High—Order hp-Adaptive Discontinuous
Galerkin Finite Element Methods for
Compressible Fluid Flows

Stefano Giani and Paul Houston

Abstract This article is concerned with the construction of genesatropic and
anisotropic adaptive strategies, as welhgsmesh refinement techniques, in com-
bination with dual-weighted—residumposteriorierror indicators for the discontin-
uous Galerkin finite element discretization of compressihiid flow problems.

1 Introduction

The development of Discontinuous Galerkin (DG) methodstiernumerical ap-
proximation of the Euler and Navier-Stokes equations isxremely exciting re-
search topic which is currently being developed by a numbgraups all over the
world, cf.[1, 2,5, 8, 9, 10, 14], for example. DG methods hseeeral important ad-
vantages over well established finite volume methods. Theegat of higher-order
discretization is inherent to the DG method. The stenciliisimal in the sense that
each element communicates only with its direct neighbergadrticular, in con-
trast to the increasing stencil size needed to increasecthaacy of classical finite
volume methods, the stencil of DG methods is the same for ahgr @f accuracy
which has important advantages for the implementation ahldary conditions and
for the parallel efficiency of the method. Moreover, due #isple communication
at element interfaces, elements with so—called hangingsodn be easily treated,
a fact that simplifies local mesh refinemeht efinement). Additionally, the com-
munication at element interfaces is identical for any oaféhe method which sim-
plifies the use of methods with different polynomial ordpris adjacent elements.
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This allows for the variation of the order of polynomials ovke computational
domain -refinement), which in combination witk-refinement leads to so—called
hp-adaptivity.

Mesh adaptation in finite element discretizations should&ged on rigorous
a posteriorierror estimates; for hyperbolic/nearly—hyperbolic edpret such esti-
mates should reflect the inherent mechanisms of error petjpeysee [12]). These
considerations are particularly important when local diti@&s such as point values,
local averages or flux integrals of the analytical solutios @ be computed with
high accuracy. Selective error estimates of this kind caolitained by the opti-
mal control technique proposed in [4] and [3] which is basedloality arguments
analogous to those from tkaepriori error analysis of finite element methods. In the
resultinga posteriorierror estimates the element-residuals of the computeti@olu
are multiplied by local weights involving the adjoint saaut. These weights rep-
resent the sensitivity of the relevant error quantity wigkpect to variations of the
local mesh size. Since the adjoint solution is usually umkmanalytically, it has to
be approximated numerically. On the basis of the resubimpsteriorierror esti-
mate the current mesh is locally adapted and then new appatixins to the primal
and adjoint solution are computed.

This article develops duality-basadposteriorierror estimation of DG finite el-
ement methods, together with the application of these coapeibounds within au-
tomatic adaptive finite element algorithms. Here, a vaigétgotropic and anisotropic
adaptive strategies, as well lap—-mesh refinement will be investigated.

2 Compressible Navier-Stokes equations

In this article, we consider both two— and three—dimendiowascid and laminar
compressible flow problems. With this in mind, for geneyalit this section we
introduce the stationary compressible Navier-Stokestasin three-dimensions:

0-(Z%u)—.Z%(u,0u)) =0 inQ, (1)

where Q is an open bounded domain &® with boundaryl"; for the purposes
of this section, we sedl = 3. The vector of conservative variablads given by
u=(p,pvi,pVvz,pv3, pE) " and the convective fluc(u) = (fi(u),fg(u),fg(u))T
is given byf$ (u) = (pV1, pV2+ p, pvaV2, pvava, pHV1) |, fS(U) = (pv2, pVavi, pV3+
P, PVavs, pHV,) T, andfS(u) = (pvs, pvava, pvave, pVv3 + p, pHvs) . Furthermore,
fY(u, 0u) = (0, Tak, Tok, Taks TVl + 2 Ty ) |, k= 1,2,3. Herep, v = (v1,Vo,V3) ', p,

E andT denote the density, velocity vector, pressure, specifat &stergy, and tem-
perature, respectively. Moreovef, is the thermal conductivity coefficient ahtlis
the total enthalpy given byl = E + £ = e+ Iv2+ 2 whereeis the specific static
internal energy, and the pressure is determined by the iequaitstate of an ideal
gasp= (y—1)pe, wherey = cp/cy is the ratio of specific heat capacities at constant
pressurecp, and constant volume,; for dry air, y = 1.4. For a Newtonian fluid,



hp-Adaptive DG methods for Compressible Fluid Flows 3

the viscous stress tensor is giventy: p (Ov + (Ov) " — %(D -V)I), wherep is the
dynamic viscosity coefficient; the temperatiiés given by.# T = LY (E — 1v?)
where Pe= 0.72 is the Prandtl number. For the purposes of discretizatierrewrite
the compressible Navier—Stokes equations (1) in the fallgequivalent) form:

0 (£%u) - G(u)du) = & (fﬁ(u) - Gk|(U)g—:> =0 inQ.

Here, the matrice&y (u) = f/(u,0u)/duy, fork,1 = 1,2, 3, are the homogeneity
tensors defined bf)(u, Ou) = Gy (u)du/dx, k=1,2,3.

3 DG Discretization

In this section we introduce the adjoint-consistent imigpienalty DG discretization
of the compressible Navier—Stokes equations (1), cf. [@dfdrther details.

First, we begin by introducing some notation. We assumehatRY, d = 2,3,
can be subdivided into a mesh, = {k} consisting of tensor-product (quadrilater-
als,d = 2, and hexahedral = 3) open element domains For eachk € %, we
denote bynk the unit outward normal vector to the boundamy. We assume that
eachk € .7, is an image of a fixed reference elemeéntthat is,k = ok (K) for
all k € %, wherek is the open unit hypercube iRY, and gy is a smooth bijec-
tive mapping. On the reference eleménwe define the polynomial spacg, with
respect to the anisotropic polynomial degree ve@or {pi}i—1_ 4 as follows:
Dy = spar{l‘lid:li(iJ 10 < j < pi}. With this notation, we introduce the following
(anisotropic) finite element space.

Definition 1. Letp = (px : K € %) be the composite polynomial degree vector of
the elements in a given finite element megh We define the finite element space
with respect ta2, 5, andp by Vi p = {u€ Lo(Q) 1 ulx o 0k € [QPK]”Z}.

In the case when the elemental polynomial degree vemior {p«.iti=1,. d»

K € h, is isotropic in the sense th@k 1 = px2 = ... = Px.d = P« for all ele-
mentsk in the finite element mesk,, then we writeV  in lieu of Vi, p, where
Piso = (Px : K € Fh). Additionally, in the case when the polynomial degree isbot
isotropic and uniformly distributed over the mesj, i.e., whenp, = p for all k in
h, then we simply denote the finite element spac&/Ry.

An interior faceof % is defined as the (non-emptg — 1)—dimensional interior
of dkTNdk~, wherek™ andk ™~ are two adjacent elements &f, not necessarily
matching. Aboundary facef % is defined as the (non-emptyg — 1)—dimensional
interior of dk NI", wherek is a boundary element ¢f;,. We denote by, the union
of all interior faces of%,. Let k™ andk~ be two adjacent elements of},, andx
an arbitrary point on the interior face= dk™ N dk~. Furthermore, le¥ andt
be vector- and matrix-valued functions, respectively} v@ smooth inside each
elementk*. By (v, %), we denote the traces 6f, 1) on f taken from within the
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interior of k*, respectively. Then, the averagesw@ndt atx € f are given by
{vi} = (vf+v7)/2and{{t}} = (¥ +17)/2, respectively. Similarly, the jump of
vatx € f is given by[v] =v" @n,+ +v~ ®n,-, where we denote by, the unit
outward normal vector ok *, respectively. Orf C I, we set{{v}} =v, {{1}} =1
and[v] = v® n, wheren denotes the unit outward normal vectorto

The DG discretization of (1) is given by: fing, € Vhp such that

N (up, v E—/ ZFC(up) : Opvdx + Ut ,us,nT) vt ds
(un,Vv) A (un) Kezg;]ﬁK\r(hh )
+/inv(uhﬂhuh) : thdx—/r {.7"(un, Onun) }} < [Iv] ds
B2

_/I_/{{GT(Uh)DhV}}ZMdS—i-/I_ 3(un) : [V] ds+ A7 (up,v) =0 (2)

for all v in Vi, ,. The subscriph on the operatol]y, is used to denote the discrete
counterpart of], defined elementwise. Here?’(-, -, -) denotes the (convective) nu-
merical flux function; this may be chosen to be any two—poiahotone Lipschitz
function which is both consistent and conservative. Forpingoses of this article,
we employ the Vijayasundaram flux.

In order to define the penalization functidit-) arising in the DG method (2),
we first introduce the local (anisotropic) mesh and polyrarfiinctionsh and
p, respectively. To this end, the functi@nin L.(I» U ) is defined ash(x) =
min{my+, m,- }/m, if X is in the interior off = dk ™ N dk~ for two neighboring
elements in the mesHy, andh(x) = m,/ms, if x is in the interior off = dk NI .
Here, for a given (open) bounded set” RS, s > 1, we writemy, to denote thes—
dimensional measure (volume)®f In a similar fashion, we defingein Lo (I, UT")
by p(x) = max{py+ i, P j} for k*, K~ as above, where the indicesand j are
chosen such thaIK‘}(f) and O'K__l(f) are orthogonal to th&gh—, respectivelyjth—
coordinate direction on the reference elemenfor x in the interior of a bound-
ary facef = dk NI, we writep(x) = px.i, wheno, 1(f) is orthogonal to théth—
coordinate direction oR. With this notation the penalization term is given by

5(un) = Co B G(un) B [un],

whereC; is a (sufficiently large) positive constant, cf. [7].
Finally, we define the boundary terms present in the fotf{-,-) by

J%—(uh,v):/I_fﬁ-(u;,u,-(u;),nﬂ-v+ds+/l_§,—(u:):v®nds

—/ n-Z¢ (ur (ub), Oput) vt ds—/ (G,T(u;)th;) C(uf —ur(ul)) ®nds,
r r

wheredr (up) = QPP; Gr (uf) (up—ur (up)) ® n. Here, the viscous boundary flux
Z} and the corresponding homogeneity terGprare defined by
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ZF (Un,0un) = Z"(ur (un), Oun) = Gr (un)Bun = G(ur (un)) Oup.

Furthermore, on portions of the bounddrywhere adiabatic boundary conditions
are imposedZ; andGr are modified such that- OT = 0. The convective bound-
ary flux J# is defined by (u,ur (ui),n) = n-.Z(ur(ut)). Finally, the
boundary functionur (u) is given according to the type of boundary condition im-
posed; for details, we refer to [11], for example.

4 A posteriorierror estimation

In this section we consider the derivation of an adjointeoksposterioribound on
the error in a given computed target functiodg@l of practical interest, such as the
drag, lift, or moment on a body immersed within a compresdioid, for example.

Assuming that the functional of interedt) is differentiable, we writel(-;-) to
denote the mean value linearizationJ¢f) defined by

J(u,up;u—up) =J(u) —JI(up) = /OlJ’[Gu+ (1—6)up)(u—up)de,

whereJ'[w]|(-) denotes the Fréchet derivativelsf) evaluated at some in V. Here,
V is some suitably chosen function space suchhgt C V.
Analogously, forv in V, we define the mean—value linearization ¢f(-,v) by

A (U,Up; U—Up,V) = A (U,v) — A (Up,V) = /()lJV’[Gu+(1— 0)up)(u—up,v) de.

Here,.#"'|w]|(-,v) denotes the Fréchet derivativewf- ./ (u,v), for v € V fixed,
at somew in V. Let us now introduce the adjoint problem: find V such that

A (U up;W,Z) = J(U,up;w)  Yw e V. 3)
With this notation, we may state the following error repraagion formula

J(u) —JI(up) = Z(un,z—z1) = z Nk, 4)

KeIh

whereZ (un,z — zn) = — A4 (Uh,z— zp) includes primal residuals multiplied by the
difference of the adjoint solutionand an arbitrary discrete functiap € Vi, p, and
Nk denotes the local elemental indicators; see [8, 10] forildeta

We note that the error representation formula (4) depende@®nnknown ana-
lytical solutionz to the adjoint problem (3) which in turn depends on the unkmow
analytical solutioru. Thus, in order to render these quantities computable, both
andz must be replaced by suitable approximations. Here, thaiinations leading
to .4 (u,up;-,-) andJ(u,up; -) are performed about, and the adjoint solutiom is
approximated by computing the DG approximatimre Vy, ,, whereVy, , is anad-
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Fig. 1 Cartesian refinement in 2D: (a) & (b) Anisotropic refineméan};Isotropic refinement.

joint finite element space from which the approximate adjointtamiz;, is sought.
For the purposes of this article, we $&f, = Vi, p,, wherepg = p + 1.

In the following sections we consider the development of ety of adaptive
mesh refinement algorithms in order to efficiently contrel &nror in the computed
target functional of interest.

5 Anisotropic mesh adaptation

In this section we first consider the automatic design ofarpic finite element
meshes%;,, assuming that the underlying polynomial degree distidlouts both
uniform and fixed, i.e., wheoy € Vy, p. To this end, elements are marked for re-
finement/derefinement according to the size of the (apprata@jrerror indicators
In«|, based on employing a fixed fraction strategy, for exampézet is defined
analogously taj in (4) with z replaced byzy,.

To subdivide the elements which have been flagged for refinermee em-
ploy a simple Cartesian refinement strategy; here, elemmaais be subdivided
either anisotropically or isotropically according to thede refinements (in two—
dimensions, i.e.d = 2) depicted in Figure 1. In order to determine the optimal
refinement, we propose the following strategy based on ¢hgadlse most compet-
itive subdivision ofk from a series of trial refinements, whereby an approximate
local error indicator on each trial patch is determined.

Algorithm 5.1 Given an elemert in the computational mesh;, (which has been
marked for refinement), we first construct the mesh patéhgs = 1,2, 3, based on
refiningk according to Figures 1(a), (b), & (c), respectively. On eawhsh patch,
Fhi, 1 =1,2,3, we compute the approximate error estimatafs; (Un,;, znj — zn) =

> «red M, fori=1,2,3, respectively. Hereynj, i = 1,2, 3, is the DG approxima-
tion computed on the mesh patéh;, i = 1,2,3, respectively, based on enforcing
appropriate boundary conditions ok computed from the original DG solution
up on the portion of the boundamgk of k which is interior to the computational
domainQ, i.e., wheredk NI" = 0. Similarly,z,; denotes the DG approximationzo
computed on the local mesh patéh;, i = 1,2, 3, respectively, with polynomials of
degree p, based on employing suitable boundary conditiondem/™ = 0 derived
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Fig. 2 Cartesian refinement in 3D.

fromz,. Finally, n, ;, i =1,2,3, is defined in an analogous mannerntp, cf. above,
with up andz replaced byun; andzy j, respectively.
The elemenk is then refined according to the subdivisiorkofvhich satisfies

miny [l = [Zki(Uni; Zni — 20)|
i=123 #dofg %) — #dofgk)

where#dofg k) and#dofg.%,), i = 1, 2,3, denote the number of degrees of freedom
associated withk and %, i = 1,2, 3, respectively, cf. [6].

The extension of this approach to the case wlgns a hexahedral mesh in
three-dimensions follows in an analogous fashion. Indigetthis setting, we again
employ a Cartesian refinement strategy whereby elementbmsaybdivided either
isotropically or anisotropically according to the four refiments depicted in Fig-
ures 2(a)—(d). We remark that we assume that a face in thewtatignal mesh is a
complete face of at least one element. This assumption nibahthe refinements
depicted in Figures 1(b)—(d) may be inadmissible. In thigation, we replace the
selected refinement by either one of the anisotropic mesheregénts depicted in
Figures 2(e)—(Q), or if necessary, an isotropic refinengperformed.

5.1 Numerical experiments

In this section we present a number of experiments to nudgridemonstrate the
performance of the anisotropic adaptive algorithm outlimethe previous section.
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——lso h-Refinement
—©— Aniso h-Refinement

10°
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Fig. 3 ADIGMA MTCS3 test case: (a) Comparison between adaptiveragit and anisotropic
mesh refinement; Anisotropic mesh after (b) 4 adaptive nefergs, with 3485 elements; (c) 8
adaptive refinements, with 10410 elements.

5.1.1 ADIGMA MTC3: Laminar flow around a NACAQ0012 airfoil

In this example, we consider the subsonic viscous flow arauddCA0012 airfoil.
At the farfield (inflow) boundary we specify a Mactb(flow at an angle of attack
o = 2°, with Reynolds number Re 5000; on the walls of the airfoil geometry,
we impose a zero heat flux (adiabatic) no-slip boundary ¢mmdiHere, we con-
sider the estimation of the drag coeffici€hy; i.e., the target functional of interest
is given byJ(-) = J,(+). The initial starting mesh is taken to be an unstructured
guadrilateral-dominant hybrid mesh consisting of bothdgileteral and triangular
elements; here, the total number of elements is 1134. Funtire, curved bound-
aries are approximated by piecewise quadratic polynomiakigure 3(a) we plot
the error in the computed target functiordg)(-) using both an isotropic (only)
mesh refinement algorithm, together with the anisotrogiineenent strategy out-
lined in Section 5. From Figure 3(a), we observe the supgriof employing the
anisotropic mesh refinement algorithm in comparison wiimgard isotropic sub-
division of the elements. Indeed, the erf&, (u) — Jc,(un)| computed on the series
of anisotropically refined meshes designed using the pexpakyorithm outlined
in Section 5 is (almost) always less than the correspondirgtity computed on
the isotropic grids. Indeed, on the final mesh anisotropisnrefinement leads to
an improvement inJe, (u) — Jo, (un)| of over 60% compared with the same quan-
tity computed using isotropic mesh refinement. The meshesrgéed after 4 and 8
anisotropic adaptive mesh refinements are shown in Fig(b@€3c), respectively.
Here, we clearly observe significant anisotropic refineroéttie viscous boundary
layer, as we would expect.
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Fig. 4 ADIGMA BTCO test case (laminar): (a) Comparison betweenpéda isotropic and
anisotropic mesh refinement; Anisotropic mesh after 3 agapefinements, with 2314 elements:
(b) Boundary mesh; (c) Symmetry plane.

5.1.2 ADIGMA BTCO: Laminar flow around a streamlined body

In this second example we consider laminar flow past a stiraththree—dimen-
sional body. Here, the geometry of the body is based on a Id&pethick airfoil
with boundaries constructed by a surface of revolution. BREO geometry is con-
sidered at laminar conditions with inflow Mach number eqod).b, at an angle of
attacka = 1°, and Reynolds number Re 5000 with adiabatic no-slip wall bound-
ary condition imposed. Here, we suppose that the aim of thgpadation is to calcu-
late the lift coefficienC;; i.e.,J(-) = Jg (). In this example, the initial starting mesh
is taken to be an unstructured hexahedral mesh with 992 alsnie Figure 4(a) we
plot the error in the computed target functiodgl-) using both an isotropic (only)
mesh refinement algorithm, together with the anisotrogiiceenent strategy out-
lined in Section 5. From Figure 4(a), we again observe themsoigty of employing
the anisotropic mesh refinement algorithm in comparisoh wiandard isotropic
subdivision of the elements. Indeed, the erdy(u) — Jg (un)| computed on the
series of anisotropically refined meshes designed usingriigm 5.1 is always less
than the corresponding quantity computed on the isotrajmisgindeed, on the final
mesh the true error betweég) (u) andJg, (un) using anisotropic mesh refinementis
over an order of magnitude smaller than the correspondiagtify when isotropic
h-refinement is employed alone. The mesh generated afteis8teopic adaptive
mesh refinements is shown in Figures 4(b) & (c). Here, we aglaserve significant
anisotropic refinement of the viscous boundary layer.
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Fig. 5 ADIGMA MTC1 test case: Comparison between adaplipe andh—mesh refinement. (a)
Structured initial mesh; (b) Unstructured initial mesh.

6 hp-Adaptivity on isotropically refined meshes

In this section we now consider the case when both the uridgrfinite element
mesh.%, and the polynomial distribution are isotropic; thereby,c Vpp, . The
extension to general anisotropic finite element spacesheilconsidered in the
following section. In this setting, once an element has beslacted for refine-
ment/derefinement the key step in the design of such an d@ojrhp-adaptive
algorithm is the local decision taken on each elemeim the computational mesh
as to which refinement strategy (i.B-refinemenvia local mesh subdivision qo-
refinement by increasing the degree of the local polynongpipt@ximation) should
be employed or in order to obtain the greatest reduction in the error peraost.
To this end, we employ the technique for assessing local #mees developed in
the article [13], which is based on monitoring the decay witéhe sequence of
coefficients in the Legendre series expansion of a squasgrable function.

6.1 ADIGMA MTC1: Inviscid flow around a NACA0012 airfoil

In this section we consider the performance of the goalntetth p-refinement
algorithm outlined above for the ADIGMA MTC1 test case: suid compressible
flow around a NACA0012 airfoil with inflow Mach number equald®, at an angle
of attacka = 2°. Here, we suppose that the aim of the computation is to cieul
the pressure induced drag coeffici€qy; i.e., J(-) = I, (+).-

In Figure 5 we plot the error in the computed target functidgg(-), using both
h— andhp-refinement against the square—root of the number of degifeiese-
dom on a linear—log scale in the case of both a structured asgluctured initial
mesh. In both cases, we see that after the initial trangtemgrror in the computed
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@ (b)

Fig. 6 ADIGMA MTCL1 test casehp-Mesh distribution. (a) Structured initial mesh after 9@da
tive refinements; (b) Unstructured initial mesh after 7 d@idapefinements.

functional usinghp-refinement becomes (on average) a straight line, thereldy in
cating exponential convergence &, (un) to Je,,(u). Figure 5 also demonstrates
the superiority of the adaptivep-refinement strategy over the standard adaptive
refinement algorithm. In each case, on the final mesh the troeteetweenlc, (u)
andchp(uh) usinghp-refinement is almost 2 orders of magnitude smaller than the
corresponding quantity whdm-refinement is employed alone. Finally, in Figure 6
we show thehp-mesh distributions based on employing a structured antlugs
tured initial mesh after 9 and 7 adaptive refinement stegpaively.

7 Anisotropic hp-mesh adaptation

Finally, in this section we consider the general case ofraatally generating
anisotropically refined computational meshes, togethén wn anisotropic poly-
nomial degree distribution. With this in mind, once an elatrieas been selected
for refinement/derefinement a decision is first made whetharatry out anh-
refinement/derefinement prenrichment/derefinement based on the technique out-
lined in Section 6, whereby the analyticity of the solutianandz is assessed by
studying the decay rates of their underlying Legendre aneffts. Once the— and
p—refinement flags have been determined on the basis of the abrategy, a deci-
sion regarding the type refinement to be undertaken — isigtimpanisotropic —
must be made. Motivated by the work in Section 5, we employnapesitive refine-
ment technique, whereby the “optimal” refinement is sebbétem a series of trial
refinements. In the—version setting, we again exploit the algorithm outline&éec-
tion 5. For the case when an element has been selected fargmoigl enrichment
we consider theg—version counterpart of Algorithm 5.1 and solve local pevb
based on increasing the polynomial degrees anisotropicadne direction at a time
by one degree, or isotropically by one degree; see [7] faildet
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Fig. 7 ADIGMA MTCS3 test case: (a) Comparison between differentpiigia refinement strate-
gies. Mesh distribution after 5 adaptive anisotrdpge-refinements, with 2200 elements and 52744
degrees of freedom: (Ih}-/p,—mesh distribution; (ch—/p,—mesh distribution.

7.1 ADIGMA MTC3: Laminar flow around a NACAQ0012 airfoil

In this section we again consider the ADIGMA MTC3 test casd again sup-
pose that the aim of the computation is to calculate the doafficientCy, cf. Sec-
tion 5.1.1. In Figure 7(a) we plot the error in the computedeafunctionallg,(-),
using a variety oh—/hp-adaptive algorithms against the square—root of the num-
ber of degrees of freedom on a linear—log scale in the case whainstructured
initial mesh is employed. In particular, here we consider performance of the
following adaptive mesh refinement strategies: isotrdpiefinement, anisotropic
h-refinement, isotropitp-refinement, anisotropib—/isotropic p-refinement, and
anisotropichp-refinement. Here, we clearly observe that as the flexibilftyhe
underlying adaptive strategy is increased, thereby afigior greater flexibility in
the construction of the finite element spagg,, the error in the computed target
functional of interest is improved in the sense that therdarréhe computed value
of Je, () is decreased for a fixed number of degrees of freedom. Howeeguoint
out that in the initial stages of refinement, all of the refieatalgorithms perform
in a similar manner. Indeed, it is not until the structurela# underlying analyti-
cal solution is resolved that we observe the benefits of asing the complexity
of the adaptive refinement strategy. Finally, we point oat the latter three refine-
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ment strategies incorporatingrefinement all lead to exponential convergence of
Je, (up) to I, (u). Figures 7(b) & (c) show the resultamp-mesh distribution when
employing anisotropib p-refinement after 5 adaptive steps; here, Figures 7(b) & (c)
show the (approximate) polynomial degrees employed inxthandy—directions,
respectively. We observe that anisotropigefinement has been employed in order
to resolve the boundary layer and anisotrogpiefinement has been utilized further
inside the computational domain. In particular, we notleat the polynomial de-
grees have been increased to a higher level in the orthodoeation to the curved
geometry, as we would expect.

Acknowledgements The authors acknowledge the support of the EU under the ADAG@Kbject.

References

1. F. Bassi and S. Rebay. A high-order accurate discontsidioite element method for the
numerical solution of the compressible Navier-Stokes #gos. J. Comp. Phys.131:267—
279, 1997.

2. C.Baumann and J. Oden. A discontinubysfinite element method for the Euler and Navier-
Stokes equationdnternational Journal for Numerical Methods in Fluid31:79-95, 1999.

3. R. Becker and R. Rannacher. An optimal control approachgasteriori error estimation in
finite element methodsActa Numerical0:1-102, 2001.

4. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Inttmhuio adaptive methods for differ-
ential equations. In A. Iserles, editéxcta Numericapages 105-158. Cambridge University
Press, 1995.

5. K. J. Fidkowski and D. L. Darmofal. A triangular cut-cellaptive method for high-order
discretizations of the compressible Navier-Stokes eqoatiJ. Comput. Physic225:1653—
1672, 2007.

6. E. Georgoulis, E. Hall, and P. Houston. Discontinuousetké&h methods for advection—
diffusion—reaction problems on anisotropically refinedshes. SIAM J. Sci. Comput.
30(1):246-271, 2007.

7. E. Georgoulis, E. Hall, and P. Houston. Discontinuouseah methods orip-anisotropic
meshes |l: A posteriori error analysis and adaptiviypl. Numer. Math.59(9):2179-2194,
20009.

8. R. Hartmann and P. Houston. Adaptive discontinuous ®ial&nite element methods for the
compressible Euler equation. Comput. Phys183(2):508-532, 2002.

9. R. Hartmann and P. Houston. Symmetric interior penaltyrd&hods for the compressible
Navier—Stokes equations I: Method formulatidnt. J. Num. Anal. Model3(1):1-20, 2006.

10. R. Hartmann and P. Houston. Symmetric interior penafByrdethods for the compressible
Navier—Stokes equations Il: Goal—oriented a posterigoregstimation. Int. J. Num. Anal.
Model, 3(2):141-162, 2006.

11. R. Hartmann and P. Houston. An optimal order interiorgitgrdiscontinuous Galerkin dis-
cretization of the compressible Navier—Stokes equatichsComput. Phys227(22):9670—
9685, 2008.

12. P. Houston, J. Mackenzie, E. Suli, and G. Warnecke. Aepiosi error analysis for numerical
approximations of Friedrichs systenidumerische Mathemati82:433-470, 1999.

13. P.Houston and E. Sili. A note on the desighfadaptive finite element methods for elliptic
partial differential equationsComput. Methods Appl. Mech. Engrj94(2-5):229-243, 2005.

14. J.van der Vegt and H. van der Ven. Space-time disconisi@alerkin finite element method
with dynamic grid motion for inviscid compressible flowsQeneral formulationJ. Comp.
Phys, 182:546-585, 2002.



