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Thalamocortical (TC) neurones are known to express the low voltage activated, inactivating Ca2+

current IT. The triggering of this current underlies the generation of low threshold Ca2+ potentials
that may evoke single or bursts of action potentials. Moreover, this current can contribute to an
intrinsic slow (< 1 Hz) oscillation whose rhythm is partly determined by the steady state component
of IT and its interaction with a leak current. This steady state, or window current as it is so often
called, has received relatively little theoretical attention despite its importance in determining the
electro-responsiveness and input-output relationship of TC neurones. In this paper we introduce
an integrate-and-fire spiking neuron model that includes a biophysically realistic model of IT. We
briefly review the sub-threshold bifurcation diagram of this model with constant current injection
before moving on to consider its response to periodic forcing. Direct numerical simulations show
that as well as the expected mode-locked responses there are regions of parameter space that support
chaotic behavior. To reveal the mechanism by which the window current generates a chaotic response
to periodic forcing we consider a piece-wise linear caricature of the dynamics for the gating variables
in the model of IT. This model can be analyzed in closed form and is shown to support an unstable
set of periodic orbits. Trajectories are repelled from these organizing centers until they reach
the threshold for firing. By determining the condition for a grazing bifurcation (at the border
between a spiking and non-spiking event) we show how knowledge of the unstable periodic orbits
(existence and stability) can be combined with the grazing condition to determine an effective one-
dimensional map that captures the essentials of the chaotic behavior. This map is discontinuous
and has strong similarities with the universal limit mapping in grazing bifurcations derived in the
context of impacting mechanical systems [A. B. Nordmark, Phys. Rev. E, 55, 266 (1997).].

PACS numbers: 82.40.Bj,87.10.-e,87.19.ll

I. INTRODUCTION

The thalamus is often regarded as a relay station or
gateway for the passage of information from the sensory
periphery to the cortex. It is also known to play an im-
portant role in regulating states of sleep and wakefulness
[1]. Thalamocortical (TC) relay neurones of the thalamus
typically fire in one of two modes – tonic spiking or burst
spiking. In the latter case the response properties of TC
cells are dominated by a low-threshold, transient Ca2+

current known as IT. When this current is evoked, Ca2+

entering the neuron via T-type Ca2+ channels causes a
large voltage depolarization known as the low-threshold
Ca2+ spike (LTS). Conventional action potentials me-
diated by fast Na+ and K+ (delayed-rectifier) currents
often ride on the crest of an LTS resulting in a burst re-
sponse (i.e., a tight cluster of spikes) [2, 3]. As well as
playing a role in burst firing, recent work on thalamic
slices has shown that the IT current can lead to mem-
brane potential bistability, and play a role in the gen-
eration of slow (< 1 Hz) thalamic rhythms [4–7]. This
membrane potential bistability is due to an imbalance
between a hyperpolarizing leak current and a depolariz-
ing steady calcium current. This steady current occurs
when there is an overlap or window in the voltage re-
gion of activation and de-inactivation of T-channels, so
that a fraction of the channels are always open and do
not inactivate. Since the amplitude of this sustained cur-

rent can significantly diminish as the membrane voltage
moves outside of the window one might expect the cre-
ation of complex behaviors for input currents that cause
substantial variations in the cell membrane potential in
and out of this window. This is one of the questions we
address in this paper with a study of a model for IT.

Several conductance based models of spiking neurons
with an IT current already exist in the literature, such as
those in [8–10]. Although providing a good fit to physio-
logical data these models suffer from the same problems
as the fundamental Hodgkin-Huxley model on which they
are based. Namely they are high dimensional and non-
linear and not amenable to straight-forward mathemat-
ical analysis (at least not without invoking some special
singular limit). In an attempt to alleviate this problem
Smith et al. [11] have developed a minimal integrate-and-
fire-or-burst (IFB) model that replaces the fast spiking
currents with an integrate and fire mechanism. Moreover,
they also caricature the IT current with a single gating
variable in such a way that it is still able to accurately
reproduce data from sinusoidally forced TC neurons in
cat dorsal lateral geniculate nucleus. However, their par-
ticular model for activation and inactivation precludes a
window current and bistability and it is not able to pro-
duce slow intrinsic oscillations. Despite this the model
does lend itself to detailed theoretical studies at both the
single neuron [12–14] and network level [15–17]. In this
paper we take a step back from the standard IFB model
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and first consider a biophysically realistic model of IT.
In section II numerical bifurcation techniques are used
to flesh out the behavior of sub-threshold (non-spiking)
dynamics in response to constant current injection. This
nicely highlights that the mechanism for low frequency
oscillations is a direct consequence of the window cur-
rent. Indeed the presence of a sub-critical Hopf bifurca-
tion can destabilize one of the fixed points and lead to
a low frequency sub-threshold limit cycle. The spiking
dynamics is explored with direct numerical simulations
in response to periodic forcing and show mode-locking
responses reminiscent of that already observed for the
standard IFB model. However, the full IT model has
more exotic features indicative of chaotic behavior. To
establish chaos, we develop a notion of Lyapunov expo-
nents that allows us to accommodate an integrate-and-
fire reset mechanism. Next in section III we show how
a piece-wise linear (PWL) caricature of the activation
and inactivation curves of the biophysical model for IT is
sufficient to capture the essential sub-threshold, spiking
dynamics and bifurcations of the full model as well as its
inherent bistability. Importantly trajectories of this new
model can be calculated in closed form. Since numerical
simulations suggest the presence of unstable orbits as or-
ganizing centers for the chaotic response to periodic forc-
ing we focus on the analytical construction and stability
analysis of periodic spiking orbits. Moreover, important
dynamic transitions occur as a trajectory just reaches the
threshold for firing, which motivates a further calcula-
tion of non-smooth bifurcations associated with so-called
grazes. We show that knowledge of the unstable periodic
orbits and the conditions for a graze are essential ingre-
dients for constructing a one-dimensional map that can
generate chaotic dynamics of the type seen in the full
three dimensional non-autonomous non-smooth model.
Finally in section IV we discuss the relationship of the
one-dimensional map to the universal limit mapping in
grazing bifurcations derived in the context of impacting
mechanical systems by Nordmark [18].

II. THE MODEL

Following standard practice for the description of con-
ductance based single neuron models we write the evolu-
tion for the membrane voltage, v, for a TC neuron using
a current balance equation of the form:

C
dv

dt
= IL + I + IT + ISp. (1)

Here C is the membrane capacitance, IL a leak current of
the form gL(vL−v) with gL the leak conductance and vL

the leak reversal potential, I represents an injected cur-
rent and the ionic current ISp represents the sodium and
potassium currents involved in spike generation modeled
with say the usual Hodgkin-Huxley form [19]. The low
threshold T-type calcium current IT is a depolarizing in-
activating current which is modeled as in the work of

Williams et al. [4]:

IT = gCam
3h(vCa − v), (2)

where gCa and vCa are the conductance and reversal po-
tential for the current, and m and h represent activating
and inactivating gating variables. The dynamics for the
gates can be written in standard form with

dx

dt
=
x∞(v)− x
τx(v)

, x ∈ {m,h}, (3)

and the functions for x∞(v) and τx(v) are given in Ap-
pendix A. At steady state the IT current takes the volt-
age dependent value I∞T (v) = gCam

3
∞(v)h∞(v)(vCa − v),

which can be visualized using the superposition of the
sigmoidal steady-state activation and inactivation curves,
as shown in Fig. 1 (top). This diagram nicely illustrates
the origin of the phrase ‘overlap’ or ‘window’ current.
The voltage range determined by the crossing of the two
sigmoids is associated with a sustained current. Hence,
although voltage-gated channels are often thought to in-
activate (for example, T-channels and some Na channels
generate transient currents), a sustained current could be
generated in a model with IT if the steady state mem-
brane potential lies within the ‘window’, in this case be-
tween−80 to−50 mV. For example, making the very rea-
sonable assumption that spiking currents do not strongly
affect steady-state properties, then (in the absence of any
injected current) equilibria are determined by the condi-
tion gL(v − vL) = I∞T (v), and as illustrated in Fig. 1
(bottom) there is the potential for bistability.

A. Sub-threshold dynamics: Bifurcation diagram
under constant input

It is natural to explore bifurcations of the detailed bio-
physical model using numerical techniques. Focusing for
the moment on non-spiking behavior we set ISp = 0 and
explore how the fixed point behavior varies with a con-
stant current injection. Depending on the ratio gL/gCa

either one or three fixed points can be found. The sta-
bility of each fixed point can be computed by examining
the eigenvalues of the Jacobian of the system defined by
equations (1), (2) and (3). Typically this evaluation is
done numerically using a software package such as XP-
PAUT [20]. In Fig. 2 we show the bifurcation diagram
obtained using the parameters given in Appendix A. A
Hopf bifurcations occurs at I ≡ IHB = −0.1 and a sub-
threshold stable limit cycle can be observed for the range
I ∈ [−0.4,−0.1]. The limit cycle loses stability upon col-
lision with the separatrix (unstable manifold) of the un-
stable fixed point. For smaller gL, the Hopf bifurcation
observed when injecting hyperpolarizing currents occurs
later and a zone of bistability is created. This bistability
was originally observed by Williams et al. [4].
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FIG. 1. (Color online). Top: A plot of m3
∞(v) and h∞(v).

The region of ‘overlap’ defining the voltage range over which
the window current is significant is emphasized with the
shaded region. Bottom: A plot of the steady state window
and leak currents. Equilibria occur where the two curves cross
and in this example there are three fixed points. For standard
physiological parameters the low and high voltage states are
stable and the intermediate one is unstable, so that the system
is bistable.
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FIG. 2. (Color online). Bifurcation diagram of a non-spiking
neuron model with a detailed conductance based model for
IT under constant current injection I (in units of µA/cm2).
Decreasing the injected current leads to bistability. The more
depolarized fixed point destabilizes through a Hopf bifurca-
tion leading to a sub-threshold limit cycle. Model parameters
are given in Appendix A.

B. Spiking dynamics: Grazes and Lyapunov
exponents

With the inclusion of ionic currents that allow for spik-
ing behavior, ISp 6= 0, we would expect sufficiently strong
depolarizing current injection, I, to produce spiking be-
havior. In this case the neuron model would fire in tonic
mode and IT would not play a substantial role in gen-
erating spike train patterns. However, if I caused bouts
of hyperpolarization, then upon removal of this applied
current the build up of IT could lead to low threshold
spike and burst firing. To explore this in more detail
we consider a simplified model for ISp of integrate-and-
fire (IF) type and periodically force it using a periodic
input I(t) = I(t + ∆), where ∆ is the forcing period.
We denote this model IF-IT. Whenever the voltage, v,
reaches a threshold vth then it is discontinuously reset to
the value vr. The set of action potential firing times are
defined by

Tn = inf{t | v(t) ≥ vth ; t ≥ Tn−1}. (4)

The generation of firing times is thus specified in terms
of the properties of an underlying non-smooth dynamical
system. This means that a stretching of phase space will
manifest itself for two nearby trajectories of which only
one has sufficient velocity near threshold to guarantee a
firing event. A drastic difference in subsequent behavior
of the two trajectories would result and gives rise to the
notion of a grazing bifurcation. In the IF context a graze
can lead to two different types of bifurcation. To see this
it is convenient to study the IF trajectory without the re-
set condition. The first type of bifurcation occurs when
there is a tangential intersection of the trajectory with
the threshold value such that upon variation of the bifur-
cation parameter the local maxima of the IF trajectory
passes through threshold from above. In this case there
is loss of a spike in a non-smooth fashion. In the second
scenario a sub-threshold local maxima increases through
threshold leading to the creation of a new firing event at
some earlier time than usual. For sub-threshold trajecto-
ries that develop a maxima that grows to touch threshold
then a spike may be added into a spike train. Ignoring re-
set for the moment then a similar mechanism can lead to
a spike being subtracted as a maxima decreases through
threshold. These mechanisms for changing a spiking pat-
tern are illustrated in the right hand panel of Fig. 8.

To quantify the response of the model to stimulation
it is natural to construct the Lyapunov exponents, so
that one may readily distinguish aperiodic, periodic and
chaotic firing patterns. For smooth dynamical systems
of the general form Ż ≡ dZ/dt = F (Z), Z ∈ RN , these
exponents can be easily constructed by solving the vari-
ational problem u̇ = DF (Z)u, where DF is the Jaco-
bian of the vector field F . However, the IF reset mecha-
nism means that one must augment the variational prob-
lem with a rule for tracking how perturbations evolve
at firing times. The effects introduced by the threshold
and reset conditions when disrupting the normal flow
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FIG. 3. (Color online). Top: A plot of the Lyapunov ex-
ponent in the IF-IT model with square wave periodic forc-
ing. Parameters of the square-wave forcing are I1 = 0.5
and ∆ = 200ms. Here vr = −64 mV and vth = −35 mV.
The largest Lyapunov exponent is positive over the range
I0 ∈ [−0.195,−0.16] indicative of chaotic response. Bottom:
Value of the de-inactivation gating variable h at V = −70 mV.
The abrupt transition to a chaotic response at I0 = −0.195
can be seen as a change in the density of the return value of
h (when v = −60 mV).

have been treated extensively in the literature of im-
pact oscillators [21] and standard IF models [22]. We
discuss here briefly the method in the case of the IF-
IT model with Z = (v, h). A firing event can be de-
fined using the indicator function Hth(Z) = v − vth

and setting Hth(Z(Tn)) = 0. The reset mechanism can
then be implemented with Z+(Tn) = Hr(Z

−(Tn)) where
Hr(v, h) = (vr, h). Here the notation Z− (Z+) denotes
the trajectory just before (after) firing. By expanding
the above equations to leading order one can track how a
perturbed trajectory Z− + δZ− is modified by the firing
event to give a post firing trajectory Z+ + δZ+. Namely,
we have:

DHthδZ
− = −DHthF

(
Z−
)
δt, (5)

δZ+ = DHrδZ
− +

[
DHrZ

− − F
(
Z+
)]
δt, (6)

where DHth (DHr) denotes the Jacobian of Hth (Hr).
Because the threshold and reset conditions do not depend
on h, one can see that δt = −δv−/v̇− = −δv+/v̇+ and
hence that δv+ = (v̇+/v̇−) δv−. Therefore, the effect of
the discontinuous reset means that, compared with the
Lyapunov exponent for smooth dynamics, the perturbed
voltage variable needs to be scaled by an amount v̇+/v̇−

at each firing time.
In Fig. 3 we show the numerically obtained results for

the Lyapunov exponents (upper panel) when periodically
forcing with a square wave current. This current is such
that I(t) = I0 − I1 if 0 ≤ t < ∆/2 and I(t) = I0 + I1 if
∆/2 ≤ t < ∆. Along the interval I0 ∈ [−0.214,−0.136],
one observes an alternation of regions with a negative
or positive maximal Lyapunov exponent. Increasing I0,
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FIG. 4. (Color online). Chaotic trajectory of the IF-IT model.
The figure displays a phase plane view of a spiking chaotic
orbit for I0 = −0.175 and I1 = 0.5. The largest Lyapunov
exponent is 0.0025.

a non-smooth bifurcation is observed at I0 = −0.195 re-
sulting in an abrupt change in the dynamics of the model
which switches from a periodic to a chaotic response.
The region of chaotic dynamics terminates by another
non-smooth bifurcation at I0 = −0.16. The region of
positive maximal Lyapunov exponent in between these
two non-smooth bifurcation gives trajectories which dis-
play sensitivity to initial conditions. A typical plot of
a chaotic orbit in this region is shown in Fig. 4. We
display in the lower panel of Fig. 3 return values of h
when v = −60 mV, crossing from below and discarding
transients. Numerical simulations show that the second
non-smooth bifurcation occurs close to a sub-threshold
period doubling bifurcation.

III. A REDUCED MODEL

To understand the mechanism for generating chaos it
is natural to seek a caricature of the IT current that is
analytically tractable. In this spirit Smith et al. have
developed the integrate-and-fire-or-burst (IFB) model
[11]. In the IFB model the activation variable m is
assumed to be fast and is approximated by its steady
state value m∞(v). Moreover, the sigmoidal shape of
this function is changed in favor of a Heaviside so that
m∞(v) = H(v − vh), for some (hyperpolarized) thresh-
old vh. The inactivation variable h again has dynamics
given by (3), though with the choice h∞(v) = H(v−vh),
and τh(v) = τ+H(vh − v) + τ−H(v − vh). However, the
IFB model does not have a steady state calcium current
since the activation and inactivation curves are Heavi-
side functions that switch at the same point (v = vh) and
I∞T (v) = 0 everywhere. As we have linked the presence of
chaotic orbits to the existence of a non-zero overlap cur-
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FIG. 5. (Color online). Plot of the PWL activation m3
∞(V )

and in-activation function h∞(V ). This reduced model in-
cludes a window current and allows for mathematical analysis
of the neuron response to forcing.

rent we instead seek a model with more generality. With
this in mind we imagine decomposing the (v, h) phase
space into four regions (as opposed to two separated by
the line v = vh for the IFB model). We modify the origi-
nal IFB model and introduce a PWL activation function
to allow for the presence of a non-zero window current
and write

m3
∞(v) =


0 v < v1

(v − v1)/(v2 − v1) v1 6 v < v2

1 v > v2

, (7)

where v1 < vh and v2 > vh. Therefore, in the region
v ∈ [v1,vh], a steady state calcium current I∞T (v) =
gCa(v−v1)(vCa−v)/(v2−v1) exists. A plot of this window
current is shown in Fig. 5.

A. Sub-threshold behavior of PWL model

To show that our PWL model of IT does indeed cap-
ture the essential behavior of the full model we show the
corresponding bifurcation to Fig. 2 in Fig. 6. A com-
parison of the two shows that there is a good qualita-
tive agreement, both displaying a Hopf bifurcation as
the injected current becomes more hyperpolarizing. Both
models display a region of co-existence of a sub-threshold
limit cycle and a fixed point. Moreover, the current value
at the Hopf bifurcation is very similar (IHB = −0.1 for
the full model compared to IHB = −0.07 for the PWL
model - see Fig. 6) and quantitatively the main differ-
ences are the extent of the region of existence of the limit
cycle. However, unlike the bifurcation diagram for the
full model that of the simplified model can be calculated
analytically. To see how this is achieved we first make
use of the fact that the reversal potential for calcium is

large (typically ∼ 120 mV) and make the reasonable ap-
proximation vCa − v ≈ vCa. We then have that in any
given region of phase space the dynamics is governed by
a linear system of equations that can be written in the
form Ż = AZ + b(t), where all voltages are expressed
relative to vL. The 2 × 2 constant matrix A is readily
calculated in the four distinct regions separated by the
lines v = v1, v = v2 and v = vh (though we do not list
the elements here), and b(t) = (I(t)/C, 0). In each of the
four regions it is an elementary exercise to calculate fixed
points and determine their linear stability. Moreover, it
is also possible to construct subthreshold periodic orbits
by noting that the dynamics for the gating variable h is
either exponentially increasing when v < vh or exponen-
tially decreasing when v > vh. Hence, for t > t0, we may
write:

h(t) =

{
1 + (h+(t0)− 1)e−(t−t0)/τ+ v ≤ vh
h−(t0)e−(t−t0)/τ− v ≥ vh

, (8)

where h±(t0) are the values of h when v = vh. The
voltage dynamics can then be integrated to obtain

v(t) = vL +G(t, t0)v(t0) +

∫ t

t0

G(t, s)J(s)ds, (9)

where

J(t) = I(t)/C +


0 v < v1

−v1h(t)/τ̂Ca v1 ≤ v ≤ v2

vCah(t)/τCa v > v2

, (10)

and G(t, s) = exp
∫ t
s
K(s′)ds′, with

K(t) =

{
−1/τ v < v1 and v > v2

−1/τ + vCah(t)/τCa v1 ≤ v ≤ v2
,

(11)
where τ = C/gL, τCa = C/gCa and τ̂Ca = τCa(v2 −
v1)/vCa. Hence, trajectories can be constructed in closed
form using (8) and (9) from a given set of initial data and
patching solutions (enforcing continuity) at the phase
space boundaries where v = v1, v = vh and v = v2.
For example, a simple periodic orbit with v(t) ∈ (v1, v2)
of period ∆ that crosses through v = vh just twice can be
specified by solving v(t1) = vh using initial data (vh, h0),
and v(t2) = vh with initial data (vh, h(t1)). The unknown
value for h0 is determined self-consistently by enforcing
periodicity of h, namely that h(t1 + t2) = h0. The simul-
taneous solution of these three equations gives the period
as ∆ = t1 + t2. The stability of the orbit can be deter-
mined using Floquet theory for PWL systems as recently
developed in [23]. Using this approach we find that the
non-zero Floquet exponent is given explicitly by

σ = − t1
τ−
− t2
τ+
− ∆

τ
+

1

τ̂Ca

∫ ∆

0

h(t)dt. (12)

Periodic solutions are stable if σ < 0, and this condition
was used to determine the stability of solution branches
in the bifurcation diagram of Fig. 6.
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FIG. 6. (Color online). Bifurcation diagram of an IF model
with a PWL IT current under constant current injection I
(in units of µA/cm2). The reduced model displays both the
bistability and the stable subthreshold orbit which charac-
terized the bifurcation diagram of 2. Models parameters are
v1 = −72 mV, vh = −70 mV and v2 = −65 mV. The maximal
conductance constants are identical to the full IT model.

B. Spiking behavior of PWL model

The spiking behavior of the PWL model is also consis-
tent with that of the full model and supports chaotic
trajectories. An example chaotic trajectory is shown
in Fig. 7. Once again it is possible to obtain trajec-
tories in closed form. Indeed these are also given by
equation (9) subject to the further condition that v is
reset to vr if v = vth. Since direct numerical simula-
tions suggest that chaotic orbits are organized around
unstable periodic orbits it is natural to consider the con-
struction of mode-locked states. To do this we follow
along similar lines to [12] and look for periodic spike
trains with period q∆ which can be written in the form
Tn =

(
[n/p] + φn(p) − φh

)
q∆, where φh is the phase

at which the neuron crosses vh from below and φn(p)

the set of p phases at which the neuron spikes. Here
[ . ] denotes the integer part and n(p) = n mod p. In
addition to being interested in the set of spike times
we are now also concerned in tracking the set of times
Bn = inf {t | v (t) > vh, v̇ > 0, t > Bn−1} where vh is
crossed from below. Taking for example a simple 1:1
spiking orbit, we denote T1 = t1 and B1 = t2. We can
specify the trajectory by v(t1) = vth with initial data
(vh, h0), v(t2) = vh with initial data (vr, h(t1)) and en-
forcing h(∆) = h0, with ∆ = t1 + t2. In practice, any pe-
riodic solution can be written in a similar fashion, enforc-
ing the constraint on h at the crossing of vh and patching
together trajectories (along the lines described in section
III A) subject to reset. More elaborate p:q solutions (p
spikes per q cycles of firing) can be constructed in a sim-
ilar fashion. Every time that a trajectory crosses a bor-
der vB ∈ {v1, v2, vh, vth} we have a constraint equation of
the form v(tµ) = vB, which determines a ‘time-of-flight’
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FIG. 7. (Color online). Phase-plane of a spiking chaotic orbit
(black line). At least 4 unstable orbits (red lines) are embed-
ded in this chaotic attractor. A detailed view of the trajectory
and unstable periodic orbits is displayed in Fig. 8. Model pa-
rameters are the same as in Fig. 6 with vr = −64 mV and
vth = −35 mV.

tµ. Each of these constraint equations can be written in
the general form F (tµ+1, tµ, hµ) = 0, where the function
F is given by (9) evaluated at t = tµ+1 starting from
t0 = tµ. Here hµ is the value of h when v most recently
crossed v = vh, namely h(

∑µ
ν=1 tν) = hµ. This latter ex-

pression can also be written as a constraint of the form
G(tµ+1, tµ, hµ) = hµ+1, where the function G is given by
equation (8) with t = tµ+1, t0 = tµ and h(t0) = hµ. Any
trajectory is thus determined by a set of 2µ nonlinear
equations:

F (tµ+1, tµ, hµ) = 0, G(tµ+1, tµ, hµ) = hµ+1. (13)

Introducing perturbations (to the periodic orbit) of the
form (tµ, hµ)→ (tµ, hµ) + (δtµ, δhµ) gives:

δtµ+1
∂F

∂tµ+1
+ δtµ

∂F

∂tµ
+ δhµ

∂F

∂hµ
= 0 (14)

δtµ+1
∂G

∂tµ+1
+ δtµ

∂G

∂tµ
+ δhµ

∂G

∂hµ
= δhµ+1. (15)

The above may be rearranged to give the linearized
equations of motion in the form γµ+1 = Mµγµ, where
γµ = (δtµ, δhµ) and the matrix Mµ is given in Ap-
pendix B. Hence, for a periodic orbit written in terms
of p ‘patched’ trajectories the matrix determining stabil-
ity is Λ = MpMp−1 . . .M2M1. If the two eigenvalues of Λ
lie within the unit circle then the orbit is stable. Stable
orbits can loose stability through saddle-node, period-
doubling or Neimark-Sacker bifurcations.

We show in Fig. 7 a chaotic trajectory of the IF-IT
model with a PWL model of IT . This trajectory is sim-
ilar to that observed for the full IT model. By tracking
unstable mode-locked orbits in parameter space we were
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FIG. 8. (Color online). Left, Detailed plot of the chaotic
trajectory and unstable mode-locked solutions near threshold.
Each unstable mode-locked solution is plotted with the 1:1 in
blue, 3:1 in red, 5:1 in green and the 7:1 in yellow. Right,
Example of the spike adding and spike subtracting mechanism
for a 3:1 mode. The dotted line represents the unrestricted
trajectory (i.e. no reset).

able to establish that they coexist with the chaotic or-
bit. In Fig. 7, we show four such unstable modes with
q = 1 and p ∈ {1, 3, 5, 7}. We found only modes of the
form (2m+ 1):1 where m ∈ N. The reason for this lies
in the amount of de-inactivation that can be reached af-
ter a spike. Indeed, a spike occurs at the beginning of a
cycle (i.e. when I (t) = I0 + I1) when the Ca2+-channels
are sufficiently de-inactivated. More precisely, h needs
to be increased high enough during the hyperpolarizing
part of the period (i.e. when I (t) = I0 − I1) for a spike
to occur. After a reset, groups of two sub-threshold cy-
cles, one small amplitude and the other large amplitude,
are necessary before threshold can once again be reached.
Numerical simulation clearly shows that chaotic trajecto-
ries are organized around unstable periodic mode-locked
solutions and are shaped by spike adding or spike sub-
tracting mechanisms as described in section II B. Indeed,
when a trajectory is started close to an unstable mode-
locked state, it diverges from it quickly and evolves to-
ward an orbit that can graze the threshold. As an ex-
ample, we now describe what happens for a trajectory
initiated close to a 3:1 mode. Initially the trajectory
spikes once every three forcing periods, tracking near to
the 3:1 solution. If we denote by hn the value of h at
the nth threshold crossing and by h∗3:1 the value of h at
threshold for the 3:1 mode, our numerical simulations
show that hn then begins to oscillate around h∗3:1 tak-
ing subsequently higher and lower values. The group of
sub-threshold cycles following a threshold-crossing with
hn > h∗3:1 has a maximum membrane potential that ap-
proaches vth from below. This can ultimately lead to
a spike addition via the mechanism described in section
II B, and illustrated in the right hand panel of Fig. 8.

The group of sub-threshold cycles following a threshold-
crossing with hn < h∗3:1 have a smaller and smaller v̇ at
v = vth and ultimately suffer a spike subtraction. We
further observed that a trajectory initially close to the
3:1 orbit could make a transition to an orbit close to
the 5:1 orbit. In general we expect that the loss or ad-
dition of a spike (via a graze of the trajectory with the
firing threshold), can cause a transition from a trajectory
organized around one unstable p:q mode-locked state to
another (with a different set of (p, q) values). An example
of such a scenario is shown in Fig. 8 (left) with a portion
of a chaotic orbit shown in relation to the unstable mode-
locked states with q = 1 and p ∈ {1, 3, 5, 7}. In the next
section we show how a construction of the unstable peri-
odic orbits can be combined with the grazing condition
(for spike adding and subtracting) to determine an effec-
tive one-dimensional map that captures the essentials of
the observed chaotic behavior.

C. A one-dimensional map

There are many incentives to use a dimensionally re-
duced description to describe the observed chaotic be-
havior. One of these is the desire to understand the or-
ganization of trajectories in terms of grazes which add
or subtract spikes. In the context of impact oscillators
grazing bifurcations are well known to allow an effective
description of system dynamics, including chaotic trajec-
tories, in terms of a discontinuous one-dimensional map
[18]. Because of the presence of grazing bifurcations in
the IF-IT there is some hope of mirroring the success of
the impact oscillator community [24, 25] in this regard,
especially if we focus on the tractable PWL model of IT.

We construct a one-dimensional map R giving the re-
turn values hn of the slow variable h at the spike time
Tn. Each p:q mode-locked solution of the periodically
forced IF-IT corresponds to a fixed point of the map
R(p). Here we shall focus on the (2m+ 1):1 modes
and begin by calculating the fixed points h∗(2m+1):1 of

hn+1 = R(2m+1) (hn). These are obtained by solv-
ing the set of nonlinear equations given by (13). We
can use the ‘patched’ dynamics in order to approxi-
mate the behavior of R near the fixed points. Look-
ing at the first order perturbation in hn of equation
(13) we can obtain the slope of R at each fixed point:
dR/dh|h=h∗ = [Λ]12. We now split the domain of R
into different intervals. Each interval corresponds to all
possible hn values taken by an orbit initially close to a
(2m+ 1):1 mode before undergoing a graze. Hence, we
determine the boundaries of each interval by comput-
ing the values A2m+1 of h where a spike addition occurs.
Namely

{
h±g = h (Tn) | v̇ (Tn) = 0

}
where the g subscript

indicates that we are at grazing and the + and − su-
perscripts indicates a spike addition and subtraction re-
spectively. For example, the interval I(2m+1):1 of hn val-
ues attainable by an orbit initially close to a (2m+ 1):1
mode is given by I(2m+1):1 = [h+

g(2m+1):1, h
−
g(2m+1):1). To
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FIG. 9. (Color online). One-dimensional map approxima-
tion. The unstable fixed points of the return map correspond
to the value of h at v = vth for the 1:1, 3:1, 5:1 and 7:1 un-
stable mode-locked solutions. Each branch is defined over a
range whose borders correspond to the value of hn for which
a grazing bifurcation occurs.

compute h±g(2m+1):1, we assume that the phases φn are

roughly those of the (2m+ 1):1 mode as motivated by
numerical simulations. Then, we solve equations (9) and
(8) using the necessary conditions for each type of graze.
In practice, one can see that we should have h−g(2m+1):1 =

h+
g(2nm+3):1 for the map to be defined on a continuous do-

main. Thus we need only calculate h−g(2m+1):1. Examples

of values h±g(2m+1):1 are given in Fig. 9, with spike addi-

tion represented by a square marker, labeled by A1,3,5,7,
and spike subtraction by a diamond marker, labeled by
S1,3,5,7. Just before a spike addition, the return value
of R is maximal on the interval I(2m+1):1. Similarly, the
minimal return value on the interval I(2m+1):1 occurs just
before a spike subtraction. These maximal and minimal
values are important features of R since they determine
the range of R on each interval [h+

g(2m+1):1, h
−
g(2m+1):1).

Finally, as a minimal map that incorporates all these
constraints, we implement a second order polynomial in-
terpolation between Si, Ai and h∗i:1. The return map has
the form R : h → a+h2 + b+h + c+ for each interval[
h+
g , h

∗) and R : h → a−h2 + b−h + c− for each in-

terval
[
h∗, h−g

)
with the coefficients of the polynomial

interpolation given in Appendix C. Figure 9 shows the
one-dimensional map approximation obtained by imple-
menting the above method for I0 = −0.175 and I1 = 0.5
(where chaotic behavior in the original system occurs).
Orbits of the reduced map and sections from the full
dynamics may be easily compared. In Fig. 10 we show
the corresponding histograms of hn values for the full
and reduced descriptions, illustrating that using the one-
dimensional map is indeed an excellent way to character-
ize the chaotic behavior of a fast spiking neuron model
with a slow T-type calcium current.
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100
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n

One-dimensional mapIFB with PWL model of I
T

FIG. 10. Density of return values for h obtained for the PWL
IF-IT model and for the one-dimensional map derived using
the construction of unstable mode-locked orbits and grazing
bifurcations.

IV. DISCUSSION

We have shown in this paper how the IT current
present in thalamic neurons can be approximated by an
(analytically tractable) PWL caricature. The subsequent
generation of a ‘window’ current, known to be at the
origin of the bistability of the membrane potential of
thalamic neurons, was shown to be responsible for the
existence of chaotic trajectories. Using closed form solu-
tions for trajectories of an IF model with this current we
were able to calculate the periodic orbits of the homo-
geneous (i.e. sub-threshold limit cycle) and periodically
forced system. Importantly we have shown that unsta-
ble mode-locked solutions constitute an important set of
organizing centers for chaotic trajectories, and have used
them, in conjunction with grazing bifurcations, to build
a reduced one-dimensional map.

The one-dimensional map we obtained bears some re-
semblance to that derived by Nordmark [18] for an im-
pacting mechanical oscillator. The derivation of this me-
chanical impact map relies on the existence of orbits with
a large number of non-impacting cycles before crossing
some phase space discontinuity. In this case there is
the possibility of a specific bifurcation characterized by a
period-adding sequence interleaved by chaotic windows.
In our case, the number of sub-threshold orbits is rather
small (0 to 6), and there are no stable periodic orbits in
the chaotic region. Interestingly, the different branches of
our one-dimensional map describe sequences of (2m+1):1
periodic orbits rather than a period-adding between n:1
periodic orbits. Hopefully the study of other forced single
neuron models of IF type, such as the quadratic IF model
[26], the adaptive exponential IF model [27], the absolute
IF model [28] and the Izhikevich model [29] may all ben-
efit by a further translation of ideas from the impact os-
cillator literature. Perhaps more important though is the
extension of this work to the network level. Matveev et al.
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[30] have already analyzed anti-phase bursting in a pair of
reciprocally interacting spiking cells with synaptic inhibi-
tion and a slow T-type calcium current. In this case the
single neuron model did not possess an overlap current
and only periodic bursting patterns were observed. It
thus becomes an interesting question as to whether with
the inclusion of overlap currents chaotic responses can
be enhanced or suppressed by synaptic coupling. For the
study of larger networks with overlap currents one can
generalize the approach in [15] which constructs firing
rate models from spiking models in the presence of slow
intrinsic and synaptic currents. In this case the firing
rate function that mediates interactions depends on both
the synaptic drive and the slow intrinsic current. For
a T-type calcium current without overlap rhythms and
waves have already been analyzed and it would be nat-
ural to extend these calculations to the piece-wise linear
model of IT introduced in this paper. Moreover, as such
networks (with minor refinement to distinguish between
thalamo-cortical and reticular cell types) can provide a

minimal model of the thalamus it becomes even more
interesting to analyze the network response to periodic
forcing, and to determine the conditions for mode-locked
behavior. This is especially relevant to understanding
how cortical population responses arise from sensory in-
put (gated through the thalamus) and the dependence of
this response on thalamo-cortical interactions and intrin-
sic currents. This is a topic of current study and will be
reported on elsewhere.
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APPENDIX A

The conductance based model for IT is given by equa-
tions (2) and (3) with

m∞(v) =
1

1 + e−(v+72)/3)
, h∞(v) =

1

1 + e2(v+70)
, (16)

τh(v) = 7.66 + 0.02868e−0.1054v, (17)

and vL = −95.0 mV, gCa = 0.7 mScm−2 and vT = 120
mV. Other parameters in (1) are C = 2 µFcm−2, gL =
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0.35 mScm−2.

APPENDIX B

The elements, [Mµ]ij , of Mµ are

[Mµ]11 = − ∂F

∂tµ

/
∂F

∂tµ+1
, (18)

[Mµ]12 = − ∂F

∂hµ

/
∂F

∂hµ+1
, (19)

[Mµ]21 = [Mµ]11
∂G

∂tµ+1
+
∂G

∂tµ
, (20)

[Mµ]22 = [Mµ]12
∂G

∂tµ+1
+
∂G

∂hµ
, (21)

and are readily obtained by differentiating equations (8)
and (9).

APPENDIX C

a± =

(
R
(
h±g
)

+ (Λ12 − 1)h±g + Λ12h
∗)

2
(
h∗ − h±g

)2 , (22)

b± = Λ12 − 2a±h∗, (23)

c± = h∗
(
1− Λ12 + a±h∗

)
, (24)

where h±g = h±g(2m+1):1, h∗ = h∗(2m+1):1 with Λ12 identi-

fied as the slope of the return map R at a fixed point.


