
The Transfer of Evolved Artificial Immune
System Behaviours between Small and Large

Scale Robotic Platforms

Amanda M. Whitbrook, Uwe Aickelin and Jonathan M. Garibaldi

Intelligent Modelling and Analysis Research Group (IMA), School of Computer
Science, University of Nottingham, Nottingham, NG8 1BB

amw@cs.nott.ac.uk, uxa@cs.nott.ac.uk, jmg@cs.nott.ac.uk

Abstract. This paper demonstrates that a set of behaviours evolved in
simulation on a miniature robot (epuck) can be transferred to a much
larger scale platform (a virtual Pioneer P3-DX) that also differs in shape,
sensor type, sensor configuration and programming interface. The chosen
architecture uses a reinforcement learning-assisted genetic algorithm to
evolve the epuck behaviours, which are encoded as a genetic sequence.
This sequence is then used by the Pioneers as part of an adaptive, id-
iotypic artificial immune system (AIS) control architecture. Testing in
three different simulated worlds shows that the Pioneer can use these
behaviours to navigate and solve object-tracking tasks successfully, as
long as its adaptive AIS mechanism is in place.

1 Introduction

Evolutionary robotics is a technique that refers to the genetic encoding of au-
tonomous robot control systems and their improvement by artificial evolution.
Ideally the end product should be a controller that evolves rapidly and has
the properties of robustness, scalability and adaptation. However, in practice it
proves difficult to achieve all of these goals without introducing an additional
mechanism for adaptability since behaviour is essentially an emergent property
of interaction with the environment [11]. Thus, the major challenge facing evo-
lutionary robotics is the development of solutions to the problem of brittleness
via the design of controllers that can generalize to modified environments.

The characteristics of the robot body and its sensorimotor system may be
regarded as part of the environment [2] as all embodied systems are physically
embedded within their ecological niche and have a dynamic reciprocal coupling
to it [9]. Indeed, artificial evolution often produces control systems that rely
heavily on body morphology and sensorimotor interaction [3], and when these
are subsequently altered, the changes can affect behavioural dynamics drasti-
cally. Thus, a solid test for robustness, scalability and adaptation is the ability
of an evolved control system to function not only in different physical environ-
ments, but also on a number of robotic platforms that differ in size, morphology,
sensor type and sensor-response profile. This paper is therefore concerned with

demonstrating the theoretical and practical cross platform transferability of an
evolutionary architecture designed to combat adaptation problems.

Adaptation is usually made possible through the introduction of additional
mechanisms that permit some kind of post-evolutionary behaviour modification.
The architecture used here falls into the general category of approaches that
combine evolution or long term learning (LTL) with a form of lifelong or short
term learning (STL) to achieve this [14]. The particular technique consists of
the rapid evolution of a number of diverse behaviour sets using a Webots [10]
simulation (LTL) followed by the use of an idiotypic artificial immune system
(AIS) for selecting appropriate evolved behaviours as the robot solves its task
in real time (STL). The approach differs from most of the evolutionary schemes
employed previously in the literature in that these are usually based on the
evolution of neural controllers [6] rather than the actual behaviours themselves.

Previous papers have provided evidence that the idiotypic AIS architecture
has advantages over a reinforcement learning scheme when applied to mobile
robot navigation problems [15] and have shown that the idiotypic LTL-STL
architecture permits transference from the simulator to a number of different
real-world environments [16]. The chief aim of this paper is, therefore, to supply
further support for the robustness, scalability and adaptability of the architec-
ture by showing that it can be extended to the much larger scale Pioneer P3-DX
robots. For this purpose, the behaviours evolved for the epuck in the Webots
simulator are transplanted onto the Pioneer and used both with and without
the idiotypic network in Player’s Stage [5] simulator. The results successfully
demonstrate the scalability of the method in the virtual domain, and provide
strong empirical evidence that the idiotypic selection feature is a vital component
for achieving this.

The remainder of this paper is structured as follows. Section 2 introduces
some essential background information about the problem of platform transfer
in mobile robotics and previous attempts to achieve it. Section 3 describes the
LTL-STL control system, including its modular structure and the encoding of
the evolved behaviours. In particular, it shows how platform transfer is achieved
between the epuck and Pioneer P3-DX robots. Section 4 provides information
regarding the simulated test environments and experimental set-up and Section 5
presents and discusses the results. Section 6 concludes the paper.

2 Background and Relevance

Cross platform transfer of an intelligent robot-control algorithm is a highly de-
sirable property since more generic software is more marketable for vendors and
more practical for users with more than one robot type. Furthermore, software
that is robust to changes in a user’s hardware requirements is particularly at-
tractive. However, transferability between platforms is difficult to achieve and is
hence extremely rare in mobile robotics [2]. This is primarily due to hardware
differences such as the size, morphology and spatial relationships between the
body, actuators and sensors, which constitute a drastic change of the environ-

ment from an ecological perspective. Since modern mobile robot systems are
distributed systems, transfer may also be hindered by diversity of middleware,
operating systems, communications protocols and programming languages and
their libraries [13]. Furthermore, portability is made even more challenging by
differences in sensor type, sensor characteristics and the mechanical structure of
the robot.

Despite its rarity, platform transfer for evolved control systems is reported
in the literature. Floreano and Mondada [2, 3] use an incremental approach to
evolve artificial neural networks for solving a looping maze navigation problem.
Evolution begins with a real miniature Khepera robot and gradually moves to a
Koala, a larger, more fragile robot supplied by the same manufacturer. Within
this architecture, previously evolved networks are gradually adapted, combined,
and extended to accommodate the changing morphology and sensorimotor inter-
faces [3]. However, the scheme possesses some significant drawbacks. The use of
physical robots for the evolution is both impractical and infeasible due to the ex-
cessive amount of time and resources required. For example, adaptability to the
Koala platform emerges only after 106 generations on the real Khepera and an
additional 30 on the Koala (each generation taking approximately 40 minutes).
Also, if each new environment or platform requires additional evolution then
there is no controller that is immediately suitable for an unseen one. Another
consideration is that the Koala was deliberately designed to support transfers
from the Khepera and is thus very similar in terms of the wheel configuration,
IR sensors, vision module, low-level BIOS software and communication method.
This is good from a practical perspective, but one could argue that the new,
supposedly unknown environment is far too engineered.

Floreano and Urzelai [4, 12] also evolve a neural network to control a light-
switching robot but evolve the mechanisms for self-organization of the synaptic
weights rather than the weights themselves. This means that the robot is rapidly
able to adapt its connection weights continuously and autonomously to achieve
its goal. The authors transfer the evolved control system from simulation to a
real Khepera and also from a simulated Khepera to a real Koala. They report
no reduction in performance following the transfer. However, since the same
platforms are used as in [2, 3], the new environment is, again, too engineered.
In addition, the task is very simple and the environment is sparse, requiring
minimal navigational and obstacle avoidance skills.

In this paper more complex tasks and environments are used to demonstrate
that behaviours evolved on a simulated epuck can be used by a larger, unrelated
robot that has not deliberately been designed for ease of transfer (the Pioneer
P3-DX). This represents a much more difficult platform transfer exercise than
has been attempted before and is hence a more realistic test of control sys-
tem adaptability. In particular, Pioneer P3-DX robots differ significantly from
epucks in mechanical structure, body size, body shape and wheel size and possess
sixteen sonar sensors rather than the eight infrared (IR) sensors of the epuck,
which also have a different spatial arrangement. The Pioneer is also produced
by a different manufacturer and uses different middleware and a different sim-

ulator (Stage [5]). A full comparison between the two platforms is provided in
Section 3.4, Table 1. In addition, the achievement of platform transfer between
epucks and Pioneers is of practical value since Pioneer behaviours cannot be
evolved directly on the Stage simulator within a realistic time frame; Stage is not
fast or accurate enough, and control systems used in the Webots programming
environment are not directly transferable to real Pioneers. Moreover, simulation
of the epuck in Webots requires a 3D model that is readily available, so it is
computationally much cheaper to reuse the epuck’s evolved behaviours in Stage
rather than to design a complex 3D Pioneer model for Webots.

3 System Architecture

3.1 Artificial Immune Systems and the Behavioural Encoding

AISs mimic the properties of the vertebrate immune system (for example anti-
body recognition of and stimulation by antigens). Idiotypic systems in particular
exploit Jerne’s notion of an idiotypic network [7], where antibodies are capable
of recognizing and being stimulated or suppressed by other antibodies via their
paratopes and idiotopes, see [15] for further details. Idiotypic AIS algorithms
are often based on Farmer et al.’s computational model [1] of Jerne’s theory and
are characterized by a decentralized behaviour-selection mechanism. They are
a popular choice for STL in robotic control systems [8] since they allow much
greater flexibility for determining a robot’s actions. The LTL and STL aspects
of the control system presented here thus work together to produce adaptability;
diversity of the behaviour sets is provided by the evolutionary (LTL) component
and the idiotypic network (STL) exploits the wide range of choice available to
select behaviours appropriate for a given environmental scenario.

The AIS analogy is that antigens model the environmental information as
perceived by the sensors and antibodies model the behaviours of the robot.
Here, eight antigens (coded 1 - 8) are identified based on the robot’s possession
of distance-measuring sensors (IR or sonar) and a camera for tracking coloured
objects. These are 1 - target unseen, 2 - target seen, 3 - obstacle right, 4 - obstacle
rear, 5 - obstacle left, 6 - collision right, 7 - collision rear, 8 - collision left. In
addition, six types of basic behaviour (coded 1 - 6) are used; 1 - wandering
using either a left or right turn, 2 - wandering using both left and right turns,
3 - turning forwards, 4 - turning on the spot, 5 - turning backwards, and 6 -
tracking targets. More detailed individual behaviours are thus described using
the attribute type T , which refers to the basic behaviour code, and the additional
attributes speed S in epuck speed units per second (ψ per second), frequency of
turn F (% of time), angle of turn A (% reduction in one wheel speed), direction
of turn D (either 1 - left or 2 - right), frequency of right turn Rf (% of time) and
angle of right turn Ra (% reduction in right wheel speed). This structure means
that, potentially, a vast number of diverse behaviours can be created. However,
there are limits to the attribute values [17]; these are carefully selected in order
to strike a balance between reducing the size of the search space, which increases

speed of convergence, and maintaining diversity. More details on the behavioural
encoding are provided in Section 3.4.

3.2 LTL Phase

The LTL phase is a reinforcement learning-assisted genetic algorithm (GA) that
evolves a suitable behaviour for each antigen. It works by selecting two differ-
ent parent robots via the roulette-wheel method and determining behaviour at-
tribute values for their offspring as described in [17]. The reinforcement learning
component constantly assesses the performance of the behaviours during evo-
lution so that poorly-matched ones are replaced with newly-created ones when
the need arises, which accelerates the GA. All the test problems are assessed by
measuring task completion time ti and number of collisions ci i = 1, ..., x, thus,
the relative fitness µi of each member of the population is calculated using:

µi =
1

ti + ρci

∑x
k=1 (tk + ρck)−1

, (1)

where ρ represents the weighting given to collisions (ρ = 1 here) and x is the num-
ber of robots in the population. After convergence, the fittest robot in the final
population is selected. However, since the idiotypic network requires a number n
of distinct behaviours for each antigen, the whole process is repeated n times in
order to obtain n robots from separate populations that never interbreed. This
is an alternative to selecting a number of robots from a single, final population
and means that greater diversity can be achieved with smaller population sizes
without reducing speed of convergence. The attribute values representing the
behaviours of the n robots and their final reinforcement scores are saved as a
genetic sequence (a simple text file) for seeding the AIS system.

3.3 STL Phase

The AIS system reads the genetic sequence generated by the LTL phase and then
calculates the relative fitness µi of each behaviour (or antibody) set using (1),
where ρ = 8 to increase the weighting given to the number of collisions. It then
produces an n×8 matrix P (analogous to an antibody paratope) representing the
reinforcement scores, or degree of match between antibodies and antigens. The
elements of this matrix (Pij i = 1, ..., n, j = 1, ..., 8) are calculated by multiplying
each antibody’s final reinforcement score by the relative fitness of its set µi. An
n × 8 matrix I (analogous to an antibody idiotope) is also created by assigning
a value of 1.0 to the element corresponding to the minimum Pij for each j, and
designating a value of 0.0 to all other elements. The matrix P is adjusted after
every iteration through reinforcement learning, but I remains fixed throughout.
If an idiotypic network is not used then P alone governs antibody selection;
the antigen-matching antibody with the highest reinforcement score is used. If
idiotypic stimulation and suppression of antibodies are taken into account then
I is used to adjust the degree of match of each antibody as described in [16],
which may result in a different one being selected.

3.4 Mechanisms of Cross Platform Transfer

Following convergence of the GA, the selected behaviours are encoded as nine
integers in a simple text file that contains all the genetic information necessary to
reproduce them. The first integer represents the antigen code, and the next seven
represent the behavioural attributes T , S, F , A, D, Rf and Ra. The last integer
is the final reinforcement score attained by the behaviour prior to convergence.
The genetic sequence encodes the principal wheel speeds in epuck speed units
per second (ψ per second) where ψ = 0.00683 radians. A speed value of 600 ψ

per second thus corresponds to 600 × 0.00683 = 4.098 radians per second. An
example line from a genetic text file is: 0 2 537 80 51 2 37 76 50, which encodes
wandering in both directions with a speed of 537 ψ per second, turning 80% of
the time. The robot turns right 37% of this time by reducing the speed of the
right wheel by 76%, and turns left 63% of this time by reducing the speed of the
left wheel by 51%. A particular genetic sequence thus governs how the left and
right wheel speeds change with time.

In theory, the behavioural encoding may be extended to any two-wheeled,
non-holonomic, mobile-robot, since the wheel motions of such robots are fully
described by their changing speeds. Furthermore, since the output from the
LTL phase is a simple text file, any program is capable of reading it and ex-
tracting the information necessary to form the wheel motions. Moreover, speci-
fication of the speeds in radians per second permits automatic scaling between
different-sized environments, without requiring knowledge of the particular scales
involved, since wheel size is generally related to the scale of the environment.
However, it is also necessary to consider some fundamental hardware and soft-
ware differences between the Pioneer P3-DX and epuck robots when making the
transfer. Table 1 below shows the technical specification for each robot type.
The most fundamental considerations are the larger scale of the Pioneer, the use
of different programming environments, the use of sonar sensors on the Pioneer
and the spatial arrangement of these sensors. These affect the transfer in three
main ways; how velocity is expressed, how the sensors are read and translated
into antigen codes, and how blob finding is implemented.

Use of the genetic sequence coupled with a simple conversion of ψ per sec-
ond to radians per second, as described above, would be adequate to cater for
the scaling differences if the two platforms did not use different APIs. How-
ever, the epuck is programmed using the Webots C/C++ Controller API, where
robot wheel speeds are set using the differential wheels set speed method, which
requires the left and right wheel speeds in ψ per second as its arguments. In
contrast, the Pioneer robot is programmed using libplayerc++, a C++ client
library for the Player server. In this library, the angular and linear components
of the robot’s velocity are set separately using yaw ω and velocity v arguments
for the SetSpeed method of the Position2dProxy class, and v is expressed in
metres per second. As methods for encoding the genetic sequence into left L and
right R epuck wheel speeds already exist, it is computationally cheaper to reuse
these methods on the Pioneer and simply convert them into equivalent ω and v
arguments. The conversions are given by:

Table 1. Differences between the Pioneer and Epuck Robotic Platforms

.

No. Attribute Pioneer P3-DX Epuck

1 Manufacturer MobileRobots Inc EPFL
2 Simulator Stage Webots
3 Middleware Player Webots
4 Operating system Linux N/A
5 Communications protocol Wireless TCP/IP Bluetooth
6 Wheel radius (cm) 9.50 2.05
7 Wheel width (cm) 5.00 0.20
8 Axle length (cm) 33.00 5.20
9 Body material Aluminium Plastic
10 Body length (cm) 44 7
11 Body width (cm) 38 7
12 Body height (cm) 22 4.8
13 Weight (kg) 9 0.15
14 Body shape Octagonal Circular
15 Sensor type Sonar Infrared
16 No. of sensors 16 8
17 Sensor range 15cm to 5m 0 to 6cm
18 Camera Canon VC-C4 VGA
19 Blob finding software Player Weblobs

v =
ψrp(R + L)

2
, (2)

ω =
ζψre(R − L)

ae
, (3)

where rp is the radius of the Pioneer wheel, re is the radius of the epuck wheel,
and ae is the axle length of the epuck. The parameter ζ = 1.575 is determined
by empirical observation and is introduced in order to replicate the angular
movement of the epuck more accurately.

The antigens indexed 3 to 8 describe an obstacle’s orientation with respect
to the robot (right, left or rear) and classify its distance from the robot as either
“obstacle” (avoidance is needed) or “collision” (escape is needed). Thus, two
threshold values τ1 and τ2 are required to mark the boundaries between “no
obstacle” and “obstacle” and between “obstacle” and “collision” respectively.
The epuck’s IR sensors are nonlinear and correspond to the quantity of reflected
light, so higher readings mean closer obstacles. In contrast, the Pioneer’s sonar
readings are linear denoting the estimated proximity of an obstacle in metres,
so lower readings mean closer obstacles. Since direct conversion is difficult, the
threshold values τ1 and τ2 (250 and 2400 for the epuck) are determined for the
Pioneer by empirical observation of navigation through cluttered environments,
(τ1 = 0.15 and τ2 = 0.04). Additionally, in order to determine the orientation
of any detected obstacle, the epuck uses the index of the maximum IR reading,

where indices 0, 1 and 2 correspond to the right, 3 and 4 correspond to the rear
and 5, 6 and 7 correspond to the left. For the Pioneer it is necessary to use the
index of the minimum sonar reading and encode positions 4 to 9 as the right,
10 to 13 as the rear and positions 0 to 3 and 14 to 15 as the left, due to the
different spatial arrangement of the sensors.

Blob finding software (named Weblobs) was developed for the epuck as part
of this research, since the Webots C/C++ Controller API has no native blob
finding methods. However, the Pioneer robot is able to use methods belonging to
the BlobfinderProxy class of libplayerc++. The objective is to determine whether
blobs (of the target colour) are visible, and if so, to establish the direction (left,
centre or right) of the largest from the centre of the field of view. The two robot
types thus use different blob finding software, but collect the same information.

3.5 Modular Control Structure

The entire STL program is broken down into the pseudo code below in order
to demonstrate its modular structure and the ease with which this facilitates
adaptation for the Pioneer P3-DX platform. Each block shows the module it
calls and the method it uses within that module. Blocks marked with an asterisk
are dealt with in the main body of the program and do not call other modules.
1 I n i t i a l i z e robot (ROBOT −−> I n i t i a l i z eRobo t () −−> I n i t i a l i z e S e n s o r s ())
2 Read gene t i c sequence ∗
3 Build matr i ce s P and I ∗

REPEAT
4 Read s en so r s (ROBOT −−> ReadSensors ())
5 Read camera (BLOBFINDER −−> GetBlobInfo ())
6 Determine ant igen code ∗
7 Score prev ious behaviour us ing re in fo rcement l e a rn i ng ∗
8 Update P ∗
9 S e l e c t behaviour ∗
10 Update antibody concen t ra t i on s ∗
11 Execute behaviour (BEHAVIOUR −−> Execute ())

UNTIL stopping c r i t e r i a met

The only blocks that require changes for the Pioneer platform are 1, 4, and
5. Since these are dealt with by calling other modules, the main body of the
program can be wholly reused, although an additional two lines in block 11 are
necessary to convert the wheel speeds to the Player format. Some slight changes
to block 7, which deals with using sensor data to determine the reinforcement
score are also required.

4 Test Environments and Experimental Set-up

The genetic behaviour sequences are evolved using 3D virtual epucks in the
Webots simulator, where the robot is required to track blue markers in order
to navigate through a number of rooms to the finish line, see [17]. Throughout
evolution, five separate populations of ten robots are used and the mutation rate
ε is set at 5% as recommended by [17] for a good balance between maximizing
diversity and minimizing convergence time. Following the LTL phase, the evolved

behaviour sequences are used with 2D virtual Pioneer robots in three different
Stage worlds, S1, S2, and S3. S1 and S2 require maze navigation and the tracking
of coloured door markers (Figure 1 and Figure 2), and S3 involves search and
retrieval of a blue block whilst navigating around other obstacles (Figure 3).
Sixty runs are performed in each Stage world, thirty using the idiotypic selection
mechanism, and thirty relying on reinforcement learning only. In addition, in S3

the obstacle positions, target block location, and robot start point are changed
following each idiotypic and nonidiotypic test, so that the data is paired. For all
runs, the task time t and number of collisions c are recorded. However, a fast
robot that continually crashes or a careful robot that takes too long to complete
the task is undesirable, so an additional score metric ϕ that combines t and c is
computed for each run. This is given by:

ϕ =
t + σic

2
, (4)

where σi is the ratio of the mean task time t̄ to mean number of collisions c̄ for
world Si. In all worlds, t̄, c̄ and ϕ̄ are computed with and without using idiotypic
effects and the results are compared using a 2-tailed t-test (paired for world S3),
with differences accepted as significant at the 99% level only. As another measure
of task performance, runs with an above average ϕ for each world are counted
as good and those with fitness in the bottom 10% of all runs in each world
are counted as bad. Additionally, for each task, robots taking longer than 900
seconds are counted as having failed and are stopped.

Fig. 1. 2D Stage world S1 used in the Pioneer STL phase

5 Results and Discussion

Table 2 shows t̄, c̄ and ϕ̄ values with and without using idiotypic effects in
each world and the significant difference levels when these are compared. It also
displays the percentage of good and bad runs and number of fails in each world.

When idiotypic effects are employed, the virtual Pioneer robots prove able
to navigate safely (the mean number of collisions is very low) and solve their
tasks within the alloted time in all of the worlds. Navigation is also safe for the
nonidiotypic robots, but, in terms of task time in worlds S1 and S2 there is a 17%

Fig. 2. 2D Stage world S2 used in the Pioneer STL phase

failure rate and in world S3 there is a 7% failure rate. Furthermore, mean task
time is significantly higher than for the idiotypic case in all worlds, although the
number of collisions is consistently low and not significantly different between the
idiotypic and nonidiotypic cases. In addition, the number of bad runs is higher
and the number of good runs is lower for nonidiotypic robots in all worlds and the
score is significantly better when idiotypic effects are employed in worlds S1 and
S2. These observations provide strong empirical evidence that the behaviours
evolved in simulation on an epuck robot can be successfully ported to the vir-
tual Pioneer P3-DX platform provided that the adaptive idiotypic mechanism
is applied within the STL architecture. As with the STL results for virtual and
real epucks (documented in [16]), the results show that the evolutionary (LTL)
phase is capable of producing sets of very diverse behaviours but that the STL
phase requires the use of a scheme that selects from the available behaviours in
a highly adaptive way. This is further illustrated in Figure 3 which shows the
paths taken by an idiotypic (left) and nonidiotypic (right) Pioneer when solving
the block-finding problem in world S3. It is evident that the nonidiotypic Pioneer
takes a much less direct route and repeats its path several times. This is because
it is less able to adapt its behaviour and consequently spends much more time
wandering, getting stuck and trying to free itself. This result is typical of the S3

experiments.

The chosen architecture has a number of benefits. The reinforcement-assisted
GA effectively balances the exploitative properties of reinforcement and the ex-
plorative properties of the GA. This reduces convergence time, improves accu-
racy and maintains GA reliability. The genetic encoding of the behaviours and
the choice of separate populations permits greater diversity for the antibod-
ies, which allows for a much more adaptive strategy in the STL phase. Earlier
work [15] suggests that the idiotypic advantage can be attributed to an increased
rate of antibody change, which implies a much less greedy strategy. It also pro-
poses that the network is capable of linking antibodies of similar type, so that
useful but potentially untried ones can be used. The use of concentrations and
feedback within the network may also facilitate a memory feature that achieves
a good balance between selection based on past antibody use and current envi-
ronmental information. However, the present scheme has some limitations; there

is no scope to change the antibodies within the network, only to choose between
them. A possible improvement would be constant execution of the LTL phase,
which regularly updates the genetic sequence, allowing fresh antibodies to be
used if the need arises. In addition, success with transference to other platforms
is presently too heavily dependent upon parameter tuning and readjustment of
the reinforcement scheme for the particular sensor characteristics.

Table 2. Results of Experiments with and without Idiotypic Effects in Each World.
G = % Good, B = % Bad, F = % Fail

World Significance Idiotypic Nonidiotypic
t̄ c̄ ϕ̄ t̄(s) c̄ ϕ̄ G B F t̄(s) c̄ ϕ̄ G B F

S1 100 96 100 176 2 166 70 3 0 336 4 346 47 30 17
S2 100 98 100 309 2 287 27 10 0 513 5 535 13 60 17
S3 100 56 97 160 2 233 43 7 0 395 1 322 37 37 7

Fig. 3. World S3 showing the trail of an idiotypic (left) and nonidiotypic (right) robot

6 Conclusions

This paper has described a mobile robot control architecture that consists of an
LTL (evolutionary) phase responsible for the generation of sets of diverse be-
haviours, and an STL (immune system) phase, which selects from the available
behaviours in an adaptive way. It has shown that the behaviours are essentially
platform independent and that they can be evolved in simulation on a miniature
epuck robot and used on a much larger virtual Pioneer P3-DX robot. The plat-
form transfer is equivalent to a complex and difficult environmental change and
is thus a sound test of adaptability and scalability for the combined LTL-STL
architecture. Tests in different environments have shown that the Pioneer is able
to accomplish navigation, obstacle avoidance and retrieval tasks using the epuck
behaviours, and that on average it performs significantly faster when employing
the idiotypic mechanism as behaviour selection is much more adaptable than
using reinforcement learning alone. The next step is testing with real Pioneer
P3-DX robots to establish whether similar levels of success can also be achieved
in the real domain.

References

1. Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation,
and Machine Learning. Physica D 2(1-3), 187–204 (1986)

2. Floreano, D., Mondada, F.: Evolutionary Neurocontrollers for Autonomous Mobile
Robots. Neural Networks 11(7-8), 1416–1478 (1998)

3. Floreano, D., Mondada, F.: Hardware Solutions for Evolutionary Robotics. In:
Proceedings of the First European Workshop on Evolutionary Robotics. pp. 137–
151. Springer-Verlag, London, UK (1998)

4. Floreano, D., Urzelai, J.: Evolutionary Robots with On-line Self-organization and
Behavioural Fitness. Neural Networks 13, 431–443 (2000)

5. Gerkey, B., Vaughan, R., Howard, A.: The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In: Proceedings of the International Con-
ference on Advanced Robotics (ICAR 2003), Coimbra, Portugal. pp. 317–323
(2003)

6. Goosen, T., van den Brule, R., Janssen, J., Haselager, P.: Interleaving Simulated
and Physical Environments Improves Evolution of Robot Control Structures. In:
Proceedings of the 19th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC). pp. 135–142. Utrecht University Press (2007)

7. Jerne, N.K.: Towards a Network Theory of the Immune System. Annales
d’Immunologie 125C(1-2), 373–389 (1974)

8. Krautmacher, M., Dilger, W.: AIS Based Robot Navigation in a Rescue Scenario.
In: Proceedings of the 3rd International Conference on Artificial Immune Systems
(ICARIS 2004), Catania, Italy. pp. 106–118. Springer-Verlag (2004)

9. Lungarella, M., Sporns, O.: Mapping Information Flow in Sensorimotor Networks.
PLOS Computational Biology 2(1), 1301–1312 (2006)

10. Michel, O.: Cyberbotics Ltd - WebotsTM: Professional Mobile Robot Simulation.
International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

11. Nolfi, S., Floreano, D.: Evolutionary Robotics, The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. The MIT Press, 1st edn. (2000)

12. Urzelai, J., Floreano, D.: Evolutionary Robotics: Coping with Environmental
Change. In: Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-00. pp. 941–948. Morgan Kaufmann, San Francisco, CA, USA (2000)

13. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro- Middleware for Mobile
Robot Applications. IEEE Transactions on Robotics and Automation 18(4), 493–
497 (2002)

14. Walker, J.H., Garett, S.M., Wilson, M.S.: The Balance Between Initial Training
and Lifelong Adaptation in Evolving Robot Controllers. IEEE Transactions on
Systems, Man and Cybernetics- Part B: Cybernetics 36(2), 423–432 (2006)

15. Whitbrook, A.M., Aickelin, U., Garibaldi, J.M.: Idiotypic Immune Networks in
Mobile Robot Control. IEEE Transactions on Systems, Man and Cybernetics, Part
B- Cybernetics 37(6), 1581–1598 (2007)

16. Whitbrook, A.M., Aickelin, U., Garibaldi, J.M.: An Idiotypic Immune Network as
a Short-Term Learning Architecture for Mobile Robots. In: Proceedings of the 7th
International Conference on Artificial Immune Systems (ICARIS 2008), Phuket,
Thailand. pp. 266–278. Springer-Verlag (2008)

17. Whitbrook, A.M., Aickelin, U., Garibaldi, J.M.: Genetic Algorithm Seeding of Id-
iotypic Networks for Mobile-Robot Navigation. In: Proceedings of the 5th Interna-
tional Conference on Informatics in Control, Automation and Robotics (ICINCO
2008), Madeira, Portugal. pp. 5–13 (2008)

