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Abstract. We investigate the completeness and completions of the normed

algebras (D(1)(X), ∥ ⋅ ∥) for perfect, compact plane sets X. In particular, we
construct a radially self-absorbing, compact plane set X such that the normed

algebra (D(1)(X), ∥ ⋅ ∥) is not complete. This solves a question of Bland and

Feinstein. We also prove that there are several classes of connected, compact
plane sets X for which the completeness of (D(1)(X), ∥ ⋅ ∥) is equivalent to

the pointwise regularity of X. For example, this is true for all rectifiably

connected, polynomially convex, compact plane sets with empty interior, for
all star-shaped, compact plane sets, and for all Jordan arcs in ℂ.

In an earlier paper of Bland and Feinstein, the notion of an ℱ-derivative of

a function was introduced, where ℱ is a suitable set of rectifiable paths, and

with it a new family of Banach algebras D
(1)
ℱ (X) corresponding to the normed

algebras D(1)(X). In the present paper, we obtain stronger results concerning

the questions when D(1)(X) and D
(1)
ℱ (X) are equal, and when the former is

dense in the latter. In particular, we show that equality holds whenever X is

‘ℱ-regular’.
An example of Bishop shows that the completion of (D(1)(X), ∥ ⋅ ∥) need not

be semisimple. We show that the completion of (D(1)(X), ∥ ⋅ ∥) is semisimple

whenever the union of all the rectifiable Jordan arcs in X is dense in X.
We prove that the character space of D(1)(X) is equal to X for all perfect,

compact plane sets X, whether or not (D(1)(X), ∥ ⋅ ∥) is complete. In par-

ticular, characters on the normed algebras (D(1)(X), ∥ ⋅ ∥) are automatically
continuous.

1. Introduction

Throughout this paper, by a compact space we shall mean a non-empty, compact,
Hausdorff topological space; by a compact plane set we shall mean a non-empty,
compact subset of the complex plane. Recall that such a set is perfect if it has no
isolated points.

Let X be a perfect, compact plane set, and let D(1)(X) be the normed algebra
of all continuously differentiable, complex-valued functions on X. These algebras
(and others) were discussed by Dales and Davie in [7]. We shall continue the study
of these algebras, concentrating on the problem of giving necessary and sufficient
conditions on X for (D(1)(X), ∥ ⋅ ∥) to be complete.

We shall see an interesting relationship between the geometry of a compact plane
set X and the properties of the normed algebra (D(1)(X), ∥ ⋅ ∥). For example, it is
shown in Corollary 9.5 that, for polynomially convex, geodesically bounded (and
hence connected), compact plane sets X, the normed algebra (D(1)(X), ∥ ⋅ ∥) is
complete if and only if the following condition (condition (9.4)) holds: for each
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z ∈ X, there exists Bz > 0 such that, for all polynomials p and all w ∈ X, we have

∣p(z)− p(w)∣ ≤ Bz∣p′∣X ∣z − w∣ .

However, for many such sets X, it is far from easy to determine whether or not
this condition, which involves only polynomials, is satisfied. We conjecture that,
for each connected, compact plane set X with more than one point, (D(1)(X), ∥ ⋅ ∥)
is complete if and only if X is pointwise regular. We shall prove that this is true
for a variety of somewhat exotic connected, compact plane sets. We shall also
describe some other connected, compact plane sets for which we have not been able
to determine whether or not this is the case.

In [3], the notion of ℱ-derivative was introduced in order to describe the comple-
tions of the spaces (D(1)(X), ∥ ⋅ ∥); here ℱ is a suitable set of rectifiable paths lying
in a compact plane set X. We shall remove an unnecessary restriction on the sets
of paths considered in [3]. We shall also introduce a generalization of the standard
notion of pointwise regularity for compact plane sets in order to further strengthen
some of the results of [3].

We shall then investigate further the completeness of the spaces (D(1)(X), ∥ ⋅ ∥)
for compact plane sets X, and discuss their completions. In particular, we shall
answer a problem raised in [3] by constructing a radially self-absorbing, compact
plane set X such that (D(1)(X), ∥ ⋅ ∥) is not complete.

2. Preliminary concepts and results

We begin with some standard terminology, notation, definitions and results. For
more details, the reader may wish to consult [6].

We denote the unit interval [0, 1] by I and the complex plane by ℂ; the real line
is ℝ, ℝ+ = [0,∞), and ℝ+∙ = (0,∞); we often identify ℂ with ℝ2.

We denote by C(1)(ℝ2) the algebra of functions from ℝ2 to ℂ which have contin-
uous first-order partial derivatives on ℝ2. We denote by Z the coordinate functional
on ℂ, z 7→ z, or the restriction of this function to some subset of ℂ. Similarly we
write 1 for the function constantly equal to 1.

We recall the following standard notation. Let (an) be a sequence in ℝ+, and
let (bn) be a sequence in ℝ+∙. We write

an = O(bn)

if the sequence (an/bn) is bounded, and

an = o(bn) as n→∞

if an/bn → 0 as n→∞.
Let X be a compact space. We denote the algebra of all continuous, complex-

valued functions on X, with the pointwise algebraic operations, by C(X). For
f ∈ C(X), we denote the uniform norm of f on a non-empty subset E of X by
∣f ∣E . Thus (C(X), ∣ ⋅ ∣X) is a commutative Banach algebra; see [6, §4.2].

Definition 2.1. Let X be a compact space. A normed function algebra on X is a
normed algebra (A, ∥ ⋅ ∥) such that A is a subalgebra of C(X), such that A contains
the constants and separates the points of X, and such that, for all f ∈ A, we have
∥f∥ ≥ ∣f ∣X . A Banach function algebra on X is a normed function algebra (A, ∥ ⋅ ∥)
on X such that (A, ∥ ⋅ ∥) is complete. A uniform algebra on X is a Banach function
algebra A on X such that the norm of A is equivalent to the uniform norm ∣ ⋅ ∣X .
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Of course, in the case where (A, ∥ ⋅ ∥) is a Banach algebra and a subalgebra of
C(X), it is automatic that ∥f∥ ≥ ∣f ∣X for all f ∈ A.

Let A be a complex algebra. As in [6], the space of all characters on A is denoted
by ΦA. If A is a normed algebra, the space of continuous characters on A is ΨA;
ΨA is a locally compact space with respect to the relative weak-∗ topology. In the
case where A is a normed function algebra on a compact space X, we define

"x : f 7→ f(x) , A→ ℂ ,
for each x ∈ X. Then "x ∈ ΨA, and the map x 7→ "x, X → ΨA, is a continuous
embedding. As in [6, §4.1], we say that A is natural (on X) if this map is surjective.

The following result is due to Honary [12, Theorem].

Proposition 2.2. Let X be a compact space, and let (A, ∥ ⋅ ∥) be a normed function
algebra on X, with uniform closure B. Then A is natural on X if and only if both
of the following conditions hold:

(a) B is natural on X;

(b) limn→∞ ∥fn∥1/n = 1 for each f ∈ A with ∣f ∣X = 1. □

We now discuss (complex) differentiability for functions defined on compact plane
sets.

Definition 2.3. Let X be a perfect, compact plane set. A function f ∈ C(X) is
differentiable at a point a ∈ X if the limit

f ′(a) = lim
z→a, z∈X

f(z)− f(a)

z − a
exists.

We call f ′(a) the (complex) derivative of f at a. Using this concept of derivative,
we define the terms differentiable on X and continuously differentiable on X in the
obvious way, and we denote the set of continuously differentiable functions on X
by D(1)(X). For f ∈ D(1)(X), set

∥f∥ = ∣f ∣X + ∣f ′∣X .
Then (D(1)(X), ∥ ⋅ ∥) is immediately seen to be a normed function algebra on X.

We denote the completion of (D(1)(X), ∥ ⋅ ∥) by D̃(1)(X).
The normed function algebra (D(1)(X), ∥ ⋅ ∥) is often incomplete, even for fairly

nice sets X. For example, in [3, Theorem 3.5], Bland and Feinstein gave an ex-
ample of a rectifiable Jordan arc J (as defined below) such that (D(1)(J), ∥ ⋅ ∥) is
incomplete. In the same paper it was shown [3, Theorem 2.3] that (D(1)(X), ∥ ⋅ ∥)
is incomplete whenever X has infinitely many components; this last result was
also proved in [5, (3.1.10)(iii)]. We shall give several further examples and results
later when we investigate necessary and sufficient conditions for the completeness
of these normed algebras.

We now recall the standard definitions of pointwise regularity and uniform reg-
ularity for compact plane sets. We shall suppose that the reader is familiar with
the elementary results and definitions concerning rectifiable paths, including inte-
gration of continuous, complex-valued functions along such paths; for more details
see, for example, Chapter 6 of [1].
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Definition 2.4. A path in ℂ is a continuous function 
 : [a, b] → ℂ, where a
and b are real numbers with a < b ; 
 is a path from 
(a) to 
(b) with endpoints

− = 
(a) and 
+ = 
(b); in this case, 
− and 
+ are connected by 
. We denote
by 
∗ the image 
([a, b]) of 
. A subpath of 
 is any path obtained by restricting

 to a non-degenerate, closed subinterval of [a, b]. A path in ℂ is admissible if it
is rectifiable and has no constant subpaths. For a subset X of ℂ, a path in X is a
path 
 in ℂ such that 
∗ ⊆ X. We also say that such a path is a path in X from

− to 
+, and that 
− and 
+ are connected in X by 
.

The length of a rectifiable path 
 will be denoted by ∣
∣. The length of a non-
rectifiable path is defined to be ∞.

Note that we distinguish between a path 
 and its image 
∗. This is because it
is possible for two very different paths to have the same image. There is a lack of
consistency in the literature over the usage of the terms ‘path’, ‘curve’, and ‘arc’.
For us, an arc in X is the image of a non-constant path in X. A rectifiable arc in
X is the image of a non-constant, rectifiable path in X. A Jordan path in X is a
path 
 in X such that 
 is injective; a Jordan arc in X is the image of a Jordan
path in X. We define admissible arc in X and rectifiable Jordan arc in X similarly.

Let X be a compact plane set, and let z, w ∈ X with z ∕= w. Suppose that z and
w are connected in X by a path 
. Then there is also a Jordan path in X from z
to w. This does not appear to be immediately obvious; see [8, Problem 6.3.12(a)].

Let 
 be a non-constant, rectifiable path in ℂ, with length L. Although 
 need
not itself be admissible, nevertheless there is always a path 
̃ : [0, L]→ ℂ such that

̃ is admissible, 
̃ has the same endpoints and image as 
, and 
̃ is parametrized
by arc length. (See, for example, [9, pp. 109–110].) Such a path 
̃ is necessarily
Lipschitzian, with Lipschitz constant 1, in the sense that ∣
̃(s) − 
̃(t)∣ ≤ ∣s − t∣
whenever 0 ≤ s < t ≤ L. In particular, 
̃∗, and hence also 
∗, must have zero area.

Recall that a path 
 = � + i� (where � and � are real-valued) is rectifiable if
and only if both � and � are of bounded variation [1, Theorem 6.17]. In this case∫




f =

∫



f(z) dz

is defined as a Riemann–Stieltjes integral for all f ∈ C(
∗) [1, Theorems 7.27 and
7.50 (see also p. 436)].

Definition 2.5. Let X be a compact plane set, and let z, w ∈ X be points which
are connected by a rectifiable path in X. Then

�(z, w) = inf{∣
∣ : 
 is a rectifiable path from z to w in X} .
We call �(z, w) the geodesic distance between z and w in X. The set X is rectifiably
connected if, for all z and w in X, there is a rectifiable path 
 connecting z to w in
X.

Note that every rectifiably connected, compact plane set with more than one
point is perfect.

Suppose that X is rectifiably connected. Then � is certainly a metric on X, and
it is well-known that the infimum in the definition of � is always attained. Thus,
for each pair of distinct points z, w ∈ X, there is a rectifiable path 
 connecting z
to w in X such that ∣
∣ = �(z, w). In this case it is clear that 
 is a Jordan path in
X.
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A rectifiably connected, compact plane set X is geodesically bounded if X is
bounded with respect to the metric �. In this case the geodesic diameter of X is
defined to be

sup{�(z, w) : z, w ∈ X} .
Easy examples show that rectifiably connected, compact plane sets need not be
geodesically bounded.

Definition 2.6. Let X be a compact plane set. For z ∈ X, the set X is regular
at z if there is a constant kz > 0 such that, for every w ∈ X, there is a rectifiable
path 
 from z to w in X with ∣
∣ ≤ kz∣z − w∣.

The set X is pointwise regular if X is regular at every point z ∈ X, and X is
uniformly regular if, further, there is one constant k > 0 such that, for all z and w
in X, there is a rectifiable path 
 from z to w in X with ∣
∣ ≤ k∣z − w∣.

Note that every convex, compact plane set is obviously uniformly regular and
every pointwise regular, compact plane set is geodesically bounded.

Dales and Davie [7, Theorem 1.6] showed that (D(1)(X), ∥ ⋅ ∥) is complete when-
ever X is a finite union of uniformly regular, compact plane sets. However, as
observed in [5] and [13], the proof given in [7] is equally valid for pointwise regular,
compact plane sets. This gives the following result.

Proposition 2.7. Let X be a finite union of pointwise regular, compact plane sets.
Then (D(1)(X), ∥ ⋅ ∥) is complete. □

One purpose (unfortunately not achieved) of the present paper is to decide
whether or not the converse of Proposition 2.7 holds true.

Note that whenever a connected compact, plane set X is a finite union of point-
wise regular, compact plane sets, X itself is already pointwise regular. The corre-
sponding statement concerning uniform regularity is, however, false.

Definition 2.8. Let (X, d) be a compact metric space with more than one point.
Then a function f ∈ C(X) belongs to the Lipschitz space, LipX, if

p(f) := sup

{
∣f(z)− f(w)∣

d(z, w)
: z, w ∈ X, z ∕= w

}
<∞ .

It is standard that LipX is, in fact, a natural Banach function algebra on X
with respect to the norm ∥ ⋅ ∥ given by

∥f∥ = ∣f ∣X + p(f) (f ∈ LipX) .

For details of these algebras, and of their relatives lipX, see for example [6, §4.4]
and [19].

Let X be a compact plane set X. We give X the usual Euclidean metric

d(z, w) = ∣z − w∣ (z, w ∈ X) ,

and define the Banach function algebra LipX accordingly. Now suppose, in addi-
tion, that X is rectifiably connected. Then it is noted in [7, Lemma 1.5(i)] that

∣f(z)− f(w)∣ ≤ �(z, w) ∣f ′∣X (z, w ∈ X, f ∈ D(1)(X)) .

Thus, in the case where X is uniformly regular, D(1)(X) is a closed subalgebra of
(LipX, ∥ ⋅ ∥).



6 H. G. DALES AND J. F. FEINSTEIN

We now recall the definitions of the uniform algebras P (X), R(X), and A(X) for
compact plane sets X, and some standard results concerning these algebras. We
refer the reader to [6, §4.3], [11, Chapter II] and [17] for further details.

Let X be a compact plane set. The polynomially convex hull of X, denoted by

X̂, is the complement of the unbounded component of ℂ ∖X. The outer boundary

of X is the boundary of X̂. The set X is polynomially convex if ℂ∖X is connected.
The spaces of restrictions to X of the polynomial functions and of the rational

functions with poles off X are denoted by P0(X) and R0(X), respectively. The
closures of these spaces in (C(X), ∣ ⋅ ∣X) are the uniform algebras P (X) and R(X),
respectively. The algebra R(X) is always natural; the character space of P (X) is

identified with X̂, and so P (X) is natural if and only if X = X̂, i.e., if and only if
X is polynomially convex.

For a non-empty, open subset U of ℂ, we write O(U) for the algebra of analytic
functions on U .

Let X be a compact plane set. We denote by O(X) the set of restrictions to X
of functions which are analytic on some neighbourhood of X. Thus g ∈ O(X) if
and only if there are an open neighbourhood U of X and a function f ∈ O(U) with
f ∣X = g.

Now let X be a compact plane set with interior U . Then A(X) is the uniform
algebra of all continuous functions on X such that f ∣ U ∈ O(U). By a theorem of
Arens (see [6, Theorem 4.3.14] or [11, Chapter II, Theorem 1.9]), A(X) is a natural
uniform algebra on X. It may be that R(X) ⊊ A(X) (see [11, Chapter VIII, §8]);
however R(X) = A(X) whenever ℂ ∖X has only finitely many components. Let A
be a uniform algebra on X with R(X) ⊆ A ⊆ A(X). Then we do not know whether
or not A is necessarily natural; if this were always the case, then some of our later
open questions would be easily resolved.

In the case where X is polynomially convex, Mergelyan’s theorem [11, Chapter
II, Theorem 9.1] tells us that P (X) = A(X). In particular, when X is polynomi-
ally convex and has empty interior, we have P (X) = C(X). (This latter fact is
Lavrentiev’s theorem [11, Chapter II, Theorem 8.7].)

We conclude this section by recalling the definition of some related spaces which
were discussed in [3].

Note that it is obvious that whenever X is a compact plane set such that intX
is dense in X, then X is perfect.

Definition 2.9. Let X be a compact plane set such that intX is dense in X. Set
U = intX. Then A(1)(X) is the set of functions f in A(X) such that (f ∣U )′ extends
continuously to the whole of X. In this case we set

∥f∥ = ∣f ∣X + ∣f ′∣U (f ∈ A(1)(X)) .

Clearly D(1)(X) ⊆ A(1)(X), and (A(1)(X), ∥ ⋅ ∥) is a normed function algebra on
X. Moreover, it is easy to see that (A(1)(X), ∥ ⋅ ∥) is complete, and hence a Banach
function algebra on X.

In the following sections, we shall discuss the relationships between all of the
algebras so far discussed.
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3. Inclusion relationships between the algebras

Let X be a perfect, compact plane set. Certainly we have the inclusions

P0(X) ⊆ R0(X) ⊆ O(X) ⊆ D(1)(X) ⊆ A(X) .

In particular, (Z − w1)−1 belongs to D(1)(X) whenever w ∈ ℂ ∖X.
It is an elementary consequence of Runge’s theorem [4, p. 35] that the closures

of R0(X) and O(X) in (D(1)(X), ∥ ⋅ ∥) are always the same. Similarly, if X is
polynomially convex, then both of these ∥ ⋅ ∥-closures are equal to the closure of
P0(X) in (D(1)(X), ∥ ⋅ ∥). (Part of this was noted on page 106 of [3].)

We do not know whether or not we always have D(1)(X) ⊆ R(X). Nor do
we know whether or not R0(X) is always dense in (D(1)(X), ∥ ⋅ ∥). Since we have
D(1)(X) ⊆ A(X), clearly D(1)(X) ⊆ R(X) whenever R(X) = A(X).

We do have the following easy result from [7, Lemma 1.5].

Proposition 3.1. Let X be a uniformly regular, compact plane set. Then the
inclusion D(1)(X) ⊆ R(X) holds. □

Theorem 3 of [14] appears to claim that D(1)(X) ⊆ R(X) for each perfect, com-
pact plane set, or perhaps for each perfect, compact plane set X such that X is
pointwise regular. However the proof is based on an invalid use of Whitney’s ex-
tension theorem [16, Chapter I, Theorem 3.2] in an attempt to show that every
function in D(1)(X) has an extension which lies in C(1)(ℝ2). (Here we are identify-
ing ℂ with ℝ2 in the usual way.) The following example, which is a modification of
[3, Example 2.4], shows that functions in D(1)(X) need not have such extensions,
even in the case where X is a pointwise regular Jordan arc.

z2 z1 =
1
2

w1w′1

z′1

w′2 w2

z′20 z3

Figure 1. The arc J constructed in Theorem 3.2 (not to scale)

Theorem 3.2. There exist a pointwise regular Jordan arc J and a function f in
D(1)(J) such that there is no function F in C(1)(ℝ2) with F ∣J = f .
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Proof. An example of such an arc J is shown in Figure 1, above.
For n ∈ ℕ, set

zn = xn = 2−n , z′n = 2−n − 2−3n ,

and

wn = 2−n + 2−n i , w′n = 2−n − 2−3n + 2−n i .

Note that we have

z′n = zn − 2−3n = xn − 2−3n , wn = zn + 2−n i ,

and

w′n = z′n + 2−n i = wn − 2−3n .

Let Jn be the Jordan arc made up of the four straight lines joining, successively,
zn, wn, w′n, z′n, and zn+1. It is clear that we may obtain a pointwise regular Jordan
arc J by gluing together all of the arcs Jn (n ∈ ℕ), and then adding in the point 0.

For n ∈ ℕ, set cn = xn/n. We now claim that there exists f ∈ D(1)(X) such
that, for all n ∈ ℕ, f(zn) = cn while f(z′n) = cn+1. This may be achieved by
setting f(0) = 0, and defining f on each Jn separately as follows. For n ∈ ℕ,
let Vn be the straight line joining zn to wn. For z ∈ Jn ∖ Vn, set f(z) = cn+1.
For z = xn + iy ∈ Vn, set f(z) = a + b cos(2n�y), where a = (cn + cn+1)/2 and
b = (cn − cn+1)/2. It is now easy to check that f satisfies the conditions of the
claim.

Obviously, the restriction to J of any function in C(1)(ℝ2) must be in Lip J .
However, we have

∣f(zn)− f(z′n)∣
∣zn − z′n∣

=
cn − cn+1

2−3n
= 22n−1

n+ 2

n(n+ 1)
→∞ as n→∞ ,

and so these quotients are unbounded. Thus f is not in Lip J , and it follows that
f has no extension in C(1)(ℝ2), as required. □

Of course, for the arc J constructed in Theorem 3.2, we do have

D(1)(J) ⊆ P (J) = R(J) = C(J) .

Let X be a compact plane set with dense interior. It is obvious that the inclusion
D(1)(X) ⊆ A(1)(X) is an isometric inclusion of (D(1)(X), ∥ ⋅ ∥) in (A(1)(X), ∥ ⋅ ∥).
Thus the completion of (D(1)(X), ∥ ⋅ ∥), namely D̃(1)(X), is just the ∥ ⋅ ∥-closure of
D(1)(X) in A(1)(X).

We do not know whether or not we always have A(1)(X) ⊆ R(X). However,
it is obvious that A(1)(X) ⊆ A(X), and so we have A(1)(X) ⊆ R(X) whenever
R(X) = A(X). We shall see later, in Theorem 8.1, that D(1)(X), and hence also
R0(X), need not be dense in (A(1)(X), ∥ ⋅ ∥).

4. Naturality

We next show that D(1)(X) is natural for every perfect, compact plane set X. In
addition, every character on (D(1)(X), ∥ ⋅ ∥) is continuous. The elementary proof is
based on the method used by Jarosz in [15] to prove that a certain Banach function
algebra LipHol(X,�) is natural.

Theorem 4.1. Let X be a perfect, compact plane set, and let A be the normed
function algebra (D(1)(X), ∥ ⋅ ∥). Then A is natural on X, and ΦA = ΨA.
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Proof. Let ' ∈ ΦA, and set w = '(Z). Then '(Z −w1) = 0, and so Z −w1 is not
invertible in A. Since R0(X) ⊆ A, it follows that w ∈ X.

We shall show that ' = "w. To see this, it is sufficient to prove the inclusion
ker "w ⊆ ker'. Take f ∈ A with f(w) = 0. Since f is differentiable at w, there
is a positive constant C such that, for all z ∈ X, we have ∣f(z)∣ ≤ C∣z − w∣. It
is now easy to see that f3 = (Z − w)g for a (unique) function g ∈ D(1)(X) (with
g(w) = g′(w) = 0). This gives

('(f))3 = '(f3) = '(Z − w)'(g) = 0 ,

and so '(f) = 0. The result follows. □

Let X be a perfect, compact plane set with dense interior. We do not know
whether or not A(1)(X) is always natural. Let f be a function in A(1)(X) with

∣f ∣X = 1. We see that 1 ≤ ∥fn∥ ≤ 1 +n∣f ′∣X = O(n), and so limn→∞ ∥fn∥1/n = 1.

Thus, by Proposition 2.2, A(1)(X) is natural if and only if its uniform closure is
natural. Clearly this is the case whenever R(X) = A(X).

5. ℱ-derivatives

We noted earlier that, whenever X is a compact plane set with dense interior,

D̃(1)(X) is the ∥ ⋅ ∥-closure of D(1)(X) in A(1)(X). The condition that intX be
dense in X is too restrictive for our purposes, and so we now introduce a new class
of compact plane sets.

Definition 5.1. Let X be a compact plane set. Then X is semi-rectifiable if the
union of all the rectifiable Jordan arcs in X is dense in X.

Clearly every semi-rectifiable, compact plane set is perfect.
Although an admissible arc need not be a Jordan arc, it is nevertheless easy to

see that a compact plane set is semi-rectifiable if and only if the union of all the
admissible arcs in X is dense in X. In view of our earlier comments, this condition
is also equivalent to the the condition that the union of all the rectifiable arcs in X
be dense in X.

We now define another new term, ‘effective’. This is a modification of the term
‘useful’, which was introduced in [3]. In particular, we shall replace the restriction
that the (rectifiable) paths in the family be Jordan paths by the weaker condition
that they be admissible. We discuss the implications of this below. However,
we also restrict attention to the case where the union of the images of the given
(rectifiable) paths is dense in X; this was not included in the definition of the term
‘useful’ in [3]. Note that this is only possible for semi-rectifiable, compact plane
sets X.

Definition 5.2. Let X be a compact plane set, and let ℱ be a family of paths in
X. Then ℱ is effective if each path in ℱ is admissible, if each subpath of a path in
ℱ belongs to ℱ , and if the union of the images of the paths in ℱ is dense in X.

The next definition is as in [3].

Definition 5.3. Let X be a compact plane set, let ℱ be a family of rectifiable
paths in X, and let f, g ∈ C(X). Then g is an ℱ-derivative of f if, for all 
 ∈ ℱ ,
we have ∫




g = f(
+)− f(
−).
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We define

D
(1)
ℱ (X) = {f ∈ C(X) : f has an ℱ-derivative in C(X)}.

We are interested mostly in the case where ℱ is effective. In this case it is easy
to show that ℱ-derivatives are unique.

We now revisit the theory of ℱ-derivatives, as introduced in [3]. It was relatively
easy to prove the product rule for ℱ-derivatives [3, Theorem 4.9] when ℱ is useful
by using polynomial approximation on each of the Jordan arcs involved. We shall
show in Theorem 5.5 below that the product rule remains valid when ℱ is effective.

First we give a lemma concerning D(1)(X), based on part of [3, Theorem 4.17].

Lemma 5.4. Let X be a perfect, compact plane set, and suppose that ℱ is a set of
rectifiable paths in X.

(i) Let f ∈ D(1)(X). Then the usual derivative f ′ is also an ℱ-derivative of f .

(ii) Let f1, f2 ∈ D(1)(X). Then f1f
′
2 + f ′1f2 is an ℱ-derivative of f1f2.

Proof. Since the product rule is valid for D(1)(X), the result follows from the fund-
amental theorem of calculus for rectifiable paths [3, Theorem 3.3]. □

Note that the above lemma applies, in particular, to functions in R0(X). Using
this, together with rational approximation and the method of repeated bisection,
we can now prove our new version of the product rule for ℱ-derivatives.

Theorem 5.5. Let X be a semi-rectifiable, compact plane set, and suppose that ℱ
is an effective family of paths in X. Let f1, f2 ∈ D(1)

ℱ (X) have ℱ-derivatives g1,
g2, respectively. Then f1g2 + g1f2 is an ℱ-derivative of f1f2.

Proof. Set ℎ = f1g2 + g1f2 and H = f1f2. Assume, for contradiction, that the
result is false. Then there is a path 
 ∈ ℱ such that∫




ℎ ∕= H(
+)−H(
−) .

It is clear that we may suppose that X = 
∗ and that ℱ consists of 
 and all
its subpaths. Since 
 is rectifiable, the area of X is 0. By the Hartogs–Rosenthal
theorem [11, Corollary II.8.4], R(X) = C(X). Moreover, by various types of scaling,
we may suppose that ∣
∣ = 1 and that each of the four functions f1, g1, f2, and g2
have uniform norm at most 1/16. Set

C =

∣∣∣∣∫



ℎ−
(
H(
+)−H(
−)

)∣∣∣∣ > 0 ,

and then set " = min{C/2, 1/16}. For j ∈ {1, 2}, choose a rational function rj with
poles off X such that ∣rj − gj ∣X < ".

By an obvious repeated bisection method, we find nested decreasing subpaths

n of 
 with ∣
n∣ = 2−n and such that∣∣∣∣∫


n

ℎ−
(
H(
+n )−H(
−n )

)∣∣∣∣ ≥ C

2n
(n ∈ ℕ) .

There exists a (unique) point a in
∩
n∈ℕ 


∗
n. Choose an open disk D centred on

a on which both r1 and r2 are analytic. For each j = 1, 2, choose an analytic
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anti-derivative Rj of rj on D such that Rj(a) = fj(a), and then choose n ∈ ℕ large
enough that 
∗n is contained in D. Then it follows easily that

∣Rj − fj ∣
∗
n
<

"

2n
(j = 1, 2) .

Set r = R1r2 + r1R2 and R = R1R2. By the preceding lemma,∫

n

r = R(
+n )−R(
−n ) .

However, easy calculations show that ∣R−H∣
∗
n
< "/2n+2 and ∣r−ℎ∣
∗

n
< "/2, from

which we see that ∣∣∣∣∫

n

ℎ−
∫

n

r

∣∣∣∣ < "

2n+1

and ∣∣(H(
+n )−H(
−n )− (R(
+n )−R(
−n ))
∣∣ < "

2n+1
.

This quickly leads to a contradiction of the choice of 
n.
Hence the result follows. □

Let X be a semi-rectifiable, compact plane set, and suppose that ℱ is an effective
family of paths in X. As observed above, ℱ-derivatives are unique in this setting,

and so we may denote the ℱ-derivative of a function f ∈ D
(1)
ℱ (X) by f ′. For

f ∈ D(1)
ℱ (X), set

∥f∥ = ∣f ∣X + ∣f ′∣X .

Theorem 5.6. Let X be a semi-rectifiable, compact plane set, and suppose that

ℱ is an effective family of paths in X. Then (D
(1)
ℱ (X), ∥ ⋅ ∥) is a Banach function

algebra on X containing D(1)(X) as a subalgebra.

Proof. Let f1, f2 ∈ D
(1)
ℱ (X). By Theorem 5.5, we have f1f2 ∈ D

(1)
ℱ (X) and

(f1f2)′ = f1f
′
2 + f ′1f2. It follows immediately that ∥f1f2∥ ≤ ∥f1∥∥f2∥, and so

(D
(1)
ℱ (X), ∥ ⋅ ∥) is a normed algebra.

Let (fn) be a Cauchy sequence in (D
(1)
ℱ (X), ∥ ⋅ ∥). Then (fn) and (f ′n) are Cauchy

sequences in (C(X), ∣ ⋅ ∣X), and so they converge uniformly on X, say fn → f and
f ′n → g as n→∞.

For each 
 ∈ ℱ , we have∫



g = lim
n→∞

∫



f ′n = lim
n

(fn(
+)− fn(
−)) = f(
+)− f(
−) ,

and so f ∈ D(1)
ℱ (X) with f ′ = g. Thus (D

(1)
ℱ (X), ∥ ⋅ ∥) is complete.

Finally, it follows from Lemma 5.4(i) that D(1)(X) ⊆ D(1)
ℱ (X). □

Note that the inclusion map from D(1)(X) to D
(1)
ℱ (X) is obviously isometric

here.
Easy examples, such as [3, Example 5.2], show that D

(1)
ℱ (X) need not be con-

tained in A(X) in this setting.

We do not know whether or not D
(1)
ℱ (X) is natural whenever ℱ is effective.

However, as for A(1)(X) above, D
(1)
ℱ (X) is natural on X if and only if the uniform

closure of D
(1)
ℱ (X) is natural on X.
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6. The completion of (D(1)(X), ∥ ⋅ ∥)

In this section we shall discuss the completion, D̃(1)(X), of (D(1)(X), ∥ ⋅ ∥).
We first give an example to show that D̃(1)(X) need not be semisimple.
Recall that, for each compact space X, the semi-direct product C(X)⋉C(X) is

a Banach algebra for the product given by

(f1, f2)(g1, g2) = (f1g1, f1g2 + f2g1) (f1, f2, g1, g2 ∈ C(X))

and the norm given by

∥(f, g)∥ = ∣f ∣X + ∣g∣X (f, g ∈ C(X)) .

The radical of this algebra is {0}⋉C(X), a nilpotent ideal of index 2. In particular,
C(X) ⋉ C(X) is not semisimple.

Proposition 6.1. Let X be a perfect, compact plane set. Then the map

� : f 7→ (f, f ′) , D(1)(X)→ C(X) ⋉ C(X) ,

is an isometric algebra embedding, and D̃(1)(X) may be identified with the closure
in C(X) ⋉ C(X) of �(D(1)(X)).

Proof. This is immediate; it was noted in [5, pp. 53–54]. □

Example 6.2. [5, Example 3.1.10(ii)] In [2], Bishop gave an example of a Jordan
arc J in the plane with the property that the image under the above embedding �
of the set of polynomial functions is dense in C(J) ⋉ C(J). It follows immediately

from this that D̃(1)(J) is equal to C(J)⋉C(J). As observed above, this algebra is
not semisimple. □

There are no non-constant, rectifiable paths in Bishop’s arc J . This is not too
surprising in view of our next result.

Theorem 6.3. Let X be a semi-rectifiable, compact plane set. Then D̃(1)(X) is
semisimple.

Proof. Let ℱ be the family of all admissible paths in X. Then ℱ is effective. By

Theorem 5.6, D
(1)
ℱ (X) is a Banach function algebra, and we can regard D̃(1)(X)

as the closure of D(1)(X) in D
(1)
ℱ (X). From this, it is immediate that D̃(1)(X) is

semisimple. □

We do not know whether or not D̃(1)(X) is always equal to D
(1)
ℱ (X) under the

conditions of Theorem 6.3, with ℱ equal to the family of all admissible paths in X.
Nor do we know, in this setting, whether or not the completeness of (D(1)(X), ∥ ⋅ ∥)
implies that D(1)(X) = D

(1)
ℱ (X). However, if we assume merely that ℱ is effective,

then [3, Example 5.2] shows that it is possible for D(1)(X) to be complete without

having D(1)(X) = D
(1)
ℱ (X). Nevertheless, in the next section we shall see that it

can be useful to work with effective families ℱ which are somewhat smaller than
the family of all admissible paths in X.
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7. ℱ-regularity

Several results concerning the relationship between D(1)(X) and D
(1)
ℱ (X) were ob-

tained in [3] under a variety of conditions on ℱ . We wish to simplify the conditions
considered, while at the same time strengthening these results. To do this we
introduce the notion of ℱ-regularity.

Definition 7.1. Let X be a semi-rectifiable, compact plane set, and suppose that
ℱ is an effective family of paths in X. Then X is ℱ-regular at a point z ∈ X if
there is a constant kz > 0 such that, for every w ∈ X, there is a path 
 ∈ ℱ joining
z to w with ∣
∣ ≤ kz∣z − w∣.

The compact plane set X is ℱ-regular if X is ℱ-regular at every point of X.

It is clear that ℱ-regularity implies pointwise regularity. The main gain in the
following result over [3, Theorem 5.1] is that the earlier requirement that ℱ should
‘include all short paths’ may now be removed.

Theorem 7.2. Let X be a semi-rectifiable, compact plane set, and suppose that ℱ
is an effective family of paths in X such that X is ℱ-regular. Then

D(1)(X) = D
(1)
ℱ (X) .

Proof. The proof is essentially the same as that of [3, Theorem 5.1], with some very
minor modifications. □

Remark 7.3. Since ℱ-regularity implies pointwise regularity, we already know under
these conditions that (D(1)(X), ∥ ⋅ ∥) is complete. The content of Theorem 7.2 is

that we actually have equality between D(1)(X) and D
(1)
ℱ (X).

We now wish to investigate the connections between D(1)(X), A(1)(X) (as dis-

cussed earlier), andD
(1)
ℱ (X) in the case where intX is dense inX and ℱ is an appro-

priate effective family of paths in X. First we look more closely at ℱ-differentiation
and subpaths of a path.

Lemma 7.4. Let Γ : [a, b] → ℂ be a rectifiable path, and let f, g ∈ C(Γ). Let ℐ
be the set of all non-degenerate closed subintervals J of [a, b] such that, for every
subpath 
 of Γ∣J , we have ∫




g = f(
+)− f(
−) .

Set E =
∪
ℐ (the union of all the intervals in ℐ). Then ℐ and E have the following

properties.

(i) Let I and J be in ℐ with I ∩ J ∕= ∅. Then I ∪ J ∈ ℐ.

(ii) Every J ∈ ℐ is contained in a unique maximal element of ℐ (with respect
to set inclusion).

(iii) The maximal elements of ℐ partition E.

(iv) Taking interior relative to [a, b], the subset [a, b] ∖ intE has no isolated
points, and hence is perfect whenever E ∕= [a, b].

(v) Either E = [a, b] or [a, b] ∖ E is uncountable.



14 H. G. DALES AND J. F. FEINSTEIN

Proof. (i) This is essentially immediate from the definitions.

(ii) Take J ∈ ℐ, and let c ∈ int J . Set b′ = sup{d ∈ [a, b] : [c, d] ∈ ℐ} and
a′ = inf{d ∈ [a, b] : [d, c] ∈ ℐ}. Then it is easy to see that a′ < c < b′ and that [a′, c]
and [c, b′] are both in ℐ, whence (by (i)) [a′, b′] ∈ ℐ. It is now clear that [a′, b′] is
the desired maximal element of ℐ.

(iii) This is clear from (i) and (ii).

(iv) This follows quickly from the well-known fact that, if an open interval in
ℝ is contained in a countable disjoint union of compact intervals, then it must be
entirely contained in one of the compact intervals.

(v) Assume, for contradiction, that [a, b] ∖E is countable and non-empty. Then,
because of the nature of E, the set [a, b] ∖ intE would also be countable. This
contradicts the fact that no non-empty, countable, compact subset of ℝ can be
perfect. The result follows. □

The following example shows that E may be dense in [a, b], and yet not equal to
[a, b]. Recall that we denote the unit interval [0, 1] by I.

Example 7.5. Consider the ‘identity path’ Γ : I→ ℂ, i.e.,

Γ(t) = t (t ∈ I) .

Let f be the standard Cantor function on I, and let g be the zero function on I, so
that f, g ∈ C(I). Then it is easy to see that the set E from the preceding lemma is
simply the union of the closures of the complementary open intervals of the Cantor
set. In particular, E is dense in, but not equal to, I. The complement of E is
uncountable, nowhere dense, and has Lebesgue measure 0. However, by modifying
the Cantor set in a standard way, we may arrange that the complement of E be
uncountable, nowhere dense, and have positive Lebesgue measure instead. □

In [3, Lemma 5.3] it was shown that, in the case where ℱ is the set of all rectifiable

Jordan paths in a compact plane set X, D
(1)
ℱ (X) ⊆ A(X). However, investigation

of the proof reveals that it is only necessary for ℱ to include sufficiently many
admissible paths in intX. For example, by Theorem 7.2, it is enough if, for every
compact disc D ⊂ intX, D is ℱD-regular, where ℱD denotes the set of paths in ℱ
whose images are contained in D. Moreover, in this case, ℱ-derivatives of functions

in D
(1)
ℱ (X) agree with the usual derivatives of these functions on intX.

We are now ready to establish a result connecting the spaces D(1)(X), A(1)(X),

and D
(1)
ℱ (X).

Theorem 7.6. Let X be a compact plane set such that intX is dense in X. Let ℱ
be the set of all admissible paths 
 in X such that the complement of 
−1(intX) is

countable. Then D
(1)
ℱ (X) is equal to A(1)(X). If X is ℱ-regular, then both of these

spaces are equal to D(1)(X).

Proof. Set U = intX. Since ℱ includes all admissible paths which are contained

in U , the remarks above show that D
(1)
ℱ (X) ⊆ A(X) and that ℱ-derivatives of

functions in D
(1)
ℱ (X) agree with the usual derivatives of these functions on U .

Since U is dense in X, it follows that D
(1)
ℱ (X) ⊆ A(1)(X).
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Now let f ∈ A(1)(X), and let g be the (unique) continuous extension to X of
(f ∣U )′. It follows easily from Lemma 7.4 that g is, in fact, an ℱ-derivative of f .

This gives A(1)(X) ⊆ D(1)
ℱ (X). The equality D

(1)
ℱ (X) = A(1)(X) follows.

Since ℱ is effective, the rest is an immediate consequence of Theorem 7.2. □

It is easy to extend the last part of this result to cover finite unions of sets
satisfying appropriate regularity conditions.

8. The algebra A(1)(X)

We shall now see that, even if X is uniformly regular (and hence geodesically
bounded) and has dense interior, it need not be the case that D(1)(X) = A(1)(X).

Theorem 8.1. There exists a uniformly regular, polynomially convex, compact

plane set such that intX is dense in X, and yet D̃(1)(X) = D(1)(X) ∕= A(1)(X).
In particular, R0(X) is not dense in (A(1)(X), ∥ ⋅ ∥).

Proof. An example, based on the Cantor set, is shown in Figure 2, below.

Figure 2. The Cantor set with squares attached

Let (In)∞n=1 be an enumeration of the closures of the complementary open inter-
vals in the standard Cantor middle thirds set, and say In has length ln. Set

X = [0, 1] ∪
∞∪
n=1

{x+ iy : x ∈ In, y ∈ [0, ln]} ,

i.e., X is the set obtained by attaching to the unit interval a closed square with
base equal to In, for all n ∈ ℕ. Then X is easily seen to be a uniformly regular,
compact plane set, and so (D(1)(X), ∥ ⋅ ∥) is complete.

Let g : [0, 1]→ [0, 1] be the usual Cantor function, and define f ∈ C(X) by

f(x+ iy) = g(x) (x+ iy ∈ X) .

Then f is locally constant on intX, and so it is clear that f ∈ A(1)(X). However,
f is not differentiable on [0, 1], and so f ∈ A(1)(X) ∖D(1)(X).

Since D(1)(X) is a proper closed subalgebra of A(1)(X), it follows immediately
that R0(X) is not dense in (A(1)(X), ∥ ⋅ ∥). □

We do not know whether or not there is such an example with the additional
property that the set intX is connected.
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Theorem 8.1 should be compared with the following polynomial approximation
result, which is [3, Theorem 5.8] (see also [5, Proposition 3.2.4]).

Theorem 8.2. Let X be a polynomially convex, geodesically bounded, compact
plane set, and let ℱ be the set of all admissible paths in X. Then P0(X) is dense

in the Banach algebra (D
(1)
ℱ (X), ∥ ⋅ ∥). □

Let X be a semi-rectifiable, compact plane set, and let ℱ be the set of all

admissible paths in X. Obviously, if P0(X) is dense in (D
(1)
ℱ (X), ∥ ⋅ ∥), then P0(X)

is also dense in (D(1)(X), ∥ ⋅ ∥). Thus P0(X) is dense in D(1)(X) for every poly-
nomially convex, geodesically bounded, compact plane set X. This last fact is also
given by the argument in [5, Proposition 3.2.4], where it is noted that, for each
pointwise regular, compact plane set X, P0(X) is dense in (D(1)(X), ∥ ⋅ ∥) if and
only if X is polynomially convex. We do not know whether or not P0(X) is dense
in (D(1)(X), ∥ ⋅ ∥) for every polynomially convex, perfect, compact plane set X.

Our final result of this section shows that, even for uniformly regular, compact
plane sets X with dense interior, A(1)(X) need not be dense in the uniform algebra
A(X).

Theorem 8.3. There is a compact plane set X0 with the following properties:

(i) X0 is uniformly regular, intX0 is connected and simply connected, and intX0

is dense in X0;

(ii) D̃(1)(X0) = D(1)(X0) = A(1)(X0) ⊆ R(X0);

(iii) A(1)(X0) is not dense in (A(X0), ∣ ⋅ ∣X0
).

Proof. We consider the compact plane sets X that are constructed in [11, Chapter
VIII, §9] to show that we may have R(X) ⊊ A(X).

The sets X have the following form. Let (Δn : n ∈ ℕ) be a sequence of open
discs in the closed unit disc D such that the family

{
Δn : n ∈ ℕ

}
of closed discs is

pairwise disjoint and
∑∞
n=1 rn < ∞, where rn is the radius of Δn for each n ∈ ℕ.

Then

X = D ∖
∪
{Δn : n ∈ ℕ} ,

and so X is a compact plane set.
We claim that each such set X is uniformly regular. To see this, take z, w ∈ X

with z ∕= w, and first join z and w by a straight line ℓ in ℂ of length ∣z − w∣.
Suppose that ℓ ∩Δn ∕= ∅ for some n ∈ ℕ. Then the straight line ℓ ∩Δn, of length
tn, say, is replaced by an arc in the frontier of Δn of length at most �tn. It is not
hard to show that we obtain a path 
 in X from z to w such that ∣
∣ ≤ � ∣z − w∣,
and so �(z, w) ≤ � ∣z − w∣. Thus X is uniformly regular.

Let J be a Jordan arc in D such that J has positive area and such that J meets
the unit circle in exactly one point. The sets Δn may then be chosen so that the
sequence of sets (Δn) accumulates precisely on J , in the sense that

∞∩
n=1

∞∪
k=n

Δk = J .

It is shown in [11, Chapter VIII, Example 9.2] that this can be done in such a way
that each closed disc Δn meets J in exactly one point, say zn: we then have that
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intX is connected and simply connected, and that intX is dense in X. For any set
X of this form, we have R(X) ∕= A(X).

Suppose that we have chosen discs Δn in this way. For each n ∈ ℕ, choose a
new open disc Dn with

zn ∈ Dn ⊆ Δn ∪ {zn} ,

so that Dn and Δn osculate at zn. Set

X0 = D ∖
∪
{Dn : n ∈ ℕ} ,

so that, for each n ∈ ℕ, the boundary circle ∂Δn is a subset of intX0 ∪ {zn}.
It is clear that X0 also satisfies clause (i) and that we still have R(X0) ⊊ A(X0).

Since X0 is uniformly regular, it follows from Propositions 2.7 and 3.1 that

R0(X0) ⊆ D̃(1)(X0) = D(1)(X0) ⊆ R(X0) .

Let z, w ∈ X0, and again join z and w by a straight line ℓ in ℂ of length
∣z − w∣. Suppose that ℓ ∩ Δn ∕= ∅ for some n ∈ ℕ. Then we see by geometrical
considerations that the straight line ℓ∩Δn, of length tn, say, may be replaced by a
path in (Δn ∖Dn) ∪ {z, w, zn} of length at most (� + 1)tn, and so z and w can be
joined by an admissible path 
 with ∣
∣ ≤ (� + 1) ∣z − w∣ such that 
 is contained
in

intX0 ∪ {z, w} ∪ {zn : n ∈ ℕ} ,

and such that the complement of 
−1(intX0) is a countable set.
Let ℱ be the family specified in Theorem 7.6. Then we have shown that X0 is

ℱ-regular, and so D(1)(X0) = A(1)(X0), giving (ii).
It follows from (ii) that the uniform closure of A(1)(X0) is R(X0). Clause (iii)

follows because R(X0) ∕= A(X0). □

9. Completeness of D(1)(X)

We now return to the question of the completeness of (D(1)(X), ∥ ⋅ ∥).
The following result is [5, Proposition 3.1.4]; it was rediscovered by Honary and

Mahyar in [13].

Theorem 9.1. Let X be a perfect, compact plane set. Then (D(1)(X), ∥ ⋅ ∥) is
complete if and only if, for each z ∈ X, there exists Az > 0 such that, for all
f ∈ D(1)(X) and all w ∈ X, we have

(9.1) ∣f(z)− f(w)∣ ≤ Az(∣f ∣X + ∣f ′∣X)∣z − w∣ .
□

Note that X need not be connected here (However, the condition implies that
X has only finitely many components.)

For pointwise regular X, this condition is certainly satisfied, and indeed the ∣f ∣X
term may be omitted from the right-hand side of (9.1). We now show that this ∣f ∣X
term may also be omitted under the weaker assumption that X be connected. First
we require a lemma concerning functions whose derivatives are constantly 0.

Lemma 9.2. Let X be a connected, compact plane set for which (D(1)(X), ∥ ⋅ ∥) is
complete. Take f ∈ D(1)(X) such that f ′ = 0. Then f is a constant.
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Proof. Assume towards a contradiction that there exists f ∈ D(1)(X) such that
f ′ = 0 and such that f is not a constant; we can suppose that ∣f ∣X = 1 and that
1 ∈ f(X). By replacing f by (1 + f)/2 if necessary, we may also suppose that 1 is
the only value of modulus 1 taken by f on X. Set

Y = {z ∈ X : ∣f(z)∣ = 1} = {z ∈ X : f(z) = 1} .
Then Y is a closed, non-empty subset of X, and Y ∕= X because f is not constant.
Since X is connected, the subset Y is not open in X, and so there exist w0 ∈ Y
and a sequence (zk) in X ∖ Y such that zk → w0 as k →∞.

For each n ∈ ℕ, set gn = 1 − fn, so that gn ∈ D(1)(X). For each n ∈ ℕ, we
have gn(w0) = 0, g′n = −nfn−1f ′ = 0, and ∣gn∣X ≤ 2. By Theorem 9.1, there is a
constant C > 0 such that

∣gn(zk)∣ ≤ 2C ∣zk − w0∣ (n, k ∈ ℕ) .

For each k ∈ ℕ, we have limn→∞ gn(zk) = 1 because ∣f(zk)∣ < 1, and so

1 ≤ 2C ∣zk − w0∣ (k ∈ ℕ) .

But limk→∞ ∣zk − w0∣ = 0, and so this is the required contradiction. □

Note that this result fails without the assumption that (D(1)(X), ∥ ⋅ ∥) is com-
plete. For example, if 
 is a Jordan path which is a subpath of the famous Koch
snowflake curve, then the function f = 
−1 has derivative 0 on the Jordan arc 
∗.

We are now ready to eliminate the ∣f ∣X term from the right-hand side of equation
(9.1) under the assumption that X is connected.

For convenience, we introduce the following notation. Let X be a perfect, com-
pact plane set, and let z0 ∈ X. Then we define

M (1)
z0 (X) = {f ∈ D(1)(X) : f(z0) = 0} ,

so that M
(1)
z0 (X) is a maximal ideal in D(1)(X).

Theorem 9.3. Let X be a connected, compact plane set for which (D(1)(X), ∥ ⋅ ∥)
is complete. Let z0 ∈ X. Then there exists a constant C1 > 0 such that, for all

f ∈M (1)
z0 (X), we have

∣f ∣X ≤ C1 ∣f ′∣X .

Furthermore, there exists another constant C2 > 0 such that, for all f ∈ D(1)(X)
and all w ∈ X, we have

(9.2) ∣f(z0)− f(w)∣ ≤ C2 ∣f ′∣X ∣z0 − w∣ .

Proof. We shall first prove the existence of the constant C1.

Assume towards a contradiction that there is a sequence (fn) ∈ M (1)
z0 (X) such

that ∣fn∣X = 1 for each n ∈ ℕ, but such that ∣f ′n∣X → 0 as n→∞. We can suppose
that ∣f ′n∣X ≤ 1 (n ∈ ℕ). Set S = {fn : n ∈ ℕ}.

Let z ∈ X. By Theorem 9.1, there is a constant Cz > 0 such that

∣f(z)− f(w)∣ ≤ Cz(∣f ∣X + ∣f ′∣X) ∣z − w∣ ≤ 2Cz ∣w − z∣ (f ∈ S, w ∈ X) .

We claim that S is an equicontinuous family at z. Indeed, take " > 0, and let
U = {w ∈ X : ∣w − z∣ < "/2Cz}, so that U is a neighbourhood of z ∈ X. For each
w ∈ U , we have ∣f(w)− f(z)∣ < " for each f ∈ S, giving the claim. Thus S is
equicontinuous on X. Certainly S is bounded in (C(X), ∣ ⋅ ∣X).
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By Ascoli’s theorem [6, Theorem A.1.10], S is relatively compact in (C(X), ∣ ⋅ ∣X).
By passing to a subsequence, we may suppose that there exists f ∈ C(X) such that
∣fn − f ∣X → 0 as n→∞. Clearly we have f(z0) = 0 and ∣f ∣X = 1. We know that

∣f ′n∣X → 0 as n → ∞, and so (fn) is a Cauchy sequence in (D(1)(X), ∥ ⋅ ∥). Since

(D(1)(X), ∥ ⋅ ∥) is complete, (fn) is convergent in this space. Clearly limn→∞ fn = f
in D(1)(X), and so f ′ = 0.

By Lemma 9.2, f is a constant. But f(z0) = 0, and so f = 0, a contradiction of
the fact that ∣f ∣X = 1.

This proves the existence of the desired constant C1.
We now set C2 = Az0(1 + C1), where Az0 is the constant from (9.1). Equation

(9.2) now follows. □

Theorem 9.3 does not hold in the absence of either of the hypotheses that X be
connected or that (D(1)(X), ∥ ⋅ ∥) be complete.

The following corollary is now immediate.

Corollary 9.4. Let X be a connected, compact plane set. Then (D(1)(X), ∥ ⋅ ∥)
is complete if and only if, for each z ∈ X, there exists Bz > 0 such that, for all
f ∈ D(1)(X) and all w ∈ X, we have

(9.3) ∣f(z)− f(w)∣ ≤ Bz ∣f ′∣X ∣z − w∣ . □

Let X be a polynomially convex, geodesically bounded, compact plane set. Then
X is connected, and we know that P0(X) is dense in (D(1)(X), ∥ ⋅ ∥). From this we
immediately obtain the following further corollary.

Corollary 9.5. Let X be a polynomially convex, geodesically bounded, compact
plane set. Then (D(1)(X), ∥ ⋅ ∥) is complete if and only if, for each z ∈ X, there
exists Bz > 0 such that, for all p ∈ P0(X) and all w ∈ X, we have

(9.4) ∣p(z)− p(w)∣ ≤ Bz ∣p′∣X ∣z − w∣ . □

We conclude this section with some polynomial approximation results. Of course,
if we knew that X were geodesically bounded whenever X is a compact plane set
for which (D(1)(X), ∥ ⋅ ∥) is complete, then (ii) below would be immediate.

Corollary 9.6. Let X be a connected, polynomially convex, compact plane set for
which (D(1)(X), ∥ ⋅ ∥) is complete.

(i) Take z0 ∈ X. Then the map

f 7→ f ′ , M (1)
z0 (X)→ P (X) ,

is a bicontinuous linear isomorphism.

(ii) The algebra P0(X) is dense in (D(1)(X), ∥ ⋅ ∥).

Proof. (i) The map

T : f 7→ f ′, M (1)
z0 (X)→ P (X) ,

is linear, and it is clearly continuous. By Lemma 9.2 (or Theorem 9.3), T is injective.
Let g ∈ P (X). Then there is a sequence (qn) of polynomials with ∣qn − g∣X → 0

as n → ∞. For each n ∈ ℕ, define a polynomial pn by requiring that p′n = qn
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and pn(z0) = 0. By Theorem 9.3, (pn) is a Cauchy sequence in (C(X), ∣ ⋅ ∣X), and
so there exists f ∈ C(X) such that ∣pn − f ∣X → 0 as n → ∞. Clearly (pn) is

also a Cauchy sequence in (D(1)(X), ∥ ⋅ ∥), and so f ∈ D(1)(X) and pn → f in

(D(1)(X), ∥ ⋅ ∥). Clearly f ∈ M (1)
z0 (X), and f ′ = Tf = g. This shows that T is a

surjection.
The continuity of T−1 is now immediate from either Theorem 9.3 or the open

mapping theorem.

(ii) Let f ∈ D(1)(X). Then f ′ ∈ A(X) = P (X), and so there is a sequence
(qn) of polynomials such that ∣qn − f ′∣X → 0 as n → ∞. Let (pn) be a sequence
of polynomials such that p′n = qn and pn(z0) = f(z0) for n ∈ ℕ. Since T−1 is
continuous, we have

pn − f = T−1(qn − f ′)→ 0

in (D(1)(X), ∥ ⋅ ∥) as n→∞, giving (ii). □

Now suppose that X is a connected, compact plane set (which need not be
polynomially convex) such that (D(1)(X), ∥ ⋅ ∥) is complete. Take z0 ∈ X, and

define M
(1)
z0 (X) and T : D(1)(X)→ A(X) as above, i.e.,

T (f) = f ′ (f ∈M (1)
z0 (X)) .

Then the above argument shows that T (M
(1)
z0 (X)) is a closed linear subspace of

A(X). For example, in the case where X = T, the range of the map T is the space
of functions g ∈ C(T) such that

∫
T g(z) dz = 0.

Let X be a polynomially convex, perfect, compact plane set such that the normed
algebra (D(1)(X), ∥ ⋅ ∥) is complete. Then X has only finitely many components,
and the above polynomial approximation result holds on each component separately.
It follows easily that O(X) is dense in (D(1)(X), ∥ ⋅ ∥). However, as we observed
earlier, for polynomially convex, perfect, compact plane sets X, P0(X) and O(X)
have the same closure in (D(1)(X), ∥ ⋅ ∥). Thus we obtain the following further
corollary.

Corollary 9.7. Let X be a polynomially convex, perfect, compact plane set for
which (D(1)(X), ∥ ⋅ ∥) is complete. Then P0(X) is dense in (D(1)(X), ∥ ⋅ ∥). □

10. Sufficient conditions for the incompleteness of (D(1)(X), ∥ ⋅ ∥)

Let X be a connected, compact plane set X. We shall identify a variety of geometric
conditions on X which are sufficient for (D(1)(X), ∥ ⋅ ∥) to be incomplete. We begin
by defining a function QX : X → [0,∞] in order to make applications of Theorem
9.3 more efficient. For z ∈ X, we set

QX(z) = sup

{
∣f(z)− f(w)∣
∣z − w∣

: w ∈ X ∖ {z}, f ∈ D(1)(X), ∣f ′∣X ≤ 1

}
.

Thus, for z0 ∈ X, condition (9.2) holds at z0 if and only if QX(z0) < ∞, in which
case we may take C2 = QX(z0).

We may now rephrase Corollary 9.4 in terms of QX as follows.

Theorem 10.1. Let X be a connected, compact plane set. Then (D(1)(X), ∥ ⋅ ∥) is
complete if and only if, for all z ∈ X, we have QX(z) <∞. □
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Let X be a connected, compact plane set. By Proposition 2.7, (D(1)(X), ∥ ⋅ ∥) is
complete whenever X is pointwise regular. We shall now try to establish the con-
verse of this result; we have no counter-example to the possibility that the converse
always holds. The following partial result eliminates a large class of compact plane
sets, including all rectifiable Jordan arcs, as possible counter-examples.

Theorem 10.2. Let X be a polynomially convex, rectifiably connected, compact
plane set with empty interior. Suppose that X is not pointwise regular. Then
(D(1)(X), ∥ ⋅ ∥) is incomplete.

Proof. Since X is not pointwise regular, there exists z0 ∈ X such that X is not
regular at z0. We shall show that QX(z0) =∞.

Let C > 0. Then there exists w ∈ X with �(z0, w) > C∣z0 − w∣. Let 
 be a
geodesic from z0 to w in X. It is easy to see, using the definition of arc length and
Tietze’s extension theorem, that there is a function f ∈ C(X) with ∣f ∣X < 1 and
such that ∣∣∣∣∫




f

∣∣∣∣ > C∣z0 − w∣ .

As the polynomials are dense in C(X), we may suppose that f is, in fact, a poly-
nomial. Let p be the unique polynomial satisfying p(z0) = 0 and such that p′ = f .
Then ∣p(z0)− p(w)∣ > C∣z0 − w∣, and ∣p′∣X < 1. This shows that QX(z0) > C. As
the choice of C > 0 was arbitrary, QX(z0) =∞, as claimed.

Thus (D(1)(X), ∥ ⋅ ∥) is incomplete. □

Although the preceding proof does not apply, nevertheless it is true that the
normed algebra (D(1)(J), ∥ ⋅ ∥) is incomplete whenever J is a non-rectifiable Jordan
arc. The proof requires two lemmas.

Lemma 10.3. Let z0, w0 ∈ ℂ with z0 ∕= w0, let 
 be a Jordan path from z0 to w0

in ℂ, and let B ∈ ℝ+. Then there exists f ∈ D(1)(
∗) with 0 < ∣f ′∣
∗ ≤ 3, with
f ′(z0) = f ′(w0) = 0, with f(z0) = B, with f(w0) ∈ ℝ+, and with

f(w0) > f(z0) +
1

2
∣w0 − z0∣ .

Proof. Set � = ∣z0 − w0∣/100. Let z1 be the first point of 
 with ∣z1 − z0∣ = �,
and let w1 be the last point of 
 with ∣w1 − w0∣ = �. We may split 
 into three
Jordan paths: 
1 from z0 to z1, 
2 from z1 to w1, and 
3 from w1 to w0. Note that
∣z − z1∣ ≤ 2� on 
1, while ∣z − w1∣ ≤ 2� on 
3.

Define g(z) = z − z0 for z ∈ 
2. For z in 
1, define

g(z) = z − z0 −
(z − z1)2

2(z0 − z1)
.

For z ∈ 
3, define

g(z) = z − z0 −
(z − w1)2

2(w0 − w1)
.

Finally, set f(z) = B + ei�(g(z) − g(z0)), where � ∈ ℝ is chosen so that we have
ei�(g(w0)− g(z0)) ∈ ℝ+.

It is then easy to check that f has the desired properties. □
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Lemma 10.4. Let z0, w0 ∈ ℂ, let A > 0, and suppose that 
 is a Jordan path from
z0 to w0 in ℂ whose length (which may be infinite) is greater than A. Then there
exists f ∈ D(1)(
∗) with 0 < ∣f ′∣
∗ ≤ 3, with f ′(z0) = 0, with f ′(w0) = 0, and with
∣f(z0)− f(w0)∣ > A/2.

Proof. Choose finitely many intermediate points on 
 strictly between z0 and w0,
say z1, z2, z3, . . . , zn−1 in order along 
, such that, setting zn = w0, we have

n∑
k=1

∣zk − zk−1∣ > A .

We now apply the previous lemma successively to the n subpaths joining zk−1
to zk for k = 1, 2, . . . , n, starting with B = 0 for the first arc, and arranging for
the function values to match at the endpoints. We patch together the resulting
functions in the obvious way to obtain the desired function f . □

Theorem 10.5. Let J be a non-rectifiable Jordan arc. Then the normed algebra
(D(1)(J), ∥ ⋅ ∥) is incomplete.

Proof. By the definition of non-rectifiable Jordan arc, we have J = 
∗ for some
non-rectifiable Jordan path 
 : [a0, b0] → ℂ. It follows easily by compactness and
symmetry that we may suppose that there exists an a ∈ [a0, b0) such that, for all
b ∈ (a, b0], the restriction 
∣[a,b] is also non-rectifiable.

Set z0 = 
(a). We shall show that QX(z0) =∞.
Let C > 0. Choose b ∈ (a, b0) such that C∣
(a)− 
(b)∣ < 1, and set w0 = 
(b),

so that
1

∣z0 − w0∣
> C .

Set A = 6, and apply the previous lemma to the restriction 
∣[a,b]. Extend the
resulting function f to be constant on 
([a0, a]) and on 
([b, b0]). We then see that
f ∈ D(1)(J), that ∣f(z0)− f(w0)∣ > A/2 = 3, and that

0 < ∣f ′∣J ≤ 3 < ∣f(z0)− f(w0)∣ .
But then

QX(z0) ≥ ∣f(z0)− f(w0)∣
∣f ′∣J ∣z0 − w0∣

> C .

As the choice of C > 0 was arbitrary, QX(z0) = ∞, and so (D(1)(X), ∥ ⋅ ∥) is
incomplete. □

We do not know whether or not (D(1)(X), ∥ ⋅ ∥) is incomplete for each poly-
nomially convex, compact plane set X which has empty interior and which is not
pointwise regular.

We shall now introduce some useful test functions which will enable us to give
lower bounds for QX(z0) whenever a compact plane set X has a suitable ‘dent’
near z0.

We denote by D0 the standard cut plane obtained by deleting the non-positive
real axis from ℂ. For z ∈ D0, we denote the principal argument of z by Arg z (so
that −� < Arg z < �), and we define

Log z = log ∣z∣+ i Arg z (z ∈ D0)
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(so that Log is the principal logarithm defined on D0). For z ∈ D0 and � ∈ ℂ, we
define z� by z� = exp(�Log z), and we define the function

Z� : z 7→ z�, D0 → ℂ .

We now give some elementary facts about the function Z i.

Lemma 10.6. Let z ∈ D0. Then ∣zi∣ = e−Arg z, and so e−� < ∣zi∣ < e�. If z is in
the second quadrant, we have ∣zi∣ ≤ e−�/2, while if z is in the third quadrant, then
∣zi∣ ≥ e�/2. □

Corollary 10.7. Let z, w ∈ D0, and suppose that z is in the second quadrant and
that w is in the third quadrant (or vice versa). Then

∣zi − wi∣ ≥ e�/2 − e−�/2 ≥ 1 .
□

We shall be particularly interested in the properties of the analytic function
F = Z1+i on D0. Note that F ′(z) = (1 + i)zi (z ∈ D0).

Lemma 10.8. The following estimates hold for all z ∈ D0:

(i) e−�∣z∣ ≤ ∣F (z)∣ ≤ e�∣z∣;

(ii)
√

2 e−� ≤ ∣F ′(z)∣ ≤
√

2 e�. □

Lemma 10.9. Let z, w ∈ D0. Suppose that z is in the second quadrant and that w
is in the third quadrant. Then

∣F (z)− F (w)∣ ≥ ∣z∣ − e�∣z − w∣ .

Proof. Writing

F (z)− F (w) = ziz − wiw = (zi − wi)z + wi(z − w) ,

we obtain (using our preceding estimates) the inequalities

∣F (z)− F (w)∣ ≥ ∣zi − wi∣∣z∣ − ∣wi∣∣z − w∣ ≥ ∣z∣ − e�∣z − w∣ ,

as required. □

Note. In this setting, if ∣z−w∣/∣z∣ is very small, then ∣F (z)−F (w)∣ is much bigger
than ∣z − w∣.

As an immediate consequence of the above lemmas, we obtain the following
result concerning the function QX when X ⊆ D0.

Proposition 10.10. There exist universal constants CQ, C
′
Q > 0 satisfying the

following. Let X be a connected, compact plane set with X ⊆ D0. Suppose that
z, w ∈ X, and that z is in the second quadrant and w is in the third quadrant. Then

QX(z) ≥ CQ
∣z∣
∣z − w∣

− C ′Q .
□

These same universal constants CQ, C
′
Q will be fixed for the rest of this paper.

We shall use them repeatedly below.
As QX is clearly invariant under reflections, rotations and translations, we obtain

the following further corollary.
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Corollary 10.11. Let a ∈ ℂ, let L be a closed half-line in ℂ joining the point a to
∞, and let H be the closed half-plane containing L and bisected by it. Let X be a
connected, compact plane set with X ∩ L = ∅, and suppose that z, w ∈ X ∩H are
such that the straight line joining z to w meets L. Then

QX(z) ≥ CQ
∣z − a∣
∣z − w∣

− C ′Q .
□

We shall now consider the case of a compact plane set with a sequence of dents.
The context will be as follows. Let X be a connected, compact plane set. Let

(wn) be a convergent sequence in X with limit z0. Let (an) be a bounded sequence
in ℂ ∖X, and suppose that, for each n ∈ ℕ, there is a closed half-line Ln ⊆ ℂ ∖X
joining an to ∞. Let Hn be the closed half-plane containing Ln and bisected by it.
Suppose further that, for each n ∈ ℕ, wn and z0 are in X ∩ Hn and the straight
line joining z0 to wn meets Ln.

Theorem 10.12. With notation as above, suppose that

∣z0 − wn∣ = o(∣z0 − an∣) as n→∞ .

Then (D(1)(X), ∥ ⋅ ∥) is incomplete.

Proof. We shall show that QX(z0) = ∞. By Corollary 10.11, for each n ∈ ℕ, we
have

QX(z0) ≥ CQ
∣z0 − an∣
∣z0 − wn∣

− C ′Q .

Letting n→∞, we obtain QX(z0) =∞, and so (D(1)(X), ∥ ⋅ ∥) is incomplete. □

We now describe some classes of sets to which the above theorem applies.
We start from the closed unit square S = I × I in ℝ2. Let (rn) and (sn) be se-

quences in the open interval (0, 1) such that (sn) is strictly decreasing and converges
to 0. For each n ∈ ℕ, set

Rn = [0, rn),×(s2n, s2n−1) .

Set X = S ∖
∪∞
n=1Rn. The set X, regarded as a subset of ℂ, is illustrated in

Figure 3, below.
Clearly X is a polynomially convex, geodesically bounded, compact plane set,

intX is connected and dense in X, and X is regular at all points of X ∖ {0}.

With the assistance of Theorem 10.12, we see easily that the following conditions
on X are equivalent:

(a) X is regular at 0 ;

(b) X is pointwise regular;

(c) (D(1)(X), ∥ ⋅ ∥) is complete;

(d) rn = O(s2n−1).

In particular, these sets provide many examples of compact plane sets X such
that intX is connected and dense in X, and yet (D(1)(X), ∥ ⋅ ∥) is incomplete, thus
answering a question raised in [3].
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0

r1

s1 i

r2

s2 i

s3 i

s4 i

s5 i

s6 i
r3r4

Figure 3. A square with rectangles deleted

It is fairly easy to generalize Theorem 10.12 somewhat by replacing the half-
lines Ln by suitable curves joining an to ∞, and imposing appropriate conditions
on the positions of z0 and wn relative to these curves. All that is required is
that suitable versions of Corollary 10.11 be valid for these curves, without losing
control of the constants involved. (There are problems, for example, with sequences
of curves which spiral round increasingly often.) Although such a generalization
would allow us to prove the incompleteness of (D(1)(X), ∥ ⋅ ∥) for some additional
compact plane sets X, there are clearly limitations to this method, and we shall
not pursue it further here.

Let X be a compact plane set. Recall that X is star-shaped with a star-centre
a ∈ X if, for all z ∈ X, the straight line joining a to z lies entirely within X. The
compact plane set X is radially self-absorbing if, for all r > 1, X ⊆ int(rX), where
rX = {rz : z ∈ X}. Such radially self-absorbing sets are discussed in [10].

Radially self-absorbing sets are always star-shaped, polynomially convex and
geodesically bounded, and have dense interior.

Using Theorem 10.12, we now construct a radially self-absorbing set X such that
(D(1)(X), ∥ ⋅ ∥) is incomplete; this answers a question raised in [3].

Example 10.13. Set z0 = 1. For each n ∈ ℕ, set

rn =
1

4
√
n
, �n =

�

4n2
, �n =

�n + �n+1

2
,

and

wn = ei�n , zn = (1− 2rn)ei�n , an = (1− rn)ei�n .
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Note that ∣z0 − wn∣ = O(1/n2), while

∣z0 − an∣ ≥
1

4
√
n

(n ∈ ℕ) .

Thus ∣z0 − wn∣ = o(∣z0 − an∣) as n→∞.
For each n ∈ ℕ, let Un be the acute open sector of ℂ with vertex at zn and

boundary lines passing through wn and wn+1. Let X be the compact set obtained
by deleting from the closed unit disc the union of all the open sectors Un.

z3

a1

a2

w2

w1

z0

z1

z2

0

a3
w4

w3

Figure 4. A ‘bad’ radially self-absorbing set

The set X is illustrated in Figure 4, above. Clearly X is radially self-absorbing
and satisfies the conditions of Theorem 10.12.

Thus (D(1)(X), ∥ ⋅ ∥) is incomplete. □

We shall next prove our conjecture for star-shaped sets.

Theorem 10.14. Let X be a star-shaped, compact plane set X. Then the normed
algebra (D(1)(X), ∥ ⋅ ∥) is complete if and only if X is pointwise regular.

Proof. We need to consider only the case where X is not pointwise regular, and to
prove that (D(1)(X), ∥ ⋅ ∥) is incomplete in this case.

Let a be a star-centre for X. Given that X is not pointwise regular, there must
exist z0 ∈ X such that X is not regular at z0. Clearly X is regular at a, and so
z0 ∕= a. Choose a sequence of points (wn) ∈ X converging to z0 and such that, for
all n ∈ ℕ, �(z0, wn) > 100n∣z0 − wn∣. Clearly, none of the points wn lie on the line
segment joining a to z0. We may further suppose that ∣z0−wn∣ < ∣z0−a∣/100n for
all n ∈ ℕ. For fixed n ∈ ℕ, consider the following path 
n in ℂ from z0 to wn: 
n
starts at z0, travels along a straight line towards a for distance 3n∣z0 − wn∣, then



NORMED ALGEBRAS OF DIFFERENTIABLE FUNCTIONS 27

travels through a small angle around a circle centred on a until it meets the straight
line joining a to wn, and finally travels along this straight line to wn. It is clear
that ∣
n∣ < �(z0, wn), and so the path 
n is not contained in X. Thus there must
be a point an on the short circular arc which is not in X. Let Ln be the closed
half-line joining an to ∞ obtained as a continuation of the straight line from a to
an.

It is now easy to check that the conditions of Theorem 10.12 are satisfied, and
so (D(1)(X), ∥ ⋅ ∥) is incomplete. □

Note that most of the results above concern polynomially convex sets; we now
consider sets which are not polynomially convex.

Let X be a compact plane set such that (D(1)(X), ∥ ⋅ ∥) is complete. Then an

elementary argument shows that (D(1)(X̂), ∥ ⋅ ∥) is also complete.
The converse is false. For example, let (yn) be a sequence in (0, 1) such that (yn)

is strictly decreasing and converges to 0. Set A = {0, 1}, set

B = {0} ∪ {yn : n ∈ ℕ} ,
and set

X = (A× [0, 1]) ∪ ([0, 1]×B) ,

so that X is the union of the boundary of a square with a suitable sequence of
line segments running across it. The set X, regarded as a subset of ℂ, is shown in
Figure 5, below.

0

y1 i

y2 i

y3 i
y4 i

Figure 5. A square crossed by lines

Although none of our theorems apply, it is not hard to show directly that

(D(1)(X), ∥ ⋅ ∥) is incomplete. However, X̂ (which is a square) is convex, and hence

is uniformly regular. Thus (D(1)(X̂), ∥ ⋅ ∥) is complete.

We shall now see that the method used in Theorem 10.5 to prove that the normed
algebra (D(1)(J), ∥ ⋅ ∥) is incomplete for every non-rectifiable Jordan arc J can be
developed to apply to some more general sets.

Let X be a compact space, and let A be a uniform algebra on X. Recall that
a point z ∈ X is a peak point for A if there exists a function f ∈ A with f(z) = 1
and such that ∣f(w)∣ < 1 for all w ∈ X ∖ {z}. Similarly, a non-empty, closed subset
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E of X is a peak set for A if there exists a function f ∈ A with f(E) = {1} and
such that ∣f(w)∣ < 1 for all w ∈ X ∖ E.

Let X be a compact plane set. Although it is not noted explicitly in [11], it is
an immediate consequence [11, Chapter VIII, Corollary 4.4] that every point of the

outer boundary of X is a peak point for P (X̂). Furthermore, it then follows from
[11, Chapter II, Corollary 12.8] that every non-empty, finite subset of the outer

boundary of X is a peak set for P (X̂). (See also [18, Lemma 1.6.18].)

Lemma 10.15. Let Y be a compact plane set, and let z and w be points in the
outer boundary of Y . Suppose further that there is a rectifiable arc J joining z to

w in Ŷ . Take � ≥ 0. Then there is a polynomial p with p′(z) = p′(w) = 0, with
p(z) = �, with ∣p′∣Y < 3, and with p(w) ∈ ℝ such that p(w)− p(z) > ∣z − w∣/2.

Proof. Set X = Ŷ . Then J = 
∗ for some rectifiable path 
 joining z to w in X.
Since z and w are in the (outer) boundary of Y , {z, w} is a peak set for P (X).
Choose g ∈ P (X) with g(z) = g(w) = 1 and with ∣g(u)∣ < 1 for all u ∈ X ∖ {z, w}.
By the dominated convergence theorem,

lim
n→∞

∫
J

∣g∣n = 0 .

Thus, by replacing g by a suitable power gn if necessary, we may suppose that∫
J

∣g∣ < ∣z − w∣
2

.

Since g ∈ P (X), it is easy to check that there exists a polynomial q with ∣q∣X < 2,
with q(z) = q(w) = 1 and with ∫

J

∣q∣ < ∣z − w∣
2

.

Take a polynomial r with r′ = q, and set s = r − Z, so that s′ = q − 1. Then
∣s′∣X < 3, and

s(z)− s(w) = −
∫
J

s′ = w − z −
∫
J

q ,

so that ∣s(z)−s(w)∣ > ∣z−w∣/2. Certainly we have s′(z) = s′(w) = 0. Choose a real
number � such that ei�(s(w)−s(z)) > 0, and let p be the polynomial �+ei�(s−s(z)).
It is clear that the polynomial p has the desired properties. □

Using Lemma 10.15, we now prove a result for sets of the type shown in Figure
6, below. This result may also be used to prove our earlier incompleteness results
concerning Jordan arcs.

Theorem 10.16. Let X be a connected, compact plane set, let F be a non-empty,
closed subset of X, and let z0 ∈ F . Suppose that, for each n ∈ ℕ, there are
a compact plane set Bn ⊆ X ∖ F and a point vn ∈ Bn such that the following
conditions hold:

(i) X = F ∪
∪∞
n=1Bn ;

(ii) Bm ∩Bn = ∅ whenever m,n ∈ ℕ with ∣m− n∣ > 1;

(iii) Bn ∩Bn+1 = {vn} for all n ∈ ℕ;
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B2
B1

v3

v1

v2v4

B4

B3

z0

F

Figure 6. A set of the type discussed in Theorem 10.16

(iv) the sequence of sets (Bn) accumulates only on a subset of F , in the sense
that

∞∩
n=1

∞∪
k=n

Bk ⊆ F ;

(v) for each n ∈ ℕ, vn may be joined to vn+1 by some rectifiable arc in B̂n+1;

(vi) supn∈ℕ(
∑∞
k=n ∣vk+1 − vk∣/∣z0 − vn∣) =∞ .

Then (D(1)(X), ∥ ⋅ ∥) is incomplete.

Proof. We first note that clause (iv) implies that F ∪
∪∞
k=nBk is closed for each

n ∈ ℕ. Working in D(1)(X), we show that Qz0 =∞.
Given C > 0, choose n,M ∈ ℕ with n < M and such that

M∑
k=n

∣vk+1 − vk∣
∣vn − z0∣

> 6C .

Set Y =
∪M
k=n+1Bk.

We now apply Lemma 10.15 successively to the sets Bn+1, Bn+2, . . . , BM (mak-
ing appropriate choices of �), and patch the resulting functions together to give a
function f ∈ D(1)(Y ) with ∣f ′∣Y < 3 and with

∣f(vM+1)− f(vn)∣ > 1

2

M∑
k=n

∣vk+1 − vk∣ .

We then extend f to a function in C(X), also denoted by f , such that f is constant
on each of the sets F ∪

∪∞
k=M+1Bk and

∪n
k=1Bk. Then we have f ∈ D(1)(X),

∣f ′∣X < 3, and ∣f(z0)− f(vn)∣ > 3C∣z0 − vn∣. Thus Qz0 > C.
As C is arbitrary, Qz0 =∞, and so (D(1)(X), ∥ ⋅ ∥) is incomplete. □

We now wish to discuss a class of sets which our results do not cover
Let Y be a triangle in the plane, with one vertex at 0, and with a horizontal

edge above this vertex. We may then form a Jordan arc J in Y joining the top
right corner of Y to 0 as follows. The arc J consists of an infinite sequence of
line segments accumulating at 0. These line segments alternate between crossing
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0

Figure 7. A Jordan arc repeatedly crossing a triangle

Y horizontally, and then following one of the non-horizontal edges. Finally, we add
in the point 0 at the end. Such an arc J is shown in Figure 7, above.

By our earlier results, we know that (D(1)(J), ∥ ⋅ ∥) is complete if and only if J
is pointwise regular. Using Theorem 10.16, we may show that our conjecture also
holds for sets X formed from J by slightly ‘fattening’ the horizontal line segments
in the manner shown in Figure 8, below.

0

Figure 8. A set obtained by ‘fattening’ horizontal line segments

However, none of our results apply to a set X formed by similarly fattening all
of the line segments forming J , to form a set of the type shown in Figure 9, below.
We call a set of this form a Superman set.

It is possible to show, using Theorem 10.16 and an inductive argument, that there
are examples of compact plane sets X of this latter type such that (D(1)(X), ∥ ⋅ ∥)
is incomplete. However, we do not know whether or not there is a set X of this
type such that X is not pointwise regular, and yet (D(1)(X), ∥ ⋅ ∥) is complete.
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0

Figure 9. A ‘fattened’ Jordan arc repeatedly crossing a triangle

11. Open questions

We conclude with a set of open questions concerning perfect, compact plane sets
X.

(1) Suppose that X is connected, and that (D(1)(X), ∥ ⋅ ∥) is complete. Is it
necessarily true that X must be pointwise regular? Is this true if we assume,
in addition, that X is a Superman set?

(2) Is it always true that D(1)(X) ⊆ R(X)? Does this hold, at least, whenever
X is pointwise regular?

(3) Is R0(X) always dense in (D(1)(X), ∥ ⋅ ∥)? Is P0(X) dense in (D(1)(X), ∥ ⋅ ∥)
whenever X is polynomially convex?

(4) Suppose that intX is dense in X. Is it always true that A(1)(X) ⊆ R(X)?
Is A(1)(X) always natural?

(5) Is D
(1)
ℱ (X) natural whenever ℱ is an effective family of paths in X?

(6) Suppose that X is semi-rectifiable, and that ℱ is the set of all admissible

paths in X. Is D̃(1)(X) always equal to D
(1)
ℱ (X)? Suppose further that

(D(1)(X), ∥ ⋅ ∥) is complete. Does it follow that

D(1)(X) = D
(1)
ℱ (X) ?

(7) Is there a uniformly regular, polynomially convex, compact plane set such
that intX is connected and dense in X, and yet

D̃(1)(X) = D(1)(X) ∕= A(1)(X) ?

(8) (Local behaviour of the function QX .) Let X be a connected, compact
plane set, and let z0 ∈ X. Suppose that z0 has a connected, compact
neighbourhood N in X such that QN (z0) = ∞. Is it necessarily true that
QX(z0) =∞?
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Inc., Boston, MA, 2007

[19] N. Weaver, Lipschitz algebras, World Scientific, Singapore, 1999.

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK
E-mail address: garth@maths.leeds.ac.uk

School of Mathematical Sciences, University of Nottingham, University Park, Notting-

ham NG7 2RD, UK
E-mail address: Joel.Feinstein@nottingham.ac.uk


