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Abstract

In the past few years, IRC bots, malicious programs which
are remotely controlled by the attacker through IRC servers,
have become a major threat to the Internet and users. These
bots can be used in different malicious ways such as issuing
distributed denial of services attacks to shutdown other
networks and services, keystrokes logging, spamming, traffic
sniffing cause serious disruption on networks and users.
New bots use peer to peer (P2P) protocols start to appear
as the upcoming threat to Internet security due to the fact
that P2P bots do not have a centralized point to shutdown
or traceback, thus making the detection of P2P bots is a
real challenge. In response to these threats, we present an
algorithm to detect an individual P2P bot running on a
system by correlating its activities. Our evaluation shows
that correlating different activities generated by P2P bots
within a specified time period can detect these kind of bots.

1. Introduction

Internet and networks come under frequent attack from
a diverse set of malicious programs and activity such as
viruses and worms [3]. While the detection of such worms
and viruses is improving a new threat has emerged in the
form of the botnet. Botnets are distributed networks of
infected machines, controlled remotely by a ‘botmaster’. A
single bot, a term derived from robot, is a piece of malicious
code that is installed on a user host and transforms host into
a zombie machine.

Current bots use Internet Relay Chat (IRC) command and
control (C&C) structure to communicate with their herders.
IRC is a chat based protocol consisting of various ‘channels’
to which a user of the IRC network can connect. Upon
infection of a host, the bot connects to the IRC server
and joins the specified channel waiting for the attacker’s
commands. The bot is programmed to respond to various
commands generated by the attacker through the C&C
structure. Although IRC structures represent an efficient
way of controlling botnets, one can prevent the bots from
communicating with their herders by shutting down the

central point. In order to avoid this problem, botnet herders
started to deviate from using a centralised point to a another
way of controlling their bots by using the decentralised
structures as a mean to maintain their botnets. As a result, a
new approach of botnet structures starts to appear taking
advantage of existing Peer-to-Peer (P2P) protocols. The
attackers start to use P2P networks in order to control their
botnets. By using this approach, the bots can contact other
bots without having a centralised point for their command
and control (C&C) structure.

In P2P, each node acts as client-server which provides
bandwidth, storage and computational power. Using this
approach, bots are able to communicate with other bots by
downloading files or commands from other bots’ machines
and performing different activities. In comparison to IRC
structures, everyone can join a P2P network, thus, the more
peers acting as bots, the more powerful the botmaster can be.
In addition, it will be hard to detect and shut down the botnet
as security people would need to isolate each machine [2].

We present an algorithm to detect P2P bots on the in-
fected machine by correlating bots’ behavioural attributes. A
Peacomm (Storm P2P bot) is used as a case study. The con-
cept of correlation attributes within specified time-window
increases the level of malicious behaviour confidentiality
as depending on one process attribute may generate large
number of false alarms. The correlation is used to com-
bine the attributes of programs, thus, enhance the detection
mechanism. The algorithm does not need a pre-defined bots’
signatures in order to detect this kind of bots.

This paper is structured as follows: Section two discusses
the related work in this field. We present the Peacomm
P2P bot as a case study in Section three. We discuss our
methodology by explaining the conducted experiments, how
we have collected our data and the correlation algorithm in
section four. Our results and analysis are presented in section
five and we summarize and conclude in section six.

2. Related Work

Different researches have been conducted to analyse and
detect peer-to-peer bots. For example, Schoof and Kon-



ing [10] analyse different peer-to-peer bots such as Sinit
and Nugache to examine the behaviour of these bots. In their
analysis, they note that some peer-to-peer bots communicate
on a fixed port. They argue that by monitoring traffic on that
port, one could detect these bots. They also discover that
some of these bots generate a large number of destination
unreachable error messages (DU) and connection reset error
messages while trying to connect to other peers. In addition,
some bot’s communications are encrypted which make the
traffic analysis a difficult task and resulting in high false
alarms.

Dittrich and Dietrich [1] explain some of the features
and challenges when dealing with the Nugache P2P botnet.
Stover et al. [12] conclude that there is no static IDS that
will detect Nugache traffic. They also mention that the
Nugache bot can be detected through various signatures of
the infection.

Holz et al. [8] present a method to analyse and mitigate
P2P botnet. They develop ways to mitigate Storm worm
and introduce an active measurement technique to enumerate
the number of infected hosts. Their way is based on either
reverse engineered the bot binary to identify the function
which generates the key that is used for searching for other
infected machines and bots commands or use honeypot and
infect it with the bot that generate a new key each time it is
rebooted and thus enumerate all the keys. The problem with
the first method is that the process of reverse engineering is
needed all the time the attacker change the key generation
functions. The other method takes long time to enumerate
all the keys.

Other research analyse different peer-to-peer bots such as
Storm bot (Peacomm) where large number of emails are
spammed to many accounts holding an executable attach-
ment [2]. An in-depth analysis of Peacomm is provided by
Stewart from SecureWorks [11]. Nunnery and Kang [7] try
to locate the zombie nodes activities in peer-to-peer network
by their retrieval of hashes and the control of a large group
of network computers. They claimed that if the client within
the controlled network searches for hash used by malware,
it must be a zombie node. This process can also leads to
locate the IP address of the botmaster by monitoring any
publish activity on the supervised network.

A detailed description of Peacomm is presented by Porras
et al. [9]. They also investigate how to detect the Storm
bot by using a BotHunter [5] which tracks the two-way
communication flows between internal and external entities
to find the infected host. Stover [12] suggests that the
Storm bot can be detected by configuring IDS to find the
configuration file used by the bot. They also state that
differentiating between the Storm bot and legitimate P2P
communications is a difficult task.

3. Case Study: Peacomm (Storm Bot)

Peacomm is one of the few known bots which implements
a full peer-to-peer (P2P) networks generated in 2007 [7][4].
Peacomm uses the Overnet P2P protocol to communicate
with other bots. The overnet protocol is an example of a
decentralised peer network which implements the Kademlia
algorithm [7]. The Kademlia algorithm uses distributed hash
tables (DHT) for routing in which there is no hierarchy in
the topology [4][7].

In Kademlia, to communicate with other peers, each node
is assigned a unique 128-bit ID as a global identifier the first
time the it starts [8]. The node shares its information with
other peers which are close to it in the keyspace. The term
“closeness” is based on calculating the distance between two
peers’ identifications (IDs) using an XOR operation [6][8].
To publish information, each node uses its hash table as a
data structure which maps the keys with the values. The
key is used as an identification to retrieve information based
on the closest distance to other peers while the value is a
triple of node’s ID, IP address and UDP port number. The
Peacomm bot uses this method to search for specific keys to
communicate with other infected machines on the network
and find the commands that should be executed [8].

After an infection, the bot stores a configuration file
which contains encoded information about other peers to
communicate with [8]. Each time it makes a successful
connection, it expands its information about the botnet by
saving the hash (node information) into local memory. The
bot then uses the stored hard coded keys to search and
download a secondary injection URL from the network.
The secondary injection URL is encrypted using the RSA
algorithm and points to a secondary injection executable.
After that, the bot decrypts the encrypted URL using its
stored hard coded keys. Finally, the bot downloads and
execute the secondary injection from a web-server [7][4].

4. Methodology

P2P bots are difficult to detect because they do not have
a central point to communicate with their masters which
makes the tracing back process difficult. In addition, new
bots can have different signatures and using signature-based
detection will generate false alarms specially if bots traffic
are encrypted. For these reasons, we present an algorithm
to detect P2P bots by investigating the effect of correlating
their behavioural’s attributes. The aim of this investigation
is to show that correlating different attributes can enhance
the detection of P2P bots.

4.1. Bot Scenarios

For the purpose of our experimentation the Peacomm bot
is used as previously explained. As a communication vessel,



IceChat, an IRC client, is used for normal conversation. In
addition, the Firefox web browser is used for browsing,
checking email and other normal activities as a normal
application. Two scenarios are used inactive (PmE1) and
active (PmE2) as follows:
• inactive (PmE1): In this session, the binary of Pea-

comm bot is executed and run on a monitored host.
Other normal applications are also running during this
session but there are no activities from the user such
as browsing or chatting.

• active (PmE2): In this session, the Peacomm bot is
executed and run on a monitored host. In contrast
to (PmE1), the user uses Firefox for browsing and
checking emails as normal activities and uses Icechat
for having conversation with other users.

4.2. Data Collection

We assume that the bot is already installed on the victim
host, through an accidental ‘trojan horse’ style infection
mechanism or opening a malicious attachment which con-
tains the bot. In this case, we use an extrusion detection
to limit the bot activities whilst on a host machine. The
communication of Peacomm bot is described in more details
in [8][4][12].

We have developed an interception program (APITrace)
to record the required behavioural attributes and to intercept
and capture specified function calls executed by the moni-
tored processes. These data are then processed, normalised
and streamed to our correlation algorithm. In terms of the
function calls intercepted, different types of function calls
are used as an input to the algorithm. These function calls
include Communication functions (e.g. send, recv), File
access functions (e.g ReadFile, WriteFile), Registry access
functions (e.g. RegOpenKey, RegQueryValue) and Keyboard
status functions (e.g. GetKeyboardState, GetAsynKeyStat).

4.3. Signals

Three signal categories are used to define the state of the
system namely S1, S2 and S3. These signals are collected
using a function call interception program - APITrace. Raw
data from the monitored host are transformed into log files
which are then normalised in the range of 0 - 100.

In terms of the signal category semantics, S1 is a strong
signal evidence for bad behaviour on a system. This signal
is derived from the rate of change of three fields of netstat.
These fields are destination unreachable (DU), failed con-
nection attempts (FCA) and reset connections (RST). The
choice of these fields is based on the preliminary observation
of P2P bots. The netstat is a command line tool used to
display network statistics. The value of S1 is obtained from
the following formula:

S1 = (DUt−DUt−1)+(FCAt−FCAt−1)+(RSTt−RSTt−1)

The normalisation of data is based on a logarithmic scale.
This is because we needed to cover a data of large range of
values being produced by flooding attack and these values
are changing rapidly. If the value of the S1 exceeds 100,
the value is capped to a maximum value, in our case 100.
Otherwise, the value of S1 is calculated as shown in Table 1.

Table 1. Values of S1 for P2P experiments

DU RST FCA PAMP
0 0 0 0
0 0 !=0 100*log10(RST)
0 !=0 0 100*log10(FCT)

!=0 0 0 100*log10(DU)
0 !=0 !=0 100*log10(RST+FCA)

!=0 0 !=0 100*log10(DU+FCA)
!=0 !=0 0 100*log10(DU+RST)
!=0 !=0 !=0 100*log10(DU+RST+FCA)

S2 is derived from the rate of change of number of packets
send per second (pkts/sec). This value is also obtained
from network statistics command line tool (netstat). Based
on preliminary experiments, we classify the values of S2

according to the following:

X =


0− 10 min danger
11− 100 min-mid danger
101− 1000 mid danger
1001− 10000 mid-max danger
> 10000 max danger

The higher the value of S2, the more threat we have. We
also use a logarithmic scale when using S2 and is derived
according to the following formula:

S2 = 25 ∗ log10(X) . . . 1 ≤ X ≤ 10, 000

If the rate of change of the number of packets sent per
second exceeds 10,000, the value of S2 is capped to 100.
In addition, if the rate of change is zero, the value of S2 is
mapped to zero.

Finally, S3 is derived from the time difference between
two outgoing consecutive communication functions such as
[(send,send),(sendto,sendto),(socket,socket)]. This is needed
as the bot either sends information to the botmaster using
send function call or issues SYN or UDP flooding attacks
using sendto or socket. In normal situations, we expect
to have a large time difference between two consecutive
functions. In addition, we expect to have a short period of
this action in comparison to a SYN attack or a UDP attack.
This is because the behaviour of the user when responding to
other parties is different from bots when responding to their
botmaster commands. Often, the normal users do not involve
in generating large amount of traffic similar to flooding
attack when they chat or when they browse the Internet.



Therefore, we set ns3 as the maximum time differences
between calling two consecutive communication functions.
If the time difference is higher than ns3, the time is classified
as normal and it is mapped to a 100. If the time difference
falls below ns3, the time difference is calculated from the
following formula:

S3 = 62.41965 ∗ log10(Y )

The value of 62.41965 is calculated from preliminary
experiments in which we observe that the average safe
value between calling the same consecutive communication
function calls is around 40 and any value above this value
can be considered to be as normal. Therefore, if Y = 40,
the value of S3 is capped to 100 which represent the normal
situation. The closer the value of S3 to 0, the more malicious
activity we have.

The need of correlation between signals and function calls
is required to define which processes are active when the
signal values are modified. The more active the process, the
more function calls it generates. Once the function calls are
intercepted by APITrace, they are stored in different log file
and assigned the value of the process ID to which the func-
tion calls belong and the time at which they were invoked.
After a certain period of time, both signal and function calls
logs are combined and sorted based on time. The combined
log files are parsed and the logged information is sent to the
correlation algorithm for processing and analysis.

4.4. The Correlation Algorithm

We have implemented a correlation algorithm to find the
correlation between the three signals S1, S2 and S3. The
correlation method is based on the two criteria. The first
criteria is to analyse the function calls log file based on the
frequency of API function calls generated by each process
(i.e. calculate the number of function calls invoked per
process). The second criteria is to analyse the signals log
file by setting a sensitivity value (SV) for each signal (S1,
S2 and S3).

The algorithm is described in Algorithm 1 works as
follows. We set a sensitivity value (SV) and check if the
values of S1, S2 and S3 exceeds the specified a SV. If the
signal value exceeds the specified SV, we assign a value of
one to its records, otherwise, we assign a value of zero. Then,
we examine if signals’ records have the same values, we
assign a value of one which represents a correlation between
the signals (S1, S2 and S3) at that period of time. We repeat
this process for all the signals in the signals log file.

Then, we calculate the anomaly factor and the correlation
factor from the following equations:

AnomalyFactor(AF ) =
n∑

i=1

(XS1i + XS2i + XS3i)
3n

(1)

input : S= (S1, S2, S3)

Initialise SV;
for i = 1 to n do

if S1i > SV then
XS1i = 1;

else
XS1i = 0;

end
if S2i > SV then

XS2i = 1;
else

XS2i = 0;
end
if S3i > SV then

XS3i = 1;
else

XS3i = 0;
end
if XS1i = 1 and XS2i = 1 and XS3i = 1 then

Corri = 1;
end

end
Algorithm 1: A correlation algorithm

CorrelationFactor(CorrF ) =
n∑

i=1

Corri

n
(2)

where n is the time in seconds and X is the signal
record which represents a logic value (zero or one) if the
signal value exceeds a predefined sensitivity value (SV ).
The correlation factor represents how signals are related to
each other and its range from zero to one. For example, if S1

and S2 have high values than sensitivity value (SV) and S3

has a low value than (100-SV), (note that signal values are
normalised from zero to 100, thus we change the SV from
zero to 100.), this will generates a high correlation between
these signals at that time. The final step is to calculate
the anomaly correlation value (ACV) from the following
equation:

ACV = AF ∗ exp(CorrF ) (3)

The use of exponential form to the correlation factor in
this formula represents the confidentiality level of how sig-
nals are related to each other. For example, if the correlation
factor is zero, this means that the signals in the log files
are not correlated and the ACV will only depends on the
anomaly factor (AF). If the correlation factor is higher than
zero, the ACV will depend on both the anomaly factor and
the correlation factor. Thus, the more correlation we have
between signals, the higher the ACV will be. The maximum
value of ACV is 2.7182 which is the value of exp(0) as the
value of anomaly factor ranges from zero to one as well.



5. Results and Analysis

The results of applying this technique are shown in
Table 2. In this table, the frequency of API function calls for
each process for the conducted experiments and the anomaly
correlation values (ACV) when applying different SV are
presented (SV=10,20,30,40,50). As shown from this table,
we note that changing SV value generates different anomaly
correlation values (ACV). If we increase the sensitivity of the
system by increasing the SV, this will lead to the reduction
of ACV as shown in Table 2.

To detect malicious activity, a threshold value is needed.
Setting a threshold value T = 50 detects malicious activities
on system for experiments PmE1 and PmE2 when SV ranges
from 10 to 30 but cannot detect malicious activity on the
system when we increase the value of SV to 40 or more.
Therefore, setting a threshold level in the range 10 to 30 will
generate zero false positive alarms and 100% true positive
alarms for the two conducted experiments.

Another important question is to know which processes
are malicious and which processes are normal. Using the
frequency of API function calls for each process as an
indicator, it will determine which process is normal and
which process is malicious in this case study. For example,
based on the frequency of API function calls, the Peacomm
is a malicious process in experiments PmE1 and PmE2.

Table 2. The results of using the correlation algorithm
when (1) applying different sensitivity values (SV) to

calculate the Anomaly Correlation Value (ACV) and (2)
considering the frequency of API function calls per

process for P2P bots.

Experm. Process Freq. ACV (>SV)
10 20 30 40 50

Peacomm 617349
PmE1 Firefox 9902 0.68 0.60 0.52 0.45 0.34

Icechat 71
Peacomm 628838

PmE2 Firefox 4449 0.69 0.63 0.56 0.44 0.33
Icechat 9464

6. Conclusion

P2P bots are difficult to detect as there is no central
point of communications. In addition, analysing network
traffic looking for signatures can be tedious task because
bots signatures can be dynamic and encrypted. In this work,
we have developed a correlation algorithm to detect bots
on the system by correlating their behavioural activities.
Our results show that correlating different activities can
enhance the detection mechanisms and reduce the false
alarms. One disadvantage of this algorithm is that the value
of threshold to detect malicious processes is undefined and
further experiments are needed to set a proper threshold

for detecting malicious activity in the system. In addition,
different types of P2P bots should be examine to verify the
accuracy of the correlation algorithm.
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