

with

η2
K = ∑

K∈Th

h4
K p−4

K ‖ f + ∆huDG−cuDG‖
2
0,Ω + ∑

K∈Th

h3
K p−3

K ‖[[∇huDG]]‖2
0,∂K\∂Ω

+ ∑
K∈Th

hK pK ‖[[uDG]]‖2
0,∂K\∂Ω + ∑

K∈Th

hK pK ‖g−uDG‖
2
0,∂K∩∂Ω .

(3.11)

Hence, dividing both sides of the above inequality by‖eDG‖0,Ω leads to the following result.

THEOREM 3.1 Suppose that the dual problem (3.8)–(3.9) fulfils (3.10), and that the Dirichlet boundary
datag ∈ L2(Γ ). Furthermore, letuDG ∈ VDG(Th, ppp) denote thehp-dG solution from (3.4), andu ∈

H1,1
ααα (Ω) the analytical solution of (1.1)–(1.2) for some weight vector ααα ∈ [0,1)M. Then, the following

a posteriori error estimate holds
‖u−uDG‖

2
0,Ω 6 C ∑

K∈Th

η2
K ,

whereC > 0 is a constant independent of the local element sizeshhh and polynomial degreesppp, and the
local error indicatorsηK , K ∈ Th, are defined in (3.11).

REMARK 3.2 We observe a slight suboptimality with respect to the polynomial degree in the last two
terms of the local error indicatorsηK defined in (3.11). This results from the fact that due to the possible
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presence of hanging nodes inTh, a nonconforming interpolant is used in the proof of Theorem3.1.
Indeed, in the absence of hanging nodes, the factor ofhK pK can be improved tohK p−1

K . We point out
that the energy norm a posteriori error indicators derived in Houstonet al. (2007, 2008), for example,
suffer from a similar suboptimality with respect to the spectral order.

3.4 Numerical Example

On the rectangleΩ = (−1,1)× (0,1), we consider the PDE problem: findu such that

−∆u = 0 in Ω ,

u = g onΓ .

We choose the Dirichlet boundary datag in such a way that the analytical solution is given by

u(r,θ ) =
1
π

θ ,

where(r,θ ) denote polar coordinates inR2. Note thatg is smooth on∂Ω , except at the point(0,0).
Indeed, in Cartesian coordinates we have that

g(x,y = 0) =

{
1 for x < 0

0 for x > 0
, (x,y) ∈ ∂Ω .

In addition, we remark thatu 6∈ H1(Ω). However, there holdsu∈ H1,1
α (Ω) for anyα ∈ (0,1), where the

weight function for this problem is given byΦα (xxx) = |xxx|α . Furthermore,u is analytic away from(0,0)
and belongs to the Babuška-Guo space (see, e.g., Babuška &Guo (1988))

B1
α(Ω) =

{
v∈ L2Ω) : |v|

Hk,1
ααα (Ω)

6 Cdkk! ∀k > 1, and constantsC,d ∈ R

}
.

With this in mind, we might therefore be able to achieve exponential convergence whenhp–mesh re-
finement is employed; cf. Schötzau & Schwab (2001).

Firstly, however, we investigate the practical performance of the a posteriori error estimate derived
in Theorem 3.1 within an automatich–version adaptive refinement procedure which is based on 1-
irregular quadrilateral elements. Theh–adaptive meshes are constructed by marking the elements for
refinement/derefinement according to the size of the local error indicatorsηK ; this is done by employing
the fixed fraction strategy, with refinement and derefinementfractions set to 25% and 10%, respectively.

In Figure 1(a) we show the initial mesh and computed dG solution based on employingp = 2,
i.e., biquadratic polynomials. Furthermore, the computational mesh and dG solution are depicted in
Figures 1(b) & (c) after 4 and 9 adaptive refinements have beenundertaken, respectively. Here, we
observe that the mesh has been significantly refined in the vicinity of the discontinuity present ing, as
we would expect. Figure 2(a) shows the history of the actual and estimatedL2(Ω)–norm of the error on
each of the meshes generated based on employingh–adaptive mesh refinement. Here, we observe that
the a posteriori bound over-estimates the true error by a consistent factor. Indeed, the effectivity index
tends to a value of around 16 as the mesh is adaptively refined,cf. Figure 2(b).
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FIG. 1. h–Refinement. (a) Initial mesh and solution with 8 elements; Mesh and solution after: (b) 4 adaptive refinements, with 86
elements; (c) 9 adaptive refinements, with 1286 elements.
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FIG. 2. h–Refinement. (a) Comparison of the actual and estimatedL2(Ω )–norm of the error with respect to the number of degrees
of freedom; (b) Effectivity indices.
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FIG. 3. hp–Refinement. (a) Comparison of the actual and estimatedL2(Ω )–norm of the error with respect to the (third root of
the) number of degrees of freedom; (b) Effectivity indices.
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We now turn our attention tohp–mesh adaptation. Here, we again mark elements for refine-
ment/derefinement according to the size of the local error indicatorsηK based on employing the fixed
fraction strategy, with refinement and derefinement fractions set to 25% and 10%, respectively. Once an
elementK ∈ Th has been flagged for refinement or derefinement, a decision must be made whether the
local mesh sizehK or the local degreepK of the approximating polynomial should be adjusted accord-
ingly. The choice to perform eitherh–refinement/derefinement orp–refinement/derefinement is based
on estimating the local smoothness of the (unknown) analytical solution. To this end, we employ the
hp–adaptive strategy developed in Houston & Süli (2005), where the local regularity of the analytical
solution is estimated from truncated local Legendre expansions of the computed numerical solution;
see, also, Houstonet al. (2003).

In Figure 3(a) we present a comparison of the actual and estimatedL2(Ω)–norm of the error versus
the third root of the number of degrees of freedom in the finiteelement spaceVDG(Th, ppp) on a linear-
log scale, for the sequence of meshes generated by ourhp–adaptive algorithm. We remark that the
third root of the number of degrees of freedom is chosen on thebasis of the a priori error analysis
carried out in Wihleret al. (2003); cf., also, Schötzau & Wihler (2003). Here, we observe that the
error bound over-estimates the true error by a (reasonably)consistent factor; indeed, from Figure 3(b),
we see that the computed effectivity indices are in the range15–19 as the mesh is refined. Moreover,
from Figure 3(a) we observe that the convergence lines usinghp–refinement are (roughly) straight on
a linear-log scale, which indicates that exponential convergence is attained for this problem. We point
out that the slight suboptimality with respect to the polynomial degree in the last two terms of the
local error indicatorηK defined in (3.11) does not adversely affect the quality of thelocal indicators,
cf. Remark 3.2. Indeed, computations based on employing a modified local indicatorη̂K , whereη̂K is
defined in an analogous fashion toηK with the factor ofhK pK in the last two terms in (3.11) replaced
by hK p−1

K , leads to quantitatively similar behaviour of theL2(Ω)–norm of the error as the finite element
space is enriched, cf. Houstonet al. (2008). Indeed, for this particular example, the sequence of hp–
refined meshes generated by the proposed adaptive algorithmis identical when either local indicator,
i.e., ηK or η̂K , is employed. However, the effectivity indices are slightly improved to between 13–19
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FIG. 5. hp–Mesh distribution after 9 adaptive refinements, with 134 elements and 2002 degrees of freedom: (a)h–mesh alone;
(b) hp–mesh; (c) Zoom of (b).
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FIG. 6. hp–Mesh distribution after 14 adaptive refinements, with 206 elements 4904 degrees of freedom: (a)h–mesh alone; (b)
hp–mesh; (c) Zoom of (b).
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when η̂K is employed, in contrast to those computed usingηK . For brevity, these results have been
omitted.

In Figure 4, we present a comparison between the actualL2(Ω)–norm of the error employing both
h– andhp–mesh refinement. Here, we clearly observe the superiority of employing a grid adaptation
strategy based on exploitinghp–adaptive refinement: on the final mesh, theL2(Ω)–norm of the er-
ror usinghp–refinement is around three orders of magnitude smaller thanthe corresponding quantity
computed whenh-refinement is employed alone.

Finally, in Figures 5 & 6 we show the mesh generated using the proposedhp-version a posteriori
error indicator stated in Theorem 3.1 after 9 and 14hp-adaptive refinement steps, respectively. For
clarity, we also show theh–mesh alone, as well as a zoom of the mesh in the vicinity of theorigin. Here,
we observe thath–refinement of the mesh has been performed in the vicinity of the discontinuity present
in g, cf. above. Within this region, the polynomial degree has been kept at 2. Away from this region,
thehp–adaptive algorithm increases the degree of the approximating piecewise polynomials where the
analytical solution is smooth.

4. Conclusions

In this work, we have introduced a new variational frameworkfor linear second-order elliptic PDE with
discontinuous Dirichlet boundary conditions based on locally weighted Sobolev spaces. In particular,
we have proved the well-posedness of the new setting by meansof an inf-sup condition. In addition,
we have proposed the use of symmetrichp–version interior penalty discontinuous Galerkin methodsfor
the numerical approximation of such problems. For this discretisation scheme, we have derived anL2–
norm a posteriori error estimate whose performance withinh– andhp–adaptive refinement procedures
has been displayed with a model numerical experiment. Future work will deal with some extensions of
the present setting to systems such as, e.g., the Stokes equations for cavity flow problems.
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BABUŠKA, I. & GUO, B. Q. (1989) Regularity of the solution of elliptic problems with piecewise ana-
lytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous
boundary conditions.SIAM J. Math. Anal., 20, 763–781.
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HOUSTON, P. & SÜLI , E. (2005) A note on the design ofhp–adaptive finite element methods for
elliptic partial differential equations.Comput. Methods Appl. Mech. Engrg., 194(2-5), 229–243.
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