Towardsthe Design of Heuristics by M eans of Self-Assembly

Gernan Terrazas Dario Landa-Silva
ASAP Group, School of Computer Science ASAP Group, School of Computer Science
University of Nottingham, UK University of Nottingham, UK
gzt@cs.nott.ac.uk jds@cs.nott.ac.uk

Natalio Krasnogor

ASAP Group, School of Computer Science
University of Nottingham, UK

nxk@cs.nott.ac.uk

The current investigations on hyper-heuristics desigelsavung up in two different flavours: heuris-
tics that choose heuristics and heuristics that generatgsties. In the latter, the goal is to develop a
problem-domain independent strategy to automaticallyeger a good performing heuristic for the
problem at hand. This can be done, for example, by autontigtazecting and combining different
low-level heuristics into a problem specific and effectitrategy. Hyper-heuristics raise the level of
generality on automated problem solving by attempting tecs@nd/or generate tailored heuristics
for the problem at hand. Some approaches like genetic progiag have been proposed for this. In
this paper, we explore an elegant nature-inspired altembased on self-assembly construction pro-
cesses, in which structures emerge out of local interasti@iween autonomous components. This
idea arises from previous works in which computational noadé self-assembly were subject to
evolutionary design in order to perform the automatic cartsion of user-defined structures. Then,
the aim of this paper is to present a novel methodology foratltemated design of heuristics by
means of self-assembly.

1 Introduction

A hyper-heuristids a search methodology that selects and combines heuristics to genechseytions
for a given problem. The design of a hyper-heuristic is important andekieve that adapting natural
construction models is a suitable approach to consider. Cooperativeumtios processes capable of
orchestrating adequate building blocks to achieve efficient compositasbaeeved in nature such as
self-assembly and self-organisation. In particular, self-assembly issaoptenon in which complex
structures emerge out of local interactions between autonomous contgofiea purpose of this paper is
to propose a nature-inspired cooperative strategy as a method forttmessied construction of heuristic
search strategies. Given a computational search problem and aiseplefrdeuristics embodied in self-
assembly entities, the idea is to develop a novel methodology for the bottom-wactame of heuristic
composites capable of producing high quality solutions. For this to be danenpethodology unfolds
three main steps: execution threads analysis, assemblies characterisdtawmolationary design. In the
following, Sectior 2 gives a brief introduction to hyper-heuristics, sefembly and the context of our
investigation. Sectionl 3 enlarges on the proposed approach giving adttikts model components and
the methodology. After that, experiments and initial results are presentedisngsed in Sectidd 4.
Finally, conclusions and further work are the subject of Secfion 5.

Submitted to: @_G. Terrgza_ls, D. Landa-Silva & N. Krasnogor
DCM 2010 This work is licensed under the
Creative Commoris Attribution License.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards the Design of Heuristics by Means of Self-Assembly

2 Sef-assembly Design and Hyper-heuristics

Self-assembly is a natural construction process where aggregategeespentaneously throughout the
progressive interactions among the constituents of the system [26]. ifexhecooperative self-reliant

components, self-assembly systems are distributed, not necessarity@ymes, autopoietic mecha-
nisms for the bottom-up fabrication of supra-structures. Polymerisatiarieinuacid structures and

crystallisation, to name but a few, are some of the many examples of setitalgdeund in nature.

With the aim to automate the design of a computational model of self-assemblyemimus work
has focused on theelf-assembly Wang til@sodel which is formally defined as a quintuple’, 2, g,.%, 1)
where.7 is a finite set of non-empty Wang tiles with square shaps,a set of colours which label the
edges associated to a tifgis called theglue functiorthat evaluates the strength between any two colours
of 2, .Z is a two-dimensional square lattice with interconnected unit square cellsiamdoositive value
that models the kinetic energy of the systém [27]. Initially, tiles belonging tare randomly located in
the lattice, the cells of which can be occupied by one tile at any time. Once tilptaaesl on the lattice,
they undergo random walks. When two or more tiles collide, the strength éetthe colours of each
pair of colliding edges is evaluated. Subject to this evaluation and the valkie éinetic energy, the
associated tiles either self-assemble or remain separated. That is, ifuhimgestrength is bigger than
T then the tiles stay still for ever forming an aggregate, otherwise they baffida particular, an evo-
lutionary algorithm, through the process of selection, crossover and nythtie driven the automated
design of Wang tiles capable of self-assembling into a user-defined.shape

Hyper-heuristics are defined as search methodologies that seleairabthe low-level heuristics to
solve hard computational search problems [7, 22]. The general aifmygfea-heuristic is to manufacture
unknown heuristics which are fast, well performing and widely applicatdgémge of problems. During
the process of fabrication, hyper-heuristics receive feedback fh@ problem domain which indicates
how good the chosen heuristics are in relation to the problem at hand ence,hdriving the search
process. Although there are some reported conditions under whiclhifrelges are possible [20], hyper-
heuristics do not violate the no-free-lunch theorem which indicates thatgatithms that search for
optimum of a cost function perform exactly the same when averaged bymrssible cost functions,
so no algorithm, including hyper-heuristics, is better than another whesidaying all optimisation
problems. Studying novel approaches for the development of hygarstics is important since they
are domain-independent problem strategies that operate on a spaagisfits, rather than on a space
of solutions, and rise the level of generality on automated problem solvipgerheuristics have been
employed for solving search and optimisation problems such as bin-pa@3n@]| timetabling[[19],
schedulingl[12, 11] and satisfiabilityl[2] among others. For detailed revadayper-heuristics and their
applications, please refer 10]22,/18) 10, 7].

The automated manufacture of heuristic search strategies by means oheypistics has received
increasing attention in the last ten years or so. Recent investigationsgrang sip in two main different
flavours of hyper-heuristics: 1) heuristics that choose heuristicphéuristics that generate heuris-
tics. In the first case, a learning mechanism assists the selection of |ovindewestics according to their
historical performance during the search process. In the secoadlsasgocus is on the search of compo-
nents that once combined generate a new heuristic suitable for the prdftlanda Approaches based on
genetic programming have been proposed for the automated generaterisfibs [9] 16, 12]. From an
engineering point of view, we believe that the manufacture of aggregeseling from local interactions
among autonomous cooperative entities is an interesting route for devebpieng alternative within
the second flavour of hyper-heuristics. That is, our interest is olyiagpself-assembly as a mechanism
to develop a hyper-heuristic approach to then automatically generate mprsblecific good performing

G. Terrazas, D. Landa-Silva & N. Krasnogor 3

heuristics. An early idea of program constructions by means of sedfxdsy is reported in[15] where
the automated self-assembly programming paradigm (Apimntroduced as a self-assembly model for
unconventional computing. ASARs defined in terms of gas’ molecules embodying portions of software
sampled from man-made program libraries. Thus, software moleculesciniei@e another subject to
different values of temperature and pressure giving rise to a varigiyogfam architectures. The pur-
pose of the present investigation is to apply previous experiences irtiemalty design of self-assembly
Wang tiles in order to develop a nature-inspired cooperative strateghidarutomatic construction of
heuristic search strategies.

3 Proposed Approach

This section presents our approach for the automated design of heurigtineans of self-assembly.
In the first part, we introduce the motivation, the components of the moddhangleneral aim of our
strategy. In the second part, we give a detailed step-by-step descopti@methodology together with
the goals associated to each stage.

3.1 Modd

Inspired by the physical process of crystallization, Winfree has intredthe Tiles Assembly Modéel[28]

as a quadruplé ,ts,g,7) where.7 is a finite set of non-empty tile types,is a seed tile belonging to

7, gis a strength function andis a threshold parameter. This model has proven to have computational
power by simulating a one-dimensional blocked cellular automata. This simulaioortrates that a
unigue pattern is always produced, regardless of the order in whictatideaggregated, and that such
arrangement represents information ultimately modified by tile additions intedpasteewrite rules.
Winfree's model has been employed for solving NP-hard problems [, roving that tile structures
interpreted as programs are in fact successful. The aim of our modei tresautomatic development of
problem solving entities. To be more precise, we consider a self-assenally tile as an independent
low-level heuristiqFigure[1(a)) and an aggregate asodving strategyn full (Figure[d(b)).

Solving Strategy
/‘

input input rd g
D Heuristic e — //
S
v
output Self-assembly
' Heuristic
Self-assembly | input /
Wang tile output n
—_—— — I —_—— — input / input /
m ” ” e m e ; 7
input / P
output Execution Thread
(@) (b)

Figure 1: A self-assembly Wang tile embedding a heuristic with two inputs andtpatqa); an aggre-
gate defining a composition of self-assembly heuristics with two alternativeitan threads comprising
five heuristics each (b).

4 Towards the Design of Heuristics by Means of Self-Assembly

Although there can be sophisticated ways to decide which is the input/outputilefand how to
execute the low-level heuristics of an aggregate, we prefer to addpipdesalternative based on the
construction of sequences of low-level heuristics. We refer to thegeesees asxecution thread&-ig-
ure[1(b)), the construction process of which and the way they opemratgivaen in Sectiof 4]1. Thus,
given an instance of a combinatorial optimisation problem and a set of I@Heuristics embedded in
self-assembly Wang tiles, the questions pursued by our research are:

Is it possible to automatically design an assembly of heuristics, the exedttéeads of which help
to find optimal solutions for a given combinatorial optimisation problem?

If the answer to the above question is yes, is it possible to reuse the migigppdoorder to tackle a
different combinatorial optimisation problem?

In order to address these questions, we propose a methodology dimideee main stages: 1)
execution thread analysis, 2) assembled heuristic characterisation &vdl@jonary design. These
stages are described in more detail in the following subsection.

3.2 Methodology

The purpose of thexecution thread analysis stage 1 is to shed light on common combinations of
heuristics that help to produce high quality solutions when applied to a giwdrbem instance. Hence,
given a set of execution threads, the research question to addrésgeriss:

Is it possible to identify common combinations of heuristics? If yes, howeyddbk like and how
reliable is the performance of such combinations when applied to differstarices of the problem at
hand?

After the analysis and assessment of the execution threads, the lhest canes are selected and their
associated assembled heuristics are used as input to stage 2. Thera| thietigpassembled heuristics
characterisationin stage 2 is to define the target shape that the self-assembly system ditemiot &0
generate. Thus, given a set of assembled heuristics the question éssddstage 2 is:

Which is the morphology characterizing the high quality assembled heu®istics

The findings reported in_[27, 26] recognise the application of evolutjoalgorithms as suitable
mechanisms for the automated design of Wang tiles capable of self-assemldingen defined target
shape. Therefore, given a target shape and a set of low-levebtiesiembedded in a self-assembly
Wang tiles system, the aim of tleolutionary desigin stage 3 is to address the following question:

Isit possible to conduct an automated design of a set of low-level tiegrithe assemblages of which
return high quality solutions when applied to a given combinatorial optimisatioblpm instance?

The above methodology is expected to produce a novel procedureefautbmated construction
of tailored effective and efficient heuristic search strategies. Thiddaalgo bring additional evidence
to support the claim that cooperative strategies found in nature arstrot@chanisms suitable for the
development of solutions to combinatorial optimisation problems.

G. Terrazas, D. Landa-Silva & N. Krasnogor 5

4 Experimentsand Results

This section presents the preliminary findings obtained by stage 1 of the at®ifiodology. The chosen
combinatorial optimisation problem is the widely known Travelling Salesman Rro@I&P) in its sym-
metric version. As this paper presents a proof of concept, a relativejyteaolve instance is employed
to illustrate the concept of self-assembly hyper-heuristics. The TSP aestamsidered here is kroA100
which comprises 100 cities distributed in the Euclidean space. The objeative eorresponding to the
known optimum solution (shortest tour) for this instance is 21282 (see r@mmor the experiments
in this paper, we take the known optimum tour of kroA100 and apply 200orarglvaps in order to
generate a ‘disturbed’ tour. In this way, we generated 10 differésiiicbed’ tours which are then used
to evaluate the performance of the execution threads (combinations astis)r

Algorithm 1 ExecutionThreadsAnalysis
Require: Pl a symmetric TSP instance
ETS < collectN execution threads
for all execution thread& T in ET S do
apply(ET;, Pl,times
end for
ETS « filter bestET S
PAT TERNS— analyse common heuristi€sT &
CSET«+ build aPAT TERN hased execution thread
for all execution threadB T in ETS U {cSET} do
ETS < generate 300 random execution threads
for all execution threadBT; iNnETS do
apply(ET;, Pl,timesg
apply(ET;j, Pl times
end for
end for
assesETS vs.ETS

© 0o NG wWDNRE

e i e =
a krwddEFE o

Theexecution threads analysssage involves 3 steps: execution threads collection, detection of pat-
terns of heuristics and performance evaluation. For this, we developg@ddbedure shown in Algorithm
@ where lines 1 to 5 define the first step, lines 6 to 7 specify the secondretepearemaining lines out-
line the performance evaluation step. Each of these steps is describededrdetail in the following
subsections.

4.1 Execution Threads Collection

In order to generate the execution threads, we employed a percolatiter chaglel. A percolation model
is defined as a collection of both empty and occupied sites distributed adedtisa In this model, the
non-empty sites of the lattice can be partitioned into clusters such that themaisal path between any
two sites of the same cluster and non-empty sites of different clusters aomdécted. In particular, we
employed a 2D square site percolation cluster with occupation probabifit{0.05,0.1,0.15,...,0.95}.
That is, for each site of the cluster a random value|0, 1] is obtained. Ifv < p then the site is filled

Ihttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

6 Towards the Design of Heuristics by Means of Self-Assembly

with a low-level heuristic chosen at random, otherwise it stays empty. ARjsh®ws two percolation
clusters generated wiihh= 0.2 andp = 0.5.

reads: 100 200 To opt: 165905.0 _Execution threads: 100

Figure 2: Two percolation clusters on a two-dimensional square lattice psin@.2 (a) andp = 0.5
(b). The low-level heuristics are uniformly distributed across the petioolaluster.

The reason for using percolation clusters is that the geometry (shaple® ofsulting aggregates
is similar to the ones resulting from the self-assembly Wang tiles system. In addiihme there is a
correlation between the occupation probabifitysize of the aggregates) and the length of the possible
random walks[[13], different values @f would allow us to systematically explore different lengths of
execution threads. Therefore, in order to collect an execution theehdom walk over the lattice is
performed. That is, a non-empty site in the lattice is arbitrary selected amcliere the nearest one is
chosen at random. If the selected site hosts a heuristic, the executiot ithceaments its length and
the process is repeated by choosing the following nearest site. Othgifnésexecution thread does not
increment its length and the collection finishes. Note that backward walkgassirgs could increment
the length of the execution thread by adding occurrences of the alredldgted heuristics. Figuilg 3
shows an example of five execution threads collected from a site percathigiar withp = 0.5.

Figure 3: Sample execution threads collected from a percolation clustdrsiis indicate the initial
heuristic from where the execution threads start. Green sites are thessivecheuristics collected as the
random walk is performed.

G. Terrazas, D. Landa-Silva & N. Krasnogor 7

For the chosen problem, the low-level heuristics used here are locahssdor the TSP that can be
deterministic (e.g. always selecting the best of a set of improving two-edggshange) or stochastic
(e.g. selecting at random from a set of improving two-edges interchamgehence potentially giving
different results if re-executed). In particul@rOpt 3-Opt, OR-OptandNode Insertiorare determinis-
tic whereasl-city Insertion 2-exchanggeArbitrary InsertionandInver-overare stochastic. These eight
low-level heuristics are originally defined inl [1,[3,/ 14] 21}, 25] and casummarised as follows:

2-Opt, that eliminates and reconnects those two edges which best minimise the letigghafr.
3-Opt, that eliminates and reconnects those three edges which best minimise theofethgttour.

OR-Opt, that eliminates and reinserts a sub-tour of three consecutive cities toghetation, then
eliminates and reinserts a sub-tour of two consecutive cities to the best foaatip finally, eliminates
and reinserts a sub-tour of one city to the best location.

Node Insertion, that removes and reinserts the city which best minimises the length of the tour.

k-city Insertion, that removes a sub-tosrbeginning with a randomly chosen citghrough cityi + k,
connects — 1 toi +k+ 1 and reinserts elsewhere in the tour. In particular, we &et 1.

n-exchange, that removes edges and reinsertsnew edges to rebuild a feasible tour. In particular,
we setn = 2.

Arbitrary Insertion, that removes a sub-to® beginning with a randomly chosen citythrough a
randomly chosen city, connects cityi — 1 with city j + 1 and reinserts each city &fin the cheapest
possible way.

Inver-over, that removes a sub-to® beginning with a randomly chosen citythrough a randomly
chosen cityj, and reinsertSinverted, i.e. connecting citiy— 1 to city j and cityi to city j + 1.

In our case, the low-level heuristics described above operate in a hillelistple [17], i.e. there is
always an improvement on the TSP where they apply.

4.2 Detection of Patterns of Heuristics

For each experiment, we generated 50 percolation clusters with eachroh#teen values gb. From
each of the resulting clusters, 100 execution threads were collectedophédato the same problem
instance. In this context, an execution thread application is seen as a pipeitess in which the
chain of processing elements is given by the sequence of low-levektiesiand the information to
be processed is the problem instance. Thus, heuristics are appliedt@narmther in the order in
which they appear in the execution thread and producing better or emuibas at each step. With the
purpose to illustrate this process, Figlle 4 depicts a very simple example ih armiexecution thread,
comprising of 1-city insertion and 2-exchange heuristics, is applied to ds&hce. Red tile indicates
the chosen initial heuristic, where the execution thread starts, and thetdesdhe successive collected
ones. Therefore, the application of the execution thread begins byiagphe heuristic embedded in
the red tile and follows by applying the heuristics embedded in the rest of tisecuotive green tiles.

8 Towards the Design of Heuristics by Means of Self-Assembly

-e=sy OUTFUT
—— INPUT

1-city Insertion

2-exhange

2-exhange

A high-level heuristic

Figure 4: An execution thread in which applications of two 2-exchangedims and a 1-city insertion
heuristic find the optimum solution for the Star of David tour. Edges and citiesenthe three low-level
heuristics apply are coloured in red.

In order to identify common combinations of heuristics within the collected exettii@ads, we
grouped the execution threads according to ghhat generated their underlying percolation cluster.
Within each group, the execution threads are then sorted according tisthecsg between the solution
that the execution thread produces and the known optimum solution. Thevéopxcution threads
within each group are then selected and encoded as sequencesattefsausing ‘A’ to represent 1-
city insertion, ‘C’ to represent 2-opt, ‘D’ to represent 3-opt, ‘E’ tgresent OR-opt, ‘T’ to represent
2-exchange, ‘F’ to represent node insertion, ‘G’ to represeritrarp insertion and ‘H’ to represent
inver-over. Hence, in order to identify common combinations of heuristichgrtiee filtered execution
threads, we employ a multiple sequence alignment (MSA) methad [24] oventloeliags. The results
reveal that there are indeed occurrences of common combinations,ttexnpaf heuristics, among the
best ranked execution threads. Thus, these findings give a posiiwerto the first research question
that we stated for stage 1 of our methodology (Secfion 3.2). Higure 5 highiigbitse the patterns found
among the best five execution threads collected from percolation clustaggou= 0.9.

ET1 = —————————— EdED--Ga--G---aGacfC-—-AC--
ET2 ——————————— - G---Gddd-G-—--DDhA-—-
ET3 -—--——- eThE-E---G--CG---tG---CD---C-~
ET4 ———————- T----DgdG---G----G----DD-A-Td
ETS frfttfa———————-- GocCG-———=——=————- cT-
I N N | LD T
I N N | LD T
eET = ——-——-—- T-E-ED--G--CG----G---CDD-ACT-

Figure 5: Multiple sequence alignment of the top five execution threads wml&om percolation clus-
ters generated with = 0.9. Capitals highlighted in blue indicate the common sequences of heuristics.

An extra execution thread is then constructed in terms of the spotted pattéesristics. This pro-
cedure consists in copying the matching characters between two or modirggeinto a new sequence

G. Terrazas, D. Landa-Silva & N. Krasnogor 9

from left to right and following the position in which they appear. For instarféigure b shows that
CET is the resulting pattern-based execution thread encoded as TEEGGIRIGACT, after combining
the common patterns from the input execution threads ET1 to ET5. Givethibatxecution thread is
built in terms of common combinations of heuristics, its performance is then &xptxrbe as good as
(or better than) any of the top ranked. Notice that the length of the cotestiregecution thread varies
according to the number of matches. Since this is related to the way in whichribietiion procedure
is defined, we left open to further investigations other alternatives tarcmbshe common execution
thread, e.g. by calculating the optimal common sequence in the alignment.

4.3 Performance Evaluation

Since the best five execution threads were evaluated only once, a bejtér assess their performance
is needed. For that reason, we assess the best five execution tlredtise one constructed in terms of
patterns of heuristics, by conducting a vis-a-vis comparison betweerpéréirmances and randomly
generated ones with the hope that, on average, the best tour improveneesitsagned by the common-
sequence execution threads. Thus, for each of the six executiomsh@@0 copies are obtained and
for each of these copies a new execution thread equal in length is randoralgd. Since stochastic
low-level heuristics could be part of an execution thread, a total of 1€p@ddent evaluations are per-
formed and the average distance between the lengths of the resultingridure&nown optimum was
considered as the measure of its performance.

Two representative analyses of the performance evaluation resulitsazbéeross the 10 experiments
are shown in Figurel 6 (a - b). The boxplots in Figure 6 (a) depict thesassnt when employing a TSP
tour with value 165905 whilst the boxplots in Figlile 6 (b) correspond toekelts for a TSP tour with
value 191550. In general, we can observe that in both experimentsshiveeexecution threads (ET1,
ET2, ET3, ET4, ET5) outperform on average the associated randangragted ones (RNDs1, RNDs2,
RNDs3, RNDs4, RNDs5). In particular, some of the smallest observatiepisted by the boxplots of
RNDs1 and RNDs5 in Figulld 6 (a) show that few randomly generatedigaadhreads outperformed
ET1 and ET5 in Figurgl6 (a). A similar situation can be observed betweensRNDFigurd 6 (b) and
ET2 in Figure[6 (b). This is not surprising since among all the availableistms; there is still the
chance that certain arrangements of such were not considered theimgecution threads collection
step. Nevertheless, according to the values of the medians, the amounsfgn@sangements found
among the 300 randomly generated is still not enough to outperform ingevarsystematically collected
execution thread.

Regarding the execution threads constructed in terms of patterns oftlosu@&ET), it is clear that
their performance is better when compared to the associated randomhaigehexecution threads
(RNDs6). In addition, it is always the case that the performance of dh(c&mmon-sequence exe-
cution thread) is as competitive as the performance of the best five inpuiteon threads. Hence, these
findings indicate that the discovered patterns are in fact beneficial conaisaf low-level heuris-
tics necessary for solving a symmetric TSP instance. All in all, the analyserseanlts unfolded here
constitute a positive answer to the second research question stated fiosttséage of the presented
methodology (Section 3.2), i.e. the identified common-sequences of heuasigticxeed reliable.

10

Distance to OPT in %

Distance to OPT in %

Towards the Design of Heuristics by Means of Self-Assembly

: o]
: [e]
8 °
o] —8— (é o
o | g 8
8
8
é e 8 E
(o]
g o]
o & B - B
: ‘ ‘ : L8 ‘
= I = = L ==
T T T T T T T T T T T T
ET1 RNDs1 ET2 RNDs2 ET3 RNDs3 ET4 RNDs4 ET5 RNDs5 cET RNDs6
(@
o]
8
8
8
[e]
o e
i §
8 o
2 8
8
; ; ;
- i
o ‘ !

o

P

=

:
:
1
L

£ =
= -

T T T T T T T
ET2 RNDs2 ET3 RNDs3 ET4 RNDs4 ETS

(b)

RNDs5

CET

RNDs6

Figure 6: Performance evaluation of two independent experiments. lieaghot summarises a vis-a-
vis comparison between the performances of the best ranked execugadsH{ET1, ET2, ET3, ET4,
ET5) and their associated randomly generated (RNDs1, RNDs2, RNDHE3s4, RNDs5) as well as the
pattern-based execution thread (cET) and its associated randomlageh@NDs6).

G. Terrazas, D. Landa-Silva & N. Krasnogor 11

5 Conclusions

In this paper, we proposed a nature-inspired approach for the autbdestign of heuristics following the
rationale of hyper-heuristics which are heuristic methods to generate thilergistics for the problem
in hand. Our model considers the use of self-assembly Wang tiles embédddibeyel heuristics and
their assemblages as higher-level heuristic strategies. The proposemtinietly consists of 3 stages:
execution thread analysis, assembled heuristics characterisation &mnibeeoy design.

In particular, we reported experiments and results froneieeution threads analysssage involving
three steps: execution threads collection, detection of patterns of heusistigpperformance evaluation.
On the one hand, the initial findings confirm that there are indeed commonnsatfeheuristics among
the top ranked execution threads. This emergent recurrent struatereen-divisible local search strate-
gies beneficial to achieve good solutions when solving a symmetric TSP iast@mcthe other hand,
the assessment of the execution threads produced positive resultsregi@liability, with respect to the
performance, of the collected local search strategies. These finéwveg that the top execution threads
are good performing arrangements of heuristics and that the emerdgemhpare beneficial to obtain
good solutions.

To continue with our methodology, future work involves the morphologicaratterisation of the
common-sequence assembled heuristics and the evolutionary designtebnation of these two stages
together with the methodology presented here is expected to produce promeziure for the automated
construction of heuristic search strategies.

6 Acknowledgements

The research reported in this work is funded by EPSRC grant (EPAYA61)Next Generation Decision
Support: Automating the Heuristic Design Process

References

[1] G. Babin, S. Deneault, and G. Laporte. Improvements &dhopt heuristic for the symmetric traveling
salesman problemlournal of the Operational Research Socjé€B8):402—-407, 2007.

[2] M. B. Bader-El-Den and R. Poli. A gp-based hyper-heigiftamework for evolving 3-sat heuristics. In
Genetic and Evolutionary Computation Conferenuages 1749-1749. ACM, 2007.

[3] J. Brest and J. Zerovnik. A heuristic for the asymmetrivéling salesman problem. Metaheuristics
International Conferencgpages 145-150, 2005.

[4] Y. Brun. Constant-size tileset for solving an NP-contelproblem in nondeterministic linear time. DINA
Computing volume 4848, pages 26—35. Springer Berlin / Heidelber§820

[5] Y. Brun. Reducing tileset size: 3-SAT and beyond DNA Computingpage 178, 2008.
[6] Y. Brun. Solving np-complete problems in the tile assgmmodel. Theor. Comput. S¢i395(1):31-46, 2008.

[7] E. K. Burke, E. Hart, G. N. Kendall, J. Newall, P. Ross, éhdSchulenburgHandbook of Meta-Heuristi¢s
chapter Hyper-Heuristics: An Emerging Direction in Mod&earch Technology, pages 457-474. Kluwer,
2003.

[8] E. K. Burke, M. R. Hyde, and G. Kendall. Evolving bin pangiheuristics with genetic. IRarallel Problem
Solving from Naturevolume 4193, pages 860—869. Springer-Verlag, 2006.

12 Towards the Design of Heuristics by Means of Self-Assembly

[9] E.K.Burke, M. R. Hyde, G. Kendall, and J. Woodward. Autatio heuristic generation with genetic program-
ming: evolving a jack-of-all-trades or a master of oneGlenetic and Evolutionary Computation Conference
pages 1559-1565. ACM, 2007.

[10] K. Chakhlevitch and P. I. Cowling. Hyperheuristics: deat developments. IAdaptive and Multilevel
Metaheuristicsvolume 136, pages 3-29. Springer, 2008.

[11] P. Cowling and K. Chakhlevitch. Hyperheuristics for maging a large collection of low level heuristics
to schedule personnel. IEEE Congress on Evolutionary Computatigrages 1214-1221. IEEE Computer
Society, 2003.

[12] P.Cowling, G. Kendall, and L. Han. An investigation dfygperheuristic genetic algorithm applied to a trainer
scheduling problem. IHEEE Congress on Evolutionary Computatiggages 1185-1190. IEEE Computer
Society, 2002.

[13] S.J. G. M. Paily and S. Neogi. Two dimensional randomkveal percolation clusters. Availablelattp://
www.personal.psu.edu/sajl69/PercolationRW/PercolationRw.html,

[14] N. Krasnogor and J. Smith. Memetic algorithms: The polyial local search complexity theory perspective.
Journal of Mathematical Modelling and Algorithima3—-24, 2008.

[15] L. Li, J. Garibaldi, and N.Krasnogor. Automated sedsambly programming paradigm: initial investigation.
In IEEE International Workshop on Engineering of Autonomid &utonomous Systenpages 25-36. IEEE,
2006.

[16] M. Oltean and D. Dumitrescu. Evolving tsp heuristicengamulti expression programming. [Bonference
on Computational Scienceolume 3037, pages 670-673, 2004.

[17] E.Ozcan, B. Bilgin, and E. Korkmaz. Hill climbers and mutatibheuristics in hyperheuristics. Rarallel
Problem Solving from Naturgages 202—-211, 2006.

[18] E.Ozcan, B. Bilgin, and E. E. Korkmaz. A comprehensive analp$ihyper-heuristicsintell. Data Anal,
12(1):3-23, 2008.

[19] N. Pillay and W. Banzhaf. A study of heuristic combiretts for hyper-heuristic systems for the uncapacitated
examination timetabling problenEuropean Journal of Operational Reseayd®7(2):482—-491, 2009.

[20] R. Poliand M. Graff. There is a free lunch for hyper-hstics, genetic programming and computer scientists.
In European Conference on Genetic Programmipgges 195-207. Springer-Verlag, 2009.

[21] G. Reinelt.The traveling salesman: Computational solutions for TSpliaptions Springer-Verlag, 1994.
[22] P. RossHyper-heuristicspages 529-556. Springer, 2005.

[23] P. Ross, S. Schulenburg, J. G. MaBlazquez, and E. Hart. Hyper-heuristics: Learning to combimgle
heuristics in bin-packing problems. Benetic and Evolutionary Computation Confergngages 942—948.
Morgan Kaufmann Publishers Inc., 2002.

[24] J. Setubal and J. Meidanigitroduction to Computational Molecular BiologfPWS Publishing, 1997.

[25] G. Tao and Z. Michalewicz. Inver-over operator for tep.tInParallel Problem Solving from Natur@ages
803-812. Springer-Verlag, 1998.

[26] G. Terrazas.Automated Evolutionary Design of Self-Assembly and Sgifu@sing SystemsPhD thesis,
University of Nottingham, 2008.

[27] G. Terrazas, M. Gheorghe, G. Kendall, and N. Krasnogwalving tiles for automated self-assembly design.
In IEEE Congress on Evolutionary Computatigrages 2001-2008. IEEE Computer Society, 2007.

[28] E. Winfree. Simulations of computing by self-assemiblyDNA-Based Computerpages 213-242, 1998.

http://www.personal.psu.edu/saj169/PercolationRW/PercolationRw.html
http://www.personal.psu.edu/saj169/PercolationRW/PercolationRw.html

	Introduction
	Self-assembly Design and Hyper-heuristics
	Proposed Approach
	Model
	Methodology

	Experiments and Results
	Execution Threads Collection
	Detection of Patterns of Heuristics
	Performance Evaluation

	Conclusions
	Acknowledgements

