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Abstract 

The ground data used as a reference in the validation of land cover change products are 

often not an ideal gold standard but degraded by error. The effects of ground reference 

data error on the accuracy of land cover change detection and the accuracy of estimates of 

the extent of change was evaluated. Twelve data sets were simulated to allow the 

exploration of the impacts of a spectrum of ground data imperfections on the estimation 

of the producer’s and user’s accuracy of change as well as of change extent. Simulated 

data were used since this ensured that the actual properties of the data were known and to 

exclude effects due to other sources of ground reference data error; although the impacts 

of simulated reference data on two real confusion matrices is also illustrated. The 

imperfections evaluated ranged from the inclusion of small amounts of known error into 

the ground reference data through to the extreme situation in which ground data were 

absent. The results show that even small amounts of error in the ground reference data 

can introduce large error into studies of land cover change by remote sensing and 

reinforce the desire to avoid the expression ground truth as this might imply that the data 

are a gold standard reference. The effect of reference data imperfections was dependent 

on the degree of association between the errors in the cross tabulated data sets. For 
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example, in the scenarios investigated, a 10% error in the reference data set introduced an 

under-estimation of the producer’s accuracy of 18.5% if the errors were independent but 

an over-estimation of the producer’s accuracy of 12.3% if the errors were correlated. The 

magnitude of the mis-estimation of the producer’s accuracy was also a function of the 

amount of change and greatest at low levels of change. The amount of land cover change 

estimated also varied greatly as a function of ground reference data error. Some possible 

methods to reduce or even remove the impacts of ground reference data error were 

illustrated. These ranged from simple algebraic means to estimate the actual values of 

accuracy and change extent if the imperfections were known through to a latent class 

analysis that allowed the assessment of classification accuracy and estimation of change 

extent without the use of ground reference data if the underlying model is defined 

appropriately. 

 

  

1. Introduction 

Land cover and land cover change are critical variables in major environmental issues of 

importance to the human-environmental sciences (Turner II et al., 2007). Land cover 

change is, for example, both a cause and a consequence of climate change. One major 

role of land cover change is as a source of enhanced atmospheric CO2 that contributes to 

global warming and which may in turn result in further land cover changes (Dale, 1997; 

McAlpine et al., 2009). Furthermore, land cover change has substantial impacts on a vast 

array of environmental systems including hydrological (Eshleman, 2004), ecological 

(Vitousek, 1994) and geomorphological (Foulds and Macklin, 2006). Land cover change 
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is, for example, one of the greatest causes of biodiversity loss and hence a central variable 

in studies of biodiversity conservation (Duro et al., 2007; Gillespie et al., 2008; Jones et 

al., 2009). Accurate and up-to-date information on land cover and land cover change is, 

therefore, required for many applications.  

 

Remote sensing is an attractive source of information on land cover and its dynamics at a 

range of spatial and temporal scales. However, numerous challenges are, or are perceived 

to be, encountered with the use of remote sensing for the derivation of information on 

land cover (Foody, 2002, 2008; Rindfuss et al., 2004; Strahler et al., 2006).  

 

Considerable effort has been directed to the derivation of land cover information from 

remote sensing. At regional to global scales, for example, studies have developed from 

pioneering continental scale mapping programmes (e.g. Tucker et al. , 1985) to the 

situation today in which a variety of global maps are available (Herold et al., 2006; 

2008). But many problems remain to be addressed. The large differences between maps 

of, apparently at least, the same phenomenon (Herold et al., 2006; See and Fritz, 2006;    

Potere et al., 2009) present user’s with uncertainty over which, if any, to adopt (Herold et 

al., 2008; Shao and Wu, 2008). Unfortunately this situation is not aided by the poor 

attention sometimes paid to accuracy assessment, with many maps either not evaluated 

rigorously or only to a limited extent (Herold et al., 2006; Brannstrom et al., 2008). As a 

consequence of such problems there is a demand for information on map accuracy.  
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The evaluation of map accuracy is now regarded as an important issue with accuracy 

assessment viewed by many as a fundamental component of mapping projects (Cihlar, 

2000; Strahler et al., 2006). For those maps that have been evaluated, however, other 

problems often occur. Commonly, one problem is that remotely sensed land cover 

products are often viewed as failing to meet desired levels of accuracy (Townshend, 

1992; Wilkinson, 1996; Gallego, 2004; Lu et al., 2008). This problem is particularly 

apparent in change detection based on post-classification comparison (Verbyla and Boles, 

2000; Pontius and Lippitt, 2006). In such comparative assessments the amount of error in 

the classifications compared may obscure substantial change or could act to exaggerate 

change.  

 

Thus, while remote sensing has considerable potential to provide information on land 

cover and its dynamics there is much work to be done before its full potential will be 

realised. Presently, there are many uncertainties with land cover change statistics 

(DeFries et al., 2002). For example, there are large differences, perhaps typically in the 

order of 5-10%, between deforestation estimates derived from remote sensing and field 

measurement (Kintisch, 2007). Indeed, reappraisals of remote sensing estimates of land 

cover change have often taken place. For example, Skole and Tucker (1993) highlighted 

substantial, ~50%, over-estimation of deforestation arising through the use of coarse 

spatial resolution data sets and Achard et al. (2002) suggest that some estimates of 

deforestation rates in the humid tropics may have been exaggerated by ~23%. Similarly, 

other land cover changes may have been poorly and uncertainly evaluated. For example, 

recent estimates of the loss of Cerrado, a savanna that covered more than a fifth of Brazil 
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and is a hotspot of biodiversity, vary greatly from ~40 to ~80% (Jepson, 2005; 

Brannstrom and Filippi, 2008). Problems linked to the accuracy of the mapping by 

remote sensing have been highlighted as a major concern and source of uncertainty in 

many studies.  

 

This paper aims to explore some of the key issues associated with one major, yet rarely 

studied, error in the remote sensing of land cover change and the possibilities to combat 

this error source in order to enhance the utility of remote sensing as a reliable source of 

land cover data. Building on Foody (2009), attention is directed to the impacts of 

imperfect ground reference data on the accuracy of land cover change estimation, 

perceived and real. A key focus is on the magnitude and direction of biases introduced 

into derived estimates of change detection accuracy and change extent arising through the 

use of imperfect ground reference data. The paper also aims to illustrate and explore 

some of the possibilities to reduce the negative impacts that arise through the use of 

imperfect ground reference data. The imperfections considered include the presence of 

ground reference data error, known and unknown, as well as situations when ground 

reference data are absent. It will be shown that in some circumstances the negative 

impacts of ground reference data error can be accommodated so that corrected or refined 

estimates may be made. Additionally it will be demonstrated that accuracy may still 

sometimes be assessed and estimates of the extent of change made when ground 

reference data are absent; although some important concerns about a method used and its 

underlying assumptions are raised at the end of section 6. Throughout the focus is on 
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some of the main scenarios encountered in remote sensing: the accuracy of change 

detection and the accuracy with which the amount or extent of change is estimated. 

 

 

2. Estimation from a binary confusion matrix 

Estimates of land cover change and of change detection accuracy are commonly made 

from a binary confusion matrix that illustrates the allocations to the change and no-

change classes (Khorram, 1999; Congalton and Green, 2009). This approach has been 

widely used in a range of remote sensing studies (e.g. Woodcock et al., 2001; Chen et al., 

2003; Stehman, 2005; Lunetta et al., 2006) and is the focus of this article. Critically, the 

distribution of entries in the confusion matrix together with the associated marginal 

values (row and column totals) may be used to derive numerous summary measures of 

the accuracy of the class allocations made and the amount of change that has occurred 

(Simon and Boring, 1990; Fielding and Bell, 1997; Khorram, 1999). 

 

With interest on land cover change (∆), the focus is on cases (e.g. pixels) for which there 

has been either a change (∆=1) or no change (∆=0) in the land cover class represented 

over the period studied. The probability that the ground information indicates change at a 

randomly selected location is P(∆=1)=θ and may be referred to as the prevalence of 

change. The output of the remote sensing change detection method is a binary 

classification in which a change is observed (R=1) or not (R=0). The accuracy with 

which change is detected and its extent estimated is derived from the confusion matrix 
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that provides a cross-tabulation of the remote sensing derived labels with those contained 

in a corresponding ground reference data set. 

 

Since there is no standardised way of presenting the confusion matrix it will be assumed 

throughout this paper that the columns of the matrix represent the ground reference data 

and the rows the classification derived by remote sensing (Figure 1). The matrix provides 

a summary of the class labelling for the n cases used in a study, with each case lying 

within one of the matrix’s four elements. The latter elements are represented by the 

entries a to d in Figure 1. For simplicity, it will also be assumed that a representative 

sample of cases was acquired by simple random sampling, although many other designs 

may be used (e.g. Stehman, 2009).  

 

Cases lying in elements a and d of the confusion matrix are those for which the labelling 

in the two data sets agree; in some literature these are referred to as true positives and true 

negatives (Staquet et al., 1981; Fielding and Bell, 1997). For the cases in elements b and 

c, however, the labelling in the two data sets differs; these are often referred to as false 

positives and false negatives (Staquet et al., 1981; Fielding and Bell, 1997). The relative 

frequency of cases in the matrix elements may be used to describe the degree of 

agreement between the two data sets. Indeed, the frequencies in elements a to d together 

with the marginal values of the matrix, e to h, may be used to derive a set of quantitative 

estimates about the variable of study and degree of classification agreement or accuracy 

(Staquet et al., 1981; Fielding and Bell, 1997; Liu et al., 2009). Thus, for example, in the 
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context of studies of land cover change, the confusion matrix provides information on the 

amount of land cover change and of change detection accuracy.  

 

The accuracy of a binary classification is often described in terms of sensitivity and 

specificity (Rogan and Gladen, 1978; Staquet et al., 1981; Simon and Boring, 1990; 

Fielding and Bell, 1997). In the context of this article, the sensitivity of a classifier is the 

probability that the remote sensing method predicts change for a case of change, which 

can be expressed as the conditional probability P(R=1|∆=1)=S1 (Qu et al., 1996; Fielding 

and Bell, 1997). Thus, sensitivity is the proportion of cases correctly classified as having 

changed and may be derived from the confusion matrix from 

 

     
e

a
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S 


1 .    (1) 

 

The specificity of the classification is the probability of the remote sensing classifier 

predicting no-change for a case that has not changed, which can be expressed as the 

conditional probability P(R=0|∆=0)=S2. Specificity is, therefore, the proportion of cases 

correctly predicted to have not changed and may be derived from the confusion matrix 

using 
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The sensitivity and specificity of the classification are, in the terminology used widely in 

the remote sensing literature, the producer’s accuracy (Liu et al., 2009) for the change 

and no-change classes respectively. 

 

Reading the matrix horizontally allows the derivation of two additional measures, often 

referred to as the predicted positive value and the predicted negative value (Simon and 

Boring, 1990; Fielding and Bell, 1997). The former may be calculated from the confusion 

matrix by 

 

g

a

ba

a
U 


1 .    (3) 

 

The predicted negative value may be derived from the confusion matrix using 

 

     
h

d
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U 


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The positive and negative predicted values for the classification are, in the terminology 

used widely in the remote sensing literature, the user’s accuracy (Liu et al., 2009) for the 

change and no-change classes respectively. 

 

Finally, one further measure that is often derived from the matrix is the prevalence, which 

may be derived from 
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Other measures may be derived but are not considered here. Often the values derived 

from equations 1-5 are multiplied by 100 to yield a value as a percentage.  

 

Attention is focused in this paper on the sensitivity (producer’s accuracy for change) and 

prevalence (amount of change) estimates derived from the confusion matrix, although 

some comment will be made in relation to important issues connected with specificity 

and user’s accuracy. This focus is mainly because the producer’s accuracy and prevalence 

are typically of most interest in remote sensing studies but also because of relationships 

between the various measures. One key feature is that sensitivity (and specificity) is often 

viewed as being independent of prevalence (Rogan and Gladen, 1978; Staquet et al., 

1981; Valenstein, 1990) but the positive and negative predicted values are a function of 

the quality of the classifier (indicted by its sensitivity and specificity) and the prevalence 

of change (Rogan and Gladen, 1978; Hui and Zhou, 1998; Simon and Boring, 1990; Enøe 

et al., 2001). The latter is evident in the expressions for U1 and U2 given in equations 6 

and 7 respectively. 
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As a consequence of these relationships the positive predictive value (user’s accuracy of 

change) may be expected to increase if the prevalence of change increases (Staquet et al., 

1981). In some disciplines, the prevalence dependency of U1 and U2 limits their value as 

general indices of classifier ability and accuracy as their magnitude has the undesirable 

property of fluctuating as a function of the variation in the variable under study. User’s 

accuracy may still, however, be a useful measure of accuracy in studies of the remote 

sensing of land cover change, indicating one aspect of classification quality for the 

specific area under study. 

 

Thusfar in this section it has been assumed implicitly that the ground reference data are 

error-free, representing a gold standard reference against which the results of the remote 

sensing classification may be evaluated. This assumption is unlikely to be satisfied. 

Moreover, it is known that even small errors in the reference data set can give rise to 

large bias in the accuracy measures and prevalence estimates derived from the confusion 

matrix (Vacek, 1985; Valenstein, 1990; Alonzo et al., 2002). Additionally, the specific 

manner in which the ground reference data errors are distributed among the matrix’s 

elements can have a great impact of the nature of their effect. Ground reference data error 

can, for example, cause accuracy measures to be over- or under-estimated and so it is 

difficult to make simple generalizations of their effect (Hawkins et al., 2001). Moreover, 

one traditional approach to reducing this type of problem, through use of discrepant 

analysis, is problematic and may over-estimate classification quality (Miller, 1998; 

Hawkins et al., 2001). The impacts of ground reference data error, however, need to be 
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recognised as they may lead to substantial misinterpretation of change detection accuracy 

and extent. This paper focuses on some of the negative impacts arising from the use of 

imperfect ground reference data and the methods that may be used to reduce them. It 

builds on recent work on imperfect ground reference data (e.g. van Oort, 2005; Bruzzone 

and Persello, 2009; Carlotto, 2009; Foody, 2009; Pontius and Li, 2009; Pontius and 

Petrova, 2010), addressing some of issues highlighted as requiring attention such as the 

impacts of varying types of imperfection, including correlated errors, and even missing 

ground reference data.   

 

Since the ground reference data set is a binary classification that, like that derived by 

remote sensing, may contain error its quality can also be characterised by a sensitivity 

and specificity. To distinguish between the ground reference and remotely sensed 

classifications, the sensitivity and specificity of the ground reference data will be 

represented by '

1S  and '

2S respectively. Furthermore, since the imperfections of the 

ground reference data set impact on the perceived accuracy of the remote sensing 

classification, the ^ symbol will placed over estimates derived from a confusion matrix 

constructed with an imperfect ground reference data set (i.e., 
1Ŝ  is the estimate of the real 

sensitivity, S1, that is derived when imperfect rather than perfect reference data are used). 

 

 

3. Ground data and their accuracy 

One key attribute of an ideal ground reference data set is that the class labels it contains 

are correct (100% accuracy). Many ground reference data sets used in remote sensing 
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may be deficient in relation to this attribute. Despite this situation, the ground reference 

data sets commonly used to evaluate the accuracy of land cover products derived from 

remote sensing are typically assumed to be correct or error-free (Foody, 2002; Carlotto, 

2009).  

 

The ground reference data used in a remote sensing project are unlikely to represent a 

gold standard as error may be contributed from a variety of sources. The latter include, 

for example, problems arising from mis-location of testing sites, presence of transitional 

classes, boundaries, typographical errors, restricted access to sites, uncertainties in class 

definition and temporal mismatches between image and field data acquisition (Powell et 

al., 2004; Comber et al., 2005; van Oort, 2005; See and Fritz, 2006; Thompson et al., 

2007; Bradley, 2009). The problems may be especially apparent in studies of change as 

there is a need for ground reference data relating to at least two time periods for a 

phenomenon that is typically relatively rare (Stehman, 2009). As a result, obtaining 

ground data may be difficult, limiting both the quality of the data in terms of labelling 

accuracy as well as the number of cases and their location for use in accuracy assessment. 

Problems in obtaining ground data have often been reported in the literature (e.g. Liu and 

Zhou, 2004; Lu et al., 2008) and some even seek to work without ground data (Baraldi et 

al., 2005; Bruzzone and Marconcini, 2009). Moreover, it is sometimes noted that 

problems with the ground reference data may have negative impacts on the apparent 

accuracy of maps derived by remote sensing (Brannstrom and Filippi, 2008). Critically, 

ground reference data are often not error-free. Indeed the ground reference data set used 

is commonly just another classification in which cases may be mis-labelled but which is 
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believed to be of higher quality than the remote sensing based classification that being 

evaluated (Stehman, 2009).  

 

Although the accuracy of ground reference data is rarely known (Carlotto, 2009) a guide 

to the magnitude of error that may be present can be gleaned from the literature. For 

example, manual aerial photograph interpretation is often used as a source of ground 

reference data. Studies of inter-interpreter agreement in the analysis of imagery highlight, 

however, substantial disagreement in labelling, even when using fine spatial resolution 

imagery (e.g. very large scale aerial photography) and trained interpreters as a source of 

ground reference data. While the magnitude of the errors may be expected to vary from 

project to project (e.g. as a function of image properties, thematic resolution interpreter 

training and experience etc.) the magnitude of disagreement may be large. Powell et al. 

(2004), for example, report that interpreters disagreed on 30% of cases. Other studies 

have also shown considerable differences in class allocations. For example, in relation to 

data acquired by aerial photograph interpretation, Thompson et al. (2007) found 

differences in labels for detailed forest classes for 64% of sites evaluated and Johnson 

and Ross (2008) report up to ~40% disagreement in labelling. Error is, therefore, often 

recognised to be substantial in ground reference data derived from aerial photograph 

interpretation (Mannel et al., 2006; Xu et al., 2009). An additional guide to the quality of 

ground data is evident from the common use of a classification of fine spatial resolution 

satellite sensor data to act as ground data for use in the validation of a coarser spatial 

resolution product (Justice et al., 2000; Foody, 2002; Brannstrom and Filippi, 2008; 

Brannstrom et al., 2008). Here, a key feature is that a common objective is to map the 
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land cover to a target accuracy of ~85% (Weng, 2002; Yang and Lo, 2002; Rogan et al., 

2003; Treitz and Rogan, 2004; Yang and Liu, 2005; Mundia and Aniya, 2005). Not only 

do many studies fail to achieve such accuracy (Wilkinson, 2005; Shao and Wu, 2008) but 

they are also implicitly stating that a ~15% error in the ground data set is tolerable. It 

should be recognised that the use of such sub-optimal reference data is also a reflection of 

the costs of acquiring high quality data. For example, it may be prohibitively costly to 

undertake a large programme of fieldwork or to acquire very fine spatial resolution 

imagery and so researchers are effectively compelled to use less than ideal data for 

reference purposes. 

 

It seems, therefore, that researchers sometimes use ground reference data sets that may 

contain substantial error even though it is well known that error in the ground reference 

data can be a problem and limit the value of the confusion matrix and measures derived 

from it (Congalton, 1991; Foody, 2002; Powell et al., 2004; Mann and Rothley, 2006). 

This situation may have arisen because researchers are unaware of the size and nature of 

the problems arising from the use of an imperfect ground reference data set and/or of how 

to use such information constructively. However, it must be recognised that errors in the 

ground reference data set may greatly limit studies. Bearing in mind that change is 

typically rare, the error in the two data sets used to construct the confusion matrix may 

mean that they are of insufficient accuracy to detect let alone accurately quantify change 

(Pontius and Lippitt, 2006). Consequently, it is important that ground reference data be 

scrutinised carefully and the implications of imperfections considered (Powell et al., 

2006; Kennedy et al., 2009) as information on their quality can enhance studies. 
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Critically, ground reference data error should not be ignored, no matter how convenient it 

may sometimes be to do so, as its effects may be substantial and may possibly be 

correctable (Carlotto, 2009; Foody, 2009). There is, therefore, a need to understand the 

possible effects of ground reference data error and gain an appreciation of how to correct 

for them. 

 

 

4. Data 

Simulated data were mainly used in order to remove complexities and uncertainties 

linked to the impacts of sources of error other than ground reference data error. A series 

of data sets were generated to explore the impacts of imperfect ground reference data on 

the perceived accuracy of change detection and change extent as well as illustrate 

possible methods to correct for the effects of ground reference data error. Here, three 

different groups of data sets were formed to allow evaluation of the effect of and 

correction for a variety of ground data imperfections on studies of land cover change. The 

data sets were designed to allow a spectrum of imperfections to be addressed. The 

imperfections studied ranged from the situation in which the errors in the ground and 

remotely sensed data were independent and the amount of ground reference data error 

known, through the situation in which the error was known but the errors correlated 

between the two data sets cross-tabulated, to the situation in which there was not only no 

information on ground reference data error but no ground reference data at all. With the 

latter there was no ground reference data error or corrective strategy to consider but 
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rather the problem of deriving information on the accuracy of land cover change 

estimates without the ability to consult ground data.  

 

The simplest situation arises when the errors used in the data sets to form the confusion 

matrix are uncorrelated. This situation is often assumed. For example, errors have often 

been assumed to be independent in discussion of error propagation in post-classification 

change detection (Pontius and Lippitt, 2006). Additionally, ensemble approaches used to 

increase classification accuracy also commonly assume that the classifiers used have 

independent errors (Bruzzone et al., 2004). To explore issues connected with the use of 

an imperfect ground reference data set when the errors are independent from those in the 

remotely sensed data set, a series of binary confusion matrices were formed to represent 

scenarios arising from the cross-tabulation of classification outputs of known quality. The 

formation of a confusion matrix required the specification of the sensitivity and 

specificity of each classification and the prevalence. It was assumed here that change was 

relatively rare to reflect real remote sensing situations. Two levels of prevalence were 

considered: 20% and 5%. These levels were defined relatively arbitrarily but lie within 

the range of change often reported in the literature (Pontius and Lippitt, 2006). In 

specifying the accuracy of the two data sets used to form a confusion matrix it was also 

assumed that the ground reference data set was at least as accurate, but normally more 

accurate, than remote sensing method. The values for sensitivity and specificity used 

were also defined relatively arbitrarily but selected to fit with typical remote sensing 

situations in which a common target in mapping, albeit of debatable suitability (Foody, 

2008), is ~85% and knowledge that the accuracies reported for land cover mapping in the 
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literature are typically >65% (Wilkinson, 2005). In keeping with a common desire to 

classify classes to similar accuracy, it was assumed that the remote sensing technique had 

equal sensitivity and specificity although an example with unequal settings is also 

illustrated. Finally, a sample size of 1000 was used throughout and assumed to have been 

drawn by simple random sampling. The key details of the scenarios used are illustrated in 

Table 1. Since the properties of each scenario were known it was possible to construct the 

confusion matrix that would have been derived from the use of perfect ground reference 

data ( %100'

2

'

1  SS ) as well as that arising from the use of the imperfect ground 

reference data (Figure 2).  

 

Sometimes the errors in the ground and image classification are correlated. Correlated 

errors may arise in a number of ways and are sometimes noted in the remote sensing 

literature (Congalton, 1988; van Oort, 2005, 2007). For example, correlated errors may be 

expected if the classifiers have a similar basis and so tend to err on the same cases. Since 

correlated errors have a different impact to errors that are independent it is important to 

know the nature of the errors in the data sets used. Two classifications may be considered 

to be conditionally independent when the sensitivity (specificity) of one classification 

does not depend on the outcome of the other (Gardner et al., 2000; Georgiadis et al., 

2003). The degree of dependence may be assessed using a measure such as the 

conditional correlation between the classification outcomes. For example, if the 

conditional correlation between classification outcomes differs substantially from zero, 

the classifications may be considered conditionally dependent. The conditional 

correlation between classification outcomes may be determined from 
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for no-change. where the super-scripts 1 and 2 indicate the two classifications under-

comparison, )11,1( 21*

1  RRPS and )00,0( 21*

2  RRPS . Further 

details on conditional dependence are given in the literature (e.g. Vacek, 1985; Qu et al., 

1996; Branscum et al., 2005; Georgiadis et al., 2005). This paper focuses on situations in 

which the errors between the cross-classified data forming a confusion matrix are 

independent (i.e. conditional independence exists) and when they are correlated (i.e. 

conditional dependence exists).  

 

To illustrate the impacts arising from the situation in which the ground reference data 

errors were correlated with those in the remotely sensed data set, a further series of data 

sets were generated. Using the confusion matrix defined with perfect ground data 

associated with scenario B as base (see right hand column for scenario B in Figure 2), 

three further scenarios were simulated by adjusting the matrix elements to reflect varying 

amounts of correlated error. For example, if the errors in the remote sensing classification 

and ground reference data occur with the same cases and the ground reference data set 
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had '

2

'

1 SS  = γ%, then 100-γ% of cases of change should be misclassified as no-change 

in both classifications and 100-γ% of no-change cases should be misclassified as 

belonging to the change class in both classifications; see Valenstein (1990) for an 

example. Here, three scenarios, F, G and H, were simulated with 100-γ% set at 1.0, 2.0 

and 10.0 % respectively (Figure 3).  

 

As a further guide to the impacts of imperfect reference data on the accuracy of the 

remote sensing of land cover change, the effect of reference data errors on two real 

confusion matrices was evaluated. This evaluation should help to ensure that the study 

has direct relevance to real situations, particularly with regard to actual levels of 

producer’s and user’s accuracy as well as prevalence encountered in studies. Here, the 

focus was on two matrices discussed in Stehman (2005; relating to what were termed 

map A and map B in Table 2, page 471 and based on papers by Chen et al. (2003) and 

Woodcock et al. (2001) respectively); these data do not relate in any way to those for 

scenarios A and B discussed previously. To aid comparison with the other analyses, the 

selected matrices were adjusted to allow presentation in the same style as others in this 

paper on the assumption of a sample size of 1000 (Figure 4). Both of the matrices show 

highly accurate classifications, with overall accuracy values of 90.8% and 95.8% for 

maps A and B respectively. The two matrices, however, differ greatly in detail, notably 

with regard to the producer’s and user’s accuracy of change. For the purposes of this 

paper it was assumed that each of the two matrices had been derived with the use of a 

gold standard ground reference data set. The impacts of ground reference data on the 

remote sensing of change were then simulated by adding errors into the representations.  
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In keeping with the desire to use a reference data set that is more accurate than the data 

set it is being used to evaluate, the errors introduced were small. Specifically, with map A 

a new matrix was simulated for the situation in which the ground reference data set was 

95% accurate while for map B the accuracy was 98%; in each case it was assumed, for 

simplicity, that the sensitivity and specificity of the reference data classification were 

equal.  The simulation was undertaken in the same fashion as described above for 

independent and for correlated errors yielding new matrices based on imperfect reference 

data (Figure 4). 

 

Further data sets were generated to illustrate land cover change estimation when ground 

reference data were absent, a particularly extreme case of imperfect ground reference 

data. In this case it was insufficient to generate just a confusion matrix as information on 

the class allocation for each case in each classification was required. Additionally, the 

methods used required information from more than one classifier. The data relating to 

scenario B (Table 1, Figure 2) were used as a base. A data set of 1000 cases that when 

cross-tabulated would match the results based on analyses of scenario B was formed. 

Data for three additional scenarios, I, J and K, were generated in such a way that 

allocations to the change and no-change class were made randomly in accordance to a 

specified probability of allocation to the correct class (defined with regard to the perfect 

ground reference data). The probabilities used were 0.90, 0.85 and 0.70 for scenarios I, J 

and K respectively; the nature of the actual class allocations derived from this process 

and accuracy of each of these three scenarios is evident in the confusion matrices derived 

(Figure 5). The three new classifications were derived, therefore, in a way that should 



 23 

ensure that the errors contained were independent of each other and that represented by 

the output of the remote sensing classifier defined by scenario B. Indeed, the only major 

difference between the four classifications was the magnitude of accuracy. 

 

Finally, a further data set was generated to illustrate a method that may be used when the 

errors are both unknown and correlated. For this, the remotely sensed classification in 

scenario J was used as a base. A new data set was generated by copying the data in 

scenario J and then manually changing the class labels for 150 cases (50 cases that had 

actually changed and 100 cases that had not). In this way the new data set, forming 

scenario L, which was highly correlated to the data in scenario J but of a slightly lower 

accuracy was formed (Figure 5). The overall level of agreement between the 

classifications in scenarios J and L was high, with agreement in labelling noted for 85% 

of the cases. Moreover, the magnitude of the conditional correlations between the data in 

scenarios J and L derived from equations 8 and 9 was large, substantially larger than zero 

and the value observed for other comparisons (Table 2). 

 

 

5. Methods 

The data sets generated were used to explore the impacts of imperfect ground reference 

data on the perceived accuracy of change detection and change extent estimation as well 

as illustrate the potential of methods to reduce them. Initial focus was directed on an 

exploration of the magnitude and direction of errors introduced by the use of an imperfect 

ground reference data set which was illustrated by comparison of confusion matrices and 
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derived estimates. Additionally, as the properties of the two classifications cross-

tabulated to form each confusion matrix were known, it was possible to model the 

variation in the perceived accuracy of change detection as a function of the accuracy of 

the prevalence of change. That is, the known values of the sensitivity and specificity for 

each classification at a specified value of the true prevalence allow the derivation of the 

apparent sensitivity and specificity. Assuming the data sets to be conditionally 

independent, this was achieved using equations 10 and 11 (Gart and Buck, 1966) for the 

perceived values of sensitivity 
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and for specificity 
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After illustrating the impacts of ground reference data error on the accuracy of change 

detection and extent estimation, attention turned toward an evaluation of the methods to 

reduce or even remove them. A variety of approaches exist to adjust estimates for known 

or even unknown (Hui and Zhou, 1998; Enøe et al., 2000) reference data errors. These 

approaches differ greatly but two broad categories that have relevance to common remote 

sensing scenarios are considered here. The first relates to the situation in which a single 

classification illustrating change and no-change has been undertaken and is validated 
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against an imperfect ground reference data set of known accuracy. In recognition of the 

problems of obtaining information on ground reference data accuracy and to illustrate 

additional features, the second relates to the situation when there is no ground reference 

data but class allocation information from multiple classifications is available. This latter 

approach is based on latent class analysis. 

 

5.1 Single classification and known ground data error 

Although the quality of ground reference data will often be unknown it may sometimes 

be possible to estimate their accuracy (e.g. on the basis of prior experience or from 

acquisition of additional field based information etc.). If the accuracy of the ground 

reference data set is known and its errors are conditionally independent from those in the 

remote sensing based classification it is possible to derive the real change detection 

accuracy and extent of change from the observed confusion matrix. The correction for 

ground reference data error in this situation is derived algebraically with the real change 

detection accuracy and change extent derivable from simple equations (Gart and Buck, 

1966; Rogan and Gladen, 1978; Staquet et al., 1981; Miller, 1998; Enøe et al., 2000). For 

the confusion matrix defined in Figure 1, the real producer’s accuracy of change may be 

derived from      
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Similarly, the real user’s accuracy may be derived from,  
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Finally, a the real prevalence or amount of the extent of change may be derived from 
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Further details, including a discussion on the derivation of the relationships and formulae 

for standard errors of the estimates are given in the literature (e.g. Gart and Buck, 1966; 

Messam et al., 2008). The key concern for this article, however, is that, while ground 

reference data error is undesirable and can have substantial negative impacts on land 

cover change estimates researchers can do something about it.  

 

Equations 12-14, and similar, should not be used if the conditional independence 

assumption is violated as this can produce extremely biased results. In particular, if the 

conditional independence assumption is violated, the classification error rates may be 

underestimated (Vacek, 1985; Enøe et al., 2000). Estimates of prevalence may also be 

biased but in a direction that is dependent on the exact circumstances. However, in many 

cases it may be expected that a low prevalence would be over-estimated while a high 

prevalence under-estimated (Vacek, 1985). Thus, when the conditional independence 

assumption cannot be made researchers may need to adopt an alternative approach to 

address the impacts of imperfect ground reference data and one possibility is discussed 

below.  



 27 

 

5.2 Latent class analysis 

The methods to correct estimates for ground reference data error defined by equations 12-

14 may be used when the conditional independence assumption holds and the quality of 

the reference classification, expressed in terms of sensitivity and specificity, are known. 

However, both conditions may be hard to satisfy. Fortunately a range of alternative 

approaches exist to accommodate for the effects of ground reference data error (Espeland 

and Handelman, 1989; Qu et al., 1996; Hui and Zhou, 1998; Enøe et al., 2000). These 

approaches vary from methods that may be suited to situations when some properties of 

the ground reference data quality are known through to situations when there is no 

information on the quality of the ground reference data set and conditional independence 

cannot be assumed (Staquet et al., 1981; Hui and Zhou, 1998; Enøe et al., 2000). Indeed 

methods exist for extreme cases of imperfect ground reference data, such as when ground 

reference data are absent (Qu and Hadgu, 1998).  

 

With no information on the quality of the ground reference data available more 

information or data on the problem than that contained in a single confusion matrix is 

required in order to allow reliable inferences to be drawn (Hui and Zhou, 1998; Enøe et 

al., 2000). This can be achieved in a variety of ways, notably by applying multiple 

classifiers to the data or by application of the classification(s) to more than one 

population (Hui and Zhou, 1998; Georgiadis et al., 2003). Of these, the application of 

multiple classifiers is perhaps the most suited to studies of the remote sensing of land 

cover change. Indeed the application of multiple classifications is popular as a means of 
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increasing the accuracy of classification through use of ensemble methods (Bruzzone et 

al., 2004).  

 

The accuracy of a classification and estimates of prevalence can often be made in the 

absence of a perfect or gold standard reference data set through the use of a latent class 

model (Espeland and Handelman, 1989; Qu et al., 1996; Goethebeur et al., 2000; Enøe et 

al., 2001). Aside from one previous study on accuracy assessment (Patil and Taille, 

2003), latent class models do not appear to have been used in remote sensing research 

and so some general background will be provided before presenting the models used. 

 

In a standard latent class analysis it is assumed that the remote sensing based 

classifications undertaken are imperfect indicators of the unobserved (latent) status of 

change but that the observed associations among the classification outputs, that may be of 

unknown sensitivity and specificity, can be explained by the latent variable (Rindskopf 

and Rindskopf, 1986; Yang and Becker, 1997; Engels et al., 2000). Moreover, the 

assumption of conditional independence that underlies the standard latent class model 

means that its only parameters are the latent class probabilities and the conditional 

probabilities, which define the sensitivity and specificity of the classifications (Yang and 

Becker, 1997; Rindskopf, 2002). Related methods may also be used when the assumption 

of conditional independence cannot be made. 
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A standard latent class model involving a single latent variable with two latent classes 

(change and no-change) and based upon the use of four independent classifiers, W, X, Y 

and Z, whose outputs are labels w, x, y, z = 0,1 is based on 
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where 
WXYZ

wxyzt  is the conditional probability that the pattern of class labels derived from 

the classifiers is (w,x,y,z) given that the case has a change status t (1 or 0) and 

t is the 

probability that a case has the change status t (Vermunt, 1997; Yang and Becker, 1997); 

note the classification outputs are variables in the analysis and so written in italics in the 

equations. Moreover, the conditional probabilities that represent the sensitivity and 

specificity of each classifier are parameters of the model (e.g. 
W

11 is the sensitivity of 

classifier W). The fit of a latent class model to the data is often evaluated with regard to a 

measure such as the likelihood ratio chi-squared statistic, L
2
; with a model normally 

viewed as fitting the data if the value of L
2
 is sufficiently small to be attributable to the 

effect of chance (Magidson and Vermunt, 2004).   

 

The basic latent class model may also be represented as a log-linear model from which it 

is possible to estimate the sensitivity and specificity of classifications as well as the 
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prevalence (Espeland and Handelman, 1989; Hui and Zhou, 1998). For example, equation 

16 is equivalent to the latent class log-linear model represented by equation 17, 
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where λ are the main effects of the true change status and the predictions made by the 

three classifiers (Hui and Zhou, 1998). As above, the sensitivity and specificity are 

directly related to model parameters and the prevalence of change is estimated as the 

proportion of the sample estimated to have changed in the latent variable (Espeland and 

Handelman, 1989).  

 

The model components represented in equations 16 and 17 may also be adapted to allow 

for situations in which the assumption of conditional independence is untenable. For 

example, if classifiers Y and Z were not independent the model would use 
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or, as the log-linear model, 
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in which the final parameter in equations 18 and 19 represents the dependence between Y 

and Z. Although the inclusion of the latter term allows application when the assumption 
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of conditional independence is inappropriate its presence also means that the model’s 

parameters (e.g. Y

yt and Z

zt  in equation 19) no longer have a direct interpretation in 

terms of sensitivity and specificity for classifiers Y and Z (Yang and Becker, 1997; Hui 

and Zhou, 1998). Yang and Becker (1997) proposed parameterizing the log-linear model 

in marginal models in which a direct relation to sensitivity and specificity may still be 

made. Equation 19 is equivalent to a latent class marginal model that allows for 

dependence between classifiers Y and Z (Yang and Becker, 1997; Becker and Yang, 

1998). In such a model the univariate marginal logits are directly related to sensitivity and 

specificity. Thus, for example, the sensitivity of classification Y may be estimated from 
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where 

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 (Yang and Becker, 1997; Hui and Zhou, 1998). Critically, it is evident 

that the latent class based method may be applied when the variables are conditionally 

independent or conditionally dependent.  
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A test for conditional independence should be undertaken to ensure an appropriate model 

is used. A variety of approaches have been reported in the literature for assessing 

conditional independence. Here, a modified version of the log-odds ratio check method 

(Garrett and Zeger, 2000), implemented using the CONDEP programme 

(http://www.john-uebersax.com/stat/condep.html), was used. The log-odds ratio check 

method is based on a comparison of the log-odds ratio for the observed (ψo) and expected 

(ψe) data, and the evaluation was based upon the comparison in terms of the z score 
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and hence a value of z above the selected critical value indicates conditional dependence 

(e.g. for a two-sided test at the 0.05 level of significance the critical value is │1.96│).   

 

Here, latent class models were used to illustrate the potential to assess the accuracy of 

change detection and derive estimates of the extent of change when ground reference data 

were absent. This assessment was undertaken for the situation in which the classifications 

were conditionally independent and when they were conditionally dependent.  First, using 

just the outputs from the remote sensing change detection classifiers defined in scenarios 

B, I, J and K, which were created in a manner that should ensure independence of errors, 

the approach represented by equations 15 and 16 was undertaken. Specifically, the model 

employed 
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http://www.john-uebersax.com/stat/condep.html
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and then was used to allow the producer’s accuracy (sensitivity) of each classifier and the 

prevalence of change to be estimated.   

 

Finally, to illustrate the potential of the latent class modelling approach when correlated 

errors occur, a further analysis was undertaken. For this, the data in scenario K were 

replaced by those in scenario L, which was highly correlated with the data in scenario J. 

Then, the latent class model using 
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was solved. The analyses based on equations 23 and 24 were undertaken with the LEM 

software (Vermunt 1997; software available at 

http://www.uvt.nl/faculteiten/fsw/organisatie/departementen/mto/software2.html). Some 

further analyses in which different dependence structures were specified were undertaken 

to explore the latent class modelling approach with these data. 

 

A series of products may be derived from the latent class analysis, including information 

on class membership per-case that allows a confusion matrix to be generated from which 

a variety of accuracy measures could be derived. Here, however, attention is on the 

producer’s accuracy and prevalence which are parameters of the basic model. Critically, 

it should be noted that the results from the use of both latent class models founded on 

equations 23 and 24 were derived without use of ground reference data. In each case, 

http://www.uvt.nl/faculteiten/fsw/organisatie/departementen/mto/software2.html
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however, the actual accuracy of the classification and amount of change was known as 

the data had been simulated with known properties. Finally, however, it is important to 

note that the focus in this paper is on the potential of the latent class analysis using 

simulated data of known properties for which it is relatively simple to define appropriate 

models. Real world applications may present a range of challenges and the validity of the 

approach and the ability to use it effectively requires further investigation. One critical 

feature is that, as a model based approach, it is important that the underlying assumptions 

of the model are satisfied.  

 

 

6. Results and Discussion 

Error in the ground reference data set impacted greatly on the perceived accuracy of 

change detection and of the amount of change that appeared to occur. The nature of the 

effect of ground reference data error varied greatly, especially in relation to whether the 

errors in the cross-tabulated data sets were independent or correlated. It may, however, be 

possible to correct for the negative effects of ground reference data error. The latter will 

be discussed after first evaluating the impacts arising from the use of an imperfect 

reference data set. 

 

6.1 Independent errors. 

For scenarios A-E it was apparent that ground reference data error introduced 

considerable, and often systematic, bias into the estimates of change detection accuracy 

and extent (Figure 2). In particular, it was evident that the producer’s accuracy of change 
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was generally underestimated while the extent of change was over-estimated; of the 

scenarios investigated only scenario D did not follow this trend. Moreover, the magnitude 

of the bias introduced was large even when the ground reference data set was of very 

high accuracy. For example, in scenario A the ground reference data set was 95% 

accurate but caused a 13.9% underestimation of the producer’s accuracy (the perceived 

producer’s accuracy, 
1Ŝ , was estimated to be 76.1% but actually the real value, S1, was 

90.0%). Not only was the magnitude of the bias large but it also had the effect of 

reducing the perceived accuracy below the popular 85% target, potentially leading to a 

highly accurate classification being wrongly rejected as not meeting the required 

standard. Note also that the magnitude of the bias in producer’s accuracy increased with 

the amount of error in the ground reference data set, as evident from the results associated 

with scenarios A, B and C.  

 

The prevalence or amount of change was also mis-estimated through the use of an 

imperfect ground reference data set. In all scenarios, the prevalence was over-estimated, 

rising from an estimate that was 3.0% larger than reality for scenario A to an 18.0% 

overestimation for scenario C. Indeed, in the latter scenario the amount of change was 

estimated to be nearly twice that which actually occurred. 

 

It was also evident that the prevalence of change had an impact on the results. This is 

especially apparent in relation to scenarios B and E which differed only in the prevalence 

of change. It was apparent that at low prevalence, scenario E, the producer’s accuracy 

was grossly underestimated; the perceived producer’s accuracy, 
1Ŝ , was estimated  to be 
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39.3%, roughly half of the actual value of 80.0%. Additionally, the prevalence of change 

was substantially over-estimated, more so than with scenario B. Thus the accuracy of 

change detection by remote sensing and of change extent estimation was a function of the 

amount of change that has occurred; the estimates are prevalence-dependent. Moreover, 

the effect of variation in prevalence was modelled and revealed considerable impacts on 

the magnitude of the perceived accuracy (Gart and Buck, 1996). The relationship 

between the observed or perceived accuracy with prevalence is highlighted for the 

scenarios discussed in Figure 6. Note, for example, that the producer’s accuracy could 

vary greatly with prevalence. The producer’s accuracy was only independent of 

prevalence for scenario D.  

 

The results from scenario D generally differed from the others. Scenario D was unusual 

in that the classification used as ground reference data had a perfect specificity. The 

consequence of this was that, for scenario D, the producer’s accuracy was estimated 

correctly. Moreover, the estimate of producer’s accuracy was not dependent on 

prevalence (Figure 6). Note that if the ground reference data set had possessed a perfect 

sensitivity but an imperfect specificity then the producer’s accuracy of change for 

scenario D would have varied with prevalence while the corresponding accuracy for the 

no-change class would have been prevalent independent. Scenario D is particularly useful 

in highlighting that the effects of ground data error vary greatly dependent on how the 

errors are distributed amongst the confusion matrix elements, which is a function of the 

sensitivity and specificity of the classifications cross-tabulated.  
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Although not a major concern to this paper, it was also evident that substantial bias could 

be introduced by ground reference data error into the estimation of user’s accuracy. With 

user’s accuracy, the effect of ground reference data error varied in magnitude and the 

direction of the bias introduced also varied. For example, scenarios A and C show, 

respectively, under-estimation and over-estimation of user’s accuracy while the estimate 

for scenario B was correct (Figure 2).  

 

6.2 Correlated errors 

Ground reference data error sometimes caused substantial bias to the accuracy and extent 

estimates derived from a confusion matrix when there was correlation in the errors in the 

data sets cross-tabulated (Figure 3). The pattern in the results was, however, dissimilar to 

the general trend obtained with uncorrelated errors (Figure 2). Note, for example, that 

with correlated errors the producer’s accuracy was systematically mis-estimated but in 

the opposite direction to that generally observed with uncorrelated errors. Additionally, it 

was evident that the magnitude of the over-estimation of the producer’s accuracy was 

positively related to the degree of error, rising from scenario F through G to H (Figure 3).  

 

The prevalence of change was also mis-estimated as a consequence of ground reference 

data error. For scenarios F to H, the prevalence of change was consistently over-

estimated. The bias introduced by ground reference data error into estimates of the user’s 

accuracy could be large, with U1 increasing from 50.0% to 75.0% in the scenarios 

evaluated (Figure 3). 

  



 38 

Errors that are correlated between the two data sets cross-tabulated to form a confusion 

matrix, therefore, impact differently to uncorrelated errors. Note, for example, the 

differences between scenarios B and H which were dissimilar in terms of the correlation 

between the data sets (Figures 2 and 3). Critically, each shows the impact of a 10% error 

in the ground reference data set. With both, the prevalence was over-estimated but in 

scenario B the producer’s accuracy for change was under-estimated by 18.5 % while it 

was over-estimated by 12.3 % in scenario H. Understanding the impacts of ground 

reference data error, therefore, requires information on the nature of the error and, in 

particular, the degree of correlation between the errors in the ground reference and image 

classification data sets used to form the confusion matrix. 

 

6.1.3  Evaluation based on real matrices 

Imperfect reference data had a large impact on the estimates derived from the analyses 

based on the two real confusion matrices (Figure 4). The trends observed were similar to 

those reported above. For example, in relation to both map A and  map B the producer’s 

and user’s accuracy were under-estimated when independent errors occurred but over-

estimated in the presence of correlated errors. Note also that the magnitude of mis-

estimation could sometimes be substantial even though all of the data sets used were of 

very high accuracy. For example, in relation to map A, the use of reference data with 5% 

error could yield an under-estimation of the producer’s accuracy of 13.5% if the errors 

were independent and an over-estimation of the user’s accuracy by 22.4% if the errors 

were correlated. It was, therefore, evident that substantial mis-estimation of accuracy and 

change extent may be made as a consequence of using reference data containing on small 
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amounts of error (Figure 4). Note also that the impacts affect other features. For example, 

the overall accuracy of a classification may be substantially mis-estimated (e.g. map A 

has an accuracy of 90.8% but appears to be 86.8% if errors are independent and 95.8% if 

errors are correlated). Moreover, the results from the analyses of the simulated data 

discussed above suggest that larger impacts would have been observed if the prevalence 

of change had been smaller than the relatively high values that had been recorded. The 

results highlight the need to address the effects of imperfect ground reference data in 

studies of land cover change by remote sensing. 

 

6.1.4 Discussion 

A key result highlighted above was that the use of imperfect ground reference data may 

sometimes result in a substantial mis-estimation of the amount of change, and so be a 

source of error contributing to the inaccuracy of change statistics reported in the 

literature. Ground data error also impacted greatly on the apparent accuracy of change 

detection. The impacts of ground reference data error varied as a function of the nature of 

the errors, notably in terms of their absolute and relative magnitude as well as direction of 

the bias introduced into estimates. Although there were some circumstances in which 

ground reference data error had no or only a small effect (e.g. on the estimation of 

producer’s accuracy in scenario D) they typically result in a false impression of 

classification accuracy and extent of change. Critically, however, the use of imperfect 

ground reference data can be a source of substantial error in studies of land cover change. 

Even when the ground reference data were very accurate the magnitude of the mis-

estimation of accuracy and extent could be large so the problems of ground data quality 
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should not be ignored. Indeed the problems of ground data quality should be considered 

in the design of a study, such as when planning the sample size of ground reference data 

sets (Rahme and Joseph, 1998; Messam et al., 2008) and in the interpretation of results. 

For example, the desire to sometimes focus attention disproportionately to hotspots of 

change (e.g. Broich et al., 2009) may result in problems linked to the prevalence 

dependency of some accuracy measures. The results above highlighted, for instance, that 

the use of an imperfect ground reference data set may result in the apparent accuracy of 

change detection varying from location to location as a function of the prevalence of 

change. A classifier that was highly accurate at a location with considerable change may 

appear to be of low accuracy when applied to a location with little change. This problem 

could be interpreted as a failing of the classifier or perhaps the result of as some 

transferability problem but may, at least in part, be a function of the use of imperfect 

ground reference data. The various problems of ground reference data quality noted 

reinforce the oft-stated call for the term ground truth to be avoided. Although truth is a 

concept and open to interpretation, the term ground truth may imply to some that the 

ground data set is error-free when this is unlikely and the imperfections of the ground 

reference data set, even if minor, can be a source of  considerable error and mis-

interpretation. 

 

6.2   Correcting for ground reference data error 

For the situation in which the errors are independent and the quality of the ground 

reference data set is known, equations 12-14 may be used to derive the actual properties 

from the observed or perceived values. Thus, the application of equations 12-14 to the 
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observed data in Figure 2 yields the real values, which are known as the data were 

simulated with known properties. That is, the estimate derived from the confusion matrix 

formed with regard to the imperfect ground reference data (e.g. 
1Ŝ ) may be used to derive 

the real value (e.g. S1) through the use of the appropriate equation. These results reinforce 

calls made in other studies to use the confusion matrix for more than just a description of 

accuracy but as a means to refine estimates (van Oort 2005; Foody, 2009) and to provide 

the matrix as part of the accuracy statement. The results show that with known ground 

data quality, the real land cover change values may be derived by simple algebraic 

means.   

 

The basic latent class modelling approach represented by equation 15 may also be used 

when errors are independent. The model based upon the use of  equation 23 was used to 

derive land cover change estimates using just the outputs simulated for the remote 

sensing change detection classifiers in scenarios B, I, J and K. These data sets had been 

generated in a way to ensure independent errors, a property that was confirmed by the 

log-odds ratio check analysis (Table 3). The outputs of the four classifiers were used to 

construct a 2
4
 cross-tabulation that illustrated the pattern of class labels derived from the 

classifications to drive the analysis (Table 4). The model was found to fit the data closely 

(L
2
=5.03, df= 6), and the producer’s accuracy (sensitivity) and prevalence of change 

estimated from the results of the analysis are shown in Table 5. Note that the values 

shown in Table 4 were derived without any reference to ground reference data and are 

close to the real values, with the largest difference in producer’s accuracy being 3.2% for 

the classifier in scenario B. 
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Finally, the data in scenario K were replaced by those in scenario L, which was highly 

correlated with the data in scenario J to illustrate the situation in which the conditional 

independence cannot be assumed. Again a 2
4
 cross-classification table was formed for 

input to the analysis (Table 6) and estimates of the sensitivity of the classifications and 

change prevalence derived from the model. For illustrative purposes the model based on 

the use of equation 23, which is based on conditional independence (i.e. a standard model 

which fails to recognise the known dependence between the classification outputs for 

scenarios J and L), was applied to the data. The results of this analysis were found to fit 

the data poorly (L
2
=159.59, df=4) and the derived estimates differed greatly from reality 

(Table 7). Repeating the analysis but using the model based on equation 24, which 

allowed for the known conditional dependence between the data from scenarios J and L 

(Table 2), yielded a model that fitted more closely with the data (L
2
=81.09, df=4). 

Although this model fitted the data more closely and was not a good fit the estimates of 

prevalence and accuracy derived from it were reasonably close to reality (Table 8). The 

results, together with those reported elsewhere (e.g. Torrance-Rynard and Walter, 1998), 

indicate that sometimes it is possible to derive accurate estimates from non-ideal latent 

class models. For example, the largest difference between the predicted and actual 

producer’s accuracy was 3.0% for the classification from scenario B. It was apparent, 

however, that there was evidence for conditional dependence between the data from 

scenarios B and L (Table 9). This dependence between the data in scenarios B and L 

(Table 2) was unplanned and reinforces the need to test for conditional independence and 

use an appropriate model of the dependence structure with a latent class analysis. The 
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dependency arose from the approach used to derive the data for scenario L from that in 

scenario J; the 150 cases for which the class label were changed were not selected 

randomly but from a data set ordered by perfect ground data which was in turn linked 

directly to the data for scenario B. Adjusting the model component in equation 24 to 

allow for a more complex dependence structure, including the dependence of B and L, 

and repeating the analysis resulted in a model that provided even closer fit to the data 

(L
2
= 37.71, df=2). Additionally, the estimates of accuracy and prevalence derived were 

close to reality (Table 10), although not necessarily closer than those derived from the 

earlier model, but the analysis was free from significant problems of conditional 

dependence (Table 11). It is worth stressing again, that the estimates of accuracy and 

change extent were derived without use of ground reference data.  

 

Although the latent class modelling is more complex than the simple algebraic approach 

for the correction of the impacts of an imperfect reference it does appear to have 

considerable potential. Additionally, the approach can sometimes be implemented as a 

log-linear model form, a type of analysis with which there is some familiarity in the 

remote sensing community. There are, however, some important concerns with latent 

class modelling. There are, for example, important concerns linked to the identifiability 

of the latent class model (Rindskopf and Rindskopf, 1986; Uebersax and Grove, 1990) 

and especially the dependence model used (Torrance-Rynard and Walter, 1997; Albert 

and Dodd, 2004; Albert et al., 2001 Pepe and Janes, 2007). Indeed it must be explicitly 

recognised that the latent class modelling approach is not a panacea for ground reference 

data problems. Critically, it is not suggested that the approach can free researchers from 
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the need for ground reference data or from the potential to make erroneous estimation. 

The latent class modelling approach may sometimes offer an ability to constructively 

address ground reference data problems but its use does involve strong assumptions, 

especially if conditional dependence occurs, and so must be used with care. This paper 

has sought to show that ground reference data error may have substantial negative 

impacts on the remote sensing of land cover change but that sometimes it is possible to 

quantify these impacts and even implement corrective actions to reduce or remove them. 

Further work is needed to develop the latter, with the potential and limitations of latent 

class modelling, in particular, deserving greater attention in remote sensing. 

 

 

7. Conclusions 

The basis of change detection by remote sensing is very simple. In many applications the 

key information on change detection accuracy and amount or extent of change may be 

derived from a binary change detection matrix that is no more than a cross-tabulation of 

the labels contained the ground reference data set against those in derived from the 

remote sensing change detection analysis. There are, however, many sources of error in 

studies of land cover change and this paper focused on just one issue, the problems 

arising from the use of an imperfect ground reference data set. 

 

The use of an imperfect ground reference data set may introduce substantial bias into the 

estimates of land cover change variables. While the accuracy of ground reference data 

has been known to be a concern for a long time its impacts have previously been poorly 
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understood and, aside from a few studies such as Hagen (2003), very little action taken to 

address negative effects. However, the results have shown that even small errors in the 

ground reference data set may introduce large bias into the derived estimates and so it is 

extremely unsafe to assume an error-free or gold standard reference data set. Fortunately, 

there are sometimes ways to address the problems caused by ground reference data error. 

Some methods that may be used were illustrated in this paper for a range of situations. It 

was stressed that the nature of the errors, especially in relation to the underlying 

assumptions of the techniques, has important implications that should not be ignored as 

deviation from the assumed condition can have a major negative effect on the analysis. 

While this article has focused on the potential of techniques such as latent class 

modelling in remote sensing further investigation is required. The latter should explore 

the limitations of latent class modelling and its suitability for use in typical remote 

sensing contexts. None-the-less, the potential to reduce or even remove the bias caused 

by ground reference data error has been indicated and this may help the effective use of 

remote sensing as a source of information on land cover change. The techniques 

discussed are, of course, also applicable beyond studies of change, notably to other binary 

classification problems.    

 

In summary, the four main conclusions of this paper are: 

1. Ground reference data error can be a source of considerable error and mis-

interpretation in studies of land cover change. It can, for example, lead to over- or 

under-estimation of some measures of accuracy and mis-estimation of the extent 

of change. The specific effects arising from the use of an imperfect ground 
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reference data set vary with the nature of the errors it contains (e.g.  if correlated 

or not with the errors in the remotely sensed data). 

2. The magnitude of the producer’s accuracy (sensitivity) can, contrary to 

widespread belief in some communities, vary as a function of the prevalence of 

change if an imperfect ground reference data set is used. The use of an imperfect 

reference data set also impacts on the user’s and overall classification accuracy. 

3. It is sometimes possible to reduce or even remove the effects of ground data error. 

Moreover, it is sometimes possible to derive accurate estimates of change 

detection accuracy and extent without ground data. Note that the approach 

founded on latent class analysis is based on a model and the satisfaction of the 

model assumptions is critical in its use.  

4. Ground data error and its impacts should be considered in the interpretation of 

studies of land cover change. 
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Table 1. Five scenarios used to explore the impacts of ground reference data error on the 

accuracy of change detection and change extent estimation. Note that in each of these 

scenarios the errors in the ground and remotely sensed data sets were independent of each 

other. 

 

 

 

 

 

         Classification accuracy (%)          True 

Scenario Remote sensing   Ground data  prevalence (%) 

A  S1=S2=90.0     '

2

'

1 SS  =95.0  20.0 

B  S1=S2=80.0     '

2

'

1 SS  =90.0  20.0 

C  S1=S2=65.0     '

2

'

1 SS  =70.0  20.0 

D      S1=S2=80.0   '

1S = 80.0   '

2S =100.0  20.0 

E  S1=S2=80.0     '

2

'

1 SS  =90.0    5.0 
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Table 2. Conditional correlations ρ1 (ρ0) between pairs of data sets derived for scenarios 

B, I, J, K, and L.  

 

 

 

 

 

 B          I   J    K        L           

B - 0.051 (0.021)    0.033 (-0.028)   -0.085 (-0.042)    0.492 (0.008)   

I          -    -0.104 (0.087)    -0.009 (-0.013)    0.023 (0.106) 

J         -      -0.043 (0.142)     0.398 (0.722) 

K          -         -0.070 (0.019) 
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Table 3. Log-odds ratio check output for the latent class analysis based on variables 

defined in scenarios B, I, J and K for an analysis using equation 23.   

 
 

 

 

Variables  Expected           Observed                 

compared   log odds           log odds   z-           

           ratio      s.e.    ratio      value 

----------------------------------------------------- 

 B    I     1.85     0.157     1.84     -0.05 

 B    J     1.39     0.149     1.37     -0.11 

 B    K     0.62     0.138     0.48     -1.03 

 I    J     2.26     0.164     2.25     -0.04 

 I    K     1.02     0.148     1.02      0.03 

 J    K     0.77     0.143     0.84      0.51     
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Table 4. The 2
4
 cross-tabulation of outputs (b, i, j, k) from the remote sensing classifiers 

used in scenarios B, I, J and K. The table shows the number of times a particular 

combination of labels was derived (e.g. all four classifiers predicted change for 77 of the 

1000 cases).   

 

 

 

 

b  i  j k     n 

1 1 1 1   77 

1 1 1 0   46 

1 1 0 1   25 

1 1 0 0   16 

1 0 1 1   14 

1 0 1 0   16 

1 0 0 1   31 

1 0 0 0   95 

0 1 1 1   25 

0 1 1 0   18 

0 1 0 1   20 

0 1 0 0   34 

0 0 1 1   32 

0 0 1 0   53 

0 0 0 1            157 

0 0 0 0            341 
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Table 5. Results derived form the latent class analysis based on equation 23; note the 

estimates were derived without the use of ground reference data. The actual values were 

known for simulated data and may be derived from the confusion matrices shown in 

Figures 2 and 5.    

 

 

 

 

 

Property   Estimate (%) Actual (%) 

Prevalence   21.6  20.0 

Classifier B, S1  76.8  80.0 

Classifier I, S1   91.3  90.5 

Classifier J, S1   79.6  82.5 

Classifier K, S1  64.3  67.0 
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Table 6. The 2
4
 cross-tabulation of outputs (b, i, j, l) from the remote sensing classifiers 

used in scenarios B, I, J and L.    

 

 

b  i  j  l     n 

1 1 1 1            115 

1 1 1 0     8 

1 1 0 1     4 

1 1 0 0   37 

1 0 1 1   28 

1 0 1 0     2 

1 0 0 1   16 

1 0 0 0            110 

0 1 1 1   14 

0 1 1 0   29 

0 1 0 1   17 

0 1 0 0   37 

0 0 1 1   68 

0 0 1 0   17 

0 0 0 1   57 

0 0 0 0  441 
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Table 7. Results derived from the latent class analysis based on equation 23 to the data 

from scenarios B, I, J and L; note the estimates were derived without the use of ground 

reference data. The actual values were known for simulated data and may be derived 

from the confusion matrices shown in Figures 2 and 5.    

 

 

 

 

 

 

Property   Estimate (%) Actual (%) 

Prevalence   28.0  20.0 

Classifier B, S1  56.8  80.0 

Classifier I, S1   61.6  90.5 

Classifier J, S1   94.4  82.5 

Classifier L, S1  83.7  66.5 
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Table 8. Results derived from the latent class analysis based on equation 24 to the data 

from scenarios B, I, J and L; note the estimates were derived without the use of ground 

reference data. The actual values were known for simulated data and may be derived 

from the confusion matrices shown in Figures 2 and 5.    

 

 

 

 

 

 

Property   Estimate (%) Actual (%) 

Prevalence   21.2  20.0 

Classifier B, S1  77.0  80.0 

Classifier I, S1   92.4  90.5 

Classifier J, S1   79.8  82.5 

Classifier L, S1  67.8  66.5 
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Table 9.  Log-odds ratio check output for the latent class analysis based on variables 

defined in scenarios B, I, J and L for an analysis using equation 24, with dependence 

between J and L.   

 

 

 

 
Variables  Expected           Observed                 

compared   log odds           log odds   z-            

           ratio      s.e.    ratio      value 

---------------------------------------------- 

 B    I     1.84     0.157     1.84     -0.00 

 B    J     1.37     0.149     1.37      0.04 

 B    L     0.89     0.143     1.25      2.50 

 I    J     2.24     0.164     2.25      0.03 

 I    L     1.46     0.152     1.52      0.39 

 J    L     3.29     0.186     3.29      0.00 
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Table 10. Results derived from the latent class analysis based to the data from scenarios 

B, I, J and L allowing for conditional dependence between B and L and J and L; note the 

estimates were derived without the use of ground reference data. The actual values were 

known for simulated data and may be derived from the confusion matrices shown in 

Figures 2 and 5.    

 

 

 

 

 

 

Property   Estimate (%) Actual (%) 

Prevalence   20.7  20.0 

Classifier B, S1  75.3  80.0 

Classifier I, S1   91.9  90.5 

Classifier J, S1   82.0  82.5 

Classifier L, S1  65.4  66.5 

 

 

 

 

 

 

 

 



 75 

 

 

Table 11. Log-odds ratio check output for the latent class analysis based on variables 

defined in scenarios B, I, J and L for an analysis using equation 24, with dependence 

between J and L and B and L.  

 

 

 
Variables  Expected           Observed                 

compared   log odds           log odds   z-            

            ratio      s.e.    ratio      value 

---------------------------------------------- 

 B    I     1.70     0.155     1.84      0.95 

 B    J     1.56     0.150     1.37     -1.21 

 B    L     1.25     0.144     1.25      0.00 

 I    J     2.25     0.164     2.25      0.00 

 I    L     1.31     0.151     1.52      1.39 

 J    L     3.29     0.186     3.29      0.00 
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Figure captions 

 

Figure 1. The binary confusion matrix. Each case is allocated to one of the elements of 

the 2x2 matrix (highlighted in grey) and a suite of statistics may be derived from the 

matrix entries relative to the marginal values. All other matrices presented in this paper 

are formatted in the style shown here. 

 

Figure 2.The observed and real confusion matrices based on imperfect and perfect ground 

reference data respectively together with associated derived values for scenarios A-E. 

Note that in each of the scenarios depicted the data were generated in a fashion to ensure 

that the assumption of conditional independence was satisfied. 

 

Figure 3. The confusion matrices and derived values illustrating impacts of correlated 

errors. (a) the real matrix, (b) scenario F, matrix derived with  100-γ = 1.0%, (c) scenario 

G, matrix derived with  100-γ = 2.0%, and (d) scenario H, matrix derived with  100-γ = 

10.0%. 

 

Figure 4. The real confusion matrices and those derived after the introduction of ground 

reference data error. (a) the real matrices for maps A and B (based on Stehman (2005), 

table 2), (b) confusion matrices arising from the introduction of independent errors and 

(c) confusion matrices arising from the introduction of correlated errors. Note some the 

analyses required some rounding of numbers and that for the analyses based on map A 

%0.95'

2

'

1  SS while with map B %0.98'

2

'

1  SS . 

 

Figure 5. The observed and real confusion matrices together with associated derived 

values for scenarios I-L. 

 

Figure 6. Variation in perceived sensitivity (dark line) and specificity (dashed line) with 

prevalence. (a) For '

2

'

1 SS  =95.0%, S1=S2=90.0%; note scenario A had these settings and 

θ=20%,  (b) '

2

'

1 SS  =90.0%, S1=S2=80.0%; note scenarios B and E had these settings and 

θ=20% and θ=5% respectively, (c) '

2

'

1 SS  =70.0%, S1=S2=65.0%; note scenario C had 

these settings and θ=20%,  and (d) '

1S =90.0%, '

2S =100.0%, S1=S2=80.0%; note scenario 

D had these settings and θ=20%. 
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Figure 1. The binary confusion matrix. Each case is allocated to one of the elements of 

the 2x2 matrix (highlighted in grey) and a suite of statistics may be derived from the 

matrix entries relative to the marginal values. All other matrices presented in this paper 

are formatted in the style shown here. 
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Figure 2.The observed and real confusion matrices based on imperfect and perfect ground 

reference data respectively together with associated derived values for scenarios A-E. 

Note that in each of the scenarios depicted the data were generated in a fashion to ensure 

that the assumption of conditional independence was satisfied. 
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Figure 3. The confusion matrices and derived values illustrating impacts of correlated 

errors. (a) the real matrix, (b) scenario F, matrix derived with  100-γ = 1.0%, (c) scenario 

G, matrix derived with  100-γ = 2.0%, and (d) scenario H, matrix derived with  100-γ = 

10.0%. 
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Figure 4. The real confusion matrices and those derived after the introduction of ground 

reference data error. (a) the real matrices for maps A and B (based on Stehman (2005), 

table 2), (b) confusion matrices arising from the introduction of independent errors and 

(c) confusion matrices arising from the introduction of correlated errors. Note some the 

analyses required some rounding of numbers and that for the analyses based on map A 

%0.95'

2

'

1  SS while with map B %0.98'

2

'

1  SS . 
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Figure 5. The observed and real confusion matrices together with associated derived 

values for scenarios I-L. 
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Figure 6. Variation in observed or perceived sensitivity (dark line) and specificity 

(dashed line) with prevalence. (a) For '

2

'

1 SS  =95.0%, S1=S2=90.0%; note scenario A had 

these settings and θ=20%,  (b) '

2

'

1 SS  =90.0%, S1=S2=80.0%; note scenarios B and E had 

these settings and θ=20% and θ=5% respectively, (c) '

2

'

1 SS  =70.0%, S1=S2=65.0%; note 

scenario C had these settings and θ=20%,  and (d) '

1S =90.0%, '

2S =100.0%, 

S1=S2=80.0%; note scenario D had these settings and θ=20%. 


