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Abstract—Disease Management Programs (DMPs), which use 

no advanced ICT, are as effective as telemedicine but more 

efficient because less costly. We proposed a platform to enhance 

effectiveness and efficiency of home monitoring using data mining 

for early detection of any worsening in patient’s condition. These 

worsening could require more complex and expensive care if not 

recognized. In this paper, we briefly describe the Remote Health 

Monitoring (RHM) platform we designed and realized, which 

supports Heart Failure (HF) severity assessment offering 

functions of data mining based on Classification and Regression 

Tree (CART) method. The system developed achieved accuracy 

and a precision respectively of 96.39% and 100.00% in detecting 

HF and of 79.31% and 82.35% in distinguish severe versus mild 

HF. These preliminary results were achieved on public databases 

of signals to improve their reproducibility. Clinical trials 

involving local patients are still running and will require longer 

experimentation. 

 
Index Terms— Home Monitoring, HRV, Heart Failure, data 

mining, CART. 

I. INTRODUCTION 

iven the rapidly growing aging population, the increased 

burden of chronic diseases and the increasing healthcare 

costs, there is an urgent need for the development, 

implementation and deployment, in everyday medical practice, 

of new models of healthcare services. In this scenario ICT, and 

especially Home Monitoring (HM) [1] and Data Mining (DM) 
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[2], play an important role. DM is the computer-assisted 

process of digging through and analyzing a large quantity of 

data [3] in order to extract meaningful knowledge and to 

identify phenomena faster and better than human experts [4]. 

As regards HM, although a wide literature describes technical 

solutions, the evidence of ICT cost-effectiveness is limited [5] 

and only a few studies compare HM with other models of 

DMPs [6]. DMPs are more cost-effective [7] than ambulatory 

follow-up, which is the gold standard [8], without using costly 

technologies, which are not familiar to the elderly. Also HM is 

reported to be more effective [9] than follow-up. Nonetheless, 

HM is equally effective than DMPs, but less efficient because 

about five times more costly than DMPs and about 20 times 

more costly than ambulatory follow-up [10]. This leaded us to 

search for new models of HM, which incorporates further 

intelligent and automatic systems/services to exceed DMPs in 

effectiveness, offering advanced functionalities for early 

detection of any worsening in patient’s condition, which could 

otherwise require more complex and expensive care. 

Among cardiovascular pathologies, HF is one of the most 

studied both for HM and for DM, perhaps because it has a 

considerable impact on healthcare costs [11], being chronic, 

degenerative, age related [12], and a leading cause of the 

elderly hospitalization [13]. Its severity can be measured with 

the symptomatic classification scale of the New York Heart 

Association (NYHA) that is widely used and hotly debated 

[14]. One of the most promising methods to study HF is the 

Heart Rate Variability (HRV), a non-invasive measure, which 

reflects the variation over time of the interval between 

consecutive heartbeats [14]. Previous studies showed that 

patients affected by HF present a depressed HRV [15, 16,17]. 

Many studies applied data mining to HRV measures for the 

prognosis of HF, in particular as a predictor of the risk of 

mortality [18]. Fewer studies used such methods to detect HF 

[19, 20]. In previous studies, we investigated how short-term 

HRV features vary according to HF severity [21] and their 

power in detecting HF patients [22]. In the former, we used 

statistic methods, while in the latter CART. In this paper, we 
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presented two CARTs we integrated in a telemedicine platform 

to detect HF and assess its severity. The CART [23] method 

iteratively splits the dataset, according to a criterion that 

maximizes the separation of the classes, producing a tree-like 

decision structure. We chose this method because it requires 

no assumptions regarding the underlying distribution of 

features’ values and can easily be expressed as logical 

“if…then” rules. This is important because in medical 

applications the intelligibility of the method is needed [24], 

whilst other powerful methods of DM are not easy for humans 

to understand. 

In this paper, we present the system we developed for 

Remote Health Monitoring (RHM) of patients suffering from 

HF, which includes advanced functionalities of DM for 

continuous patient monitoring. The clinical goal was the early 

detection of any worsening in patient’s condition, with 

automatic “HF severity assessment” using DM via CART 

classifiers, assuming that during worsening, patients will 

gradually show characteristic of a more severe HF. The 

system, developed in the last three years is at this moment 

undergoing randomized controlled trials involving real patients 

enrolled ad hoc. The aim of this paper was to describe briefly 

the platform, to present methods employed and to present the 

preliminary results of the data mining for HF detection and 

severity assessment. The results here described were obtained 

testing the system with biomedical signals from public 

databases, in order to allow other scientists to reproduce them, 

and because clinical trials involving local patients were still 

running. 

II. PLATFORM DESCRIPTION 

The system designing followed the so-called “Three Tier 

architecture”. Functionally, the platform consisted of three 

parts, called “Areas”: “Client Area” (CA) acting as 

presentation tier, “Server Area” (SA) as business tier and data 

tier and the “Web Service Area” (WSA) as pure business tier 

level. The CA aimed to present and to collect data using 

devices, which differed according to the users and the 

scenarios. The SA aimed to manage, store and retrieve data 

and included the Electronic Patient Record (EPR) and an 

Interactive Voice Response (IVR) [25], which acted as audio 

user interface. The WSA was used for raw data processing, 

signal analysis and data mining. IVR allowed users less skilled 

with web technologies to insert daily ECG records and 

physiological parameters (pressure, weight and temperature). 

The IVR, after a login, gave the user all the instructions and 

recommendations to send data, repeating, when possible, the 

entered values and asking for further confirmation. 

The devices tested and integrated in the system, varied 

according to the scenario, going from user-friendly ones for 

self-recording of signals/signs to professional multi-parametric 

monitors, recording ECG, blood pressure (BP), hart rate (HR), 

SpO2, temperature (T), Galvanic Skin Response (GSR), skin 

near-body temperature (ST), respiratory frequency (RF), 

Activity (A) and Posture (P).  

According to the scenario, the software/hardware and the 

communication line to allow data sending also varied (Table 

I). All the devices respected standards and requirements 

recommended in HRV guidelines on the acquisition and 

sampling of ECG [8]. 

III. TECHNICAL PLATFORM EVALUATION 

The RHM platform was tested in three different scenarios: 

home care, medical ambulatory and hospital. Several methods 

have been proposed to analyze performance of remote patient 

tele-monitoring systems [26]. We focused initially on a metric 

of four critical technical factors: connectivity, usability, quality 

of data transmitted, interference with other devices. 

Connectivity was the capability of the telemedicine system to 

transmit data between client and server units without any 

disruptions. Usability accounted for both the ease of 

transmitting biosignals and data entry by users. Quality of data 

transmission referred to data integrity, and the forth parameter 

accounted for interference with other medical equipment 

 

IV. CLINICAL PROTOCOL AND EVALUATION 

In previous studies, we defined and tested [27] a clinical 

protocol for management of elderly patient suffering from HF. 

This platform was developed according to the knowledge 

acquired, and its Electronic Patient Record was designed 

considering the frequency of control visits, the signs, the 

symptoms and the signals recommended in the guidelines on 

HF [8]. We also considered the dataset recommended in the 

guidelines on hypertension, which is often a concomitant 

pathology. Although the system collected several data, in the 

rest of this paper we focus on ECG records, as this is sufficient 

to describe the data-mining functions supported by the 

platform. 

V. DATA-MINING 

A. Preprocessing 

The ECGs were processed following the international 

guidelines on HRV analyses [8]. After filtering, QRS are 

detected using a standard algorithm [28]. Although this 

algorithm could be improved in future, we are first interested 

TABLE I 

DEVICES, SOFTWARE AND COMMUNICATION LINES INTEGRATED AND TESTED 

DEVICES 

 

DESCRIPTION  

(SIGNALS) 

SOFTWARE 

HARDWARE 

LINE 

 

CG-6106, 

(Cardguard) 
trans-telephonic ECGph 

(ECG)  
• IVR 

• telephone 

PSTN/GPRS 

Propaq Encore  

(Welch Allyn) 

Multi-channel monitor 

(ECG, SpO2, BP, T) 
• client-sw 

• palm/PC 

GPRS/DSL 

Easy Ecg  

(Ates M.D.)  
ECGph Bluetooth 

(ECG) 
• client-sw 

• palm/PC 

GPRS/DSL 

BioHarness TM 

(Zephyr) 
Wearable chest monitor 

(HR; RF; A; T; P) 
• client-sw 

• palm/PC 

GPRS/DSL 

Mocalab 

(Aditech Srl) 

Wearable arm monitor 

(HR, ST, A, GSR)  
• client-sw 

• palm/PC 

GPRS/DSL 
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in comparing our results with those obtained using other 

available tools, during clinical trial. 

B. HRV Features extraction 

We performed standard short-term HRV analysis, according 

to International Guidelines [8]. We developed the web services 

using the algorithms and the code of PhysioNet's HRV Toolkit 

[28], since it is rigorously validated and because the tool will 

be used as a valuable benchmark during the clinical trial. This 

toolkit enables calculation of basic time- and frequency-

domain HRV features widely used in the literature. 

C. Patient classification 

The platform supported a strategy of automatic 

classifications consisting of two steps: “HF detection” and “HF 

severity assessment”. The former, discussed in detail 

elsewhere [22], was used in the platform to pre-screen patients 

before they underwent the latter. The whole classification 

aimed to early detection of any worsening, assuming that 

during worsening, patients will gradually show characteristic 

of a more severe HF. Both classifiers were based on the CART 

methods. We pruned the trees according to a trade-off of 

misclassification probability and tree complexity, defined as its 

number of nodes. This reduced the risk of over-fitting as 

further detailed in Breiman [23]. The performances of both 

classifiers were assessed using a cross-validation technique 

[29]. Among all the trees achieving a satisfactory accuracy, we 

selected the one which minimized the divergence between 

training and testing performance [23]. 

1) HF detection 

For the detection of HF, more excerpts of 5 minutes HRV 

were extracted throughout the same day. As shown in Figure 1, 

each excerpt was classified as normal or abnormal basing on 

three standard HRV features: Standard Deviation (SDNN), 

ratio between Low Frequencies and High Frequencies (LF/HF) 

and square Root of the Mean of the Sum of the Squares of 

Differences between adjacent NN intervals (RMSSD). Finally, 

the subjects were considered as suffering from HF if more than 

α=30% of the excerpts were classified as abnormal. 

 
2) HF severity assessment 

We labeled patients as “mild”, if classified by a cardiologist as 

NYHA I or II, or “severe” if classified NYHA III. We 

developed and trained several classification trees using all the 

possible combinations of short-term features. Figure 2 shows 

the best tree obtained, which used only three features: LF/HF; 

total power (TP) and RMSSD between adjacent normal beats.  

The patients were considered as suffering from severe HF if 

more than α=40% of the excerpts were classified as severe. 

 

VI. RESULTS  

As regards the platform evaluation, the tests will continue 

alongside the clinical trials and further metrics are under 

consideration. As regard to technical platform evaluation, no 

significant problems were reported in respect to the four 

parameters investigated. In terms of connectivity, we found a 

low rate of failure (<5% at home, <2% in hospital). About the 

quality of data transmitted, no significant amounts of data were 

lost. We experienced no interference with other devices. With 

regard to usability, no significant problems were reported, 

especially with the IVR, but it should be highlighted that 

younger relatives in many case supported the elderly. With 

regard to the effort of patients’ relatives, it has to be remarked 

that European Union identifies five different models among 

European countries and classifies Italy as “Mediterranean 

model”, in which the daily effort of family is very important 

and the assistance for the elderly is family-based [32]. For this 

reason, we assumed that family could have an important role in 

assisting patients and in using the most complex ICT 

components. In other NHS, social services should provide this 

support. Nonetheless, the most appropriate entry point of the 

system was the IVR. As regard to patients’ classification, we 

obtained the two classifiers described by performing a 

retrospective analysis on two public databases, including 83 

subjects of which 54 were normal and 29 suffering from HF, 

among which 12 were mild and 17 severe. The data for the 

normal subjects were retrieved from the Normal Sinus Rhythm 

RR Interval Database [29]. The data for the CHF group were 

retrieved from the Congestive Heart Failure RR Interval 

Database [29]. Subjects were considered positive to the test if 

classified as “HF” in the first classifier and as “Severe” in the 

second one (Table II). The Figure 3 shows the ROC curves for 

both CARTs. 

NODE 2

TP <1081

NODE 3

RMSSD<7.46
MHF

MHF SHF

NODE 1

LF/HF<2.07

MHF

 
Fig. 2. CART for excerpts classification: Severe Heart Failure (SHF) patients 

vs Mild Heart Failure (MHF) patients. 

HF

NODE 1

SDNN<30

NODE 2

SDNN<20

NODE 3

LF/HF<1.35

NODE 4

LF/HF<2.44

NODE 5

RMSSD <16.3

HF

HF NS NS

NS

 
Fig. 1. CART for excerpts classification: patients suffering from Heart 

Failure (HF) vs Normal Subjects (NS). 
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VII. DISCUSSION 

In this paper, we presented a telemedicine platform with 

advanced functionalities of data mining for remote health 

monitoring of patients suffering from heart failure. The 

innovative contribution of this study is the integration of 

CART method into a telemedicine platform. This contribution 

is important because data mining represented the benefit of 

telemedicine compared to other DMPs. 

Technical evaluation provided encouraging results, but tests 

on a greater number of elderly patients are still needed and 

further parameters should be considered. 

The results of the two classifiers were satisfactory. The set 

of rules, reported in figure 1, is clinically consistent, even if 

the classifier did not use any a priori clinical knowledge. In 

fact, the leafs containing abnormal excerpts are on “left”, 

which reflects a depressed value of all the involved features. 

This is consistent with the results showed by Bigger [15], 

Musialik-Lydka [16] and Arbolishvili [17], who stated that 

standard HRV measures were significantly lower in HF 

patients than in normal subjects. Similarly, patients suffering 

from Severe HF, showed an even more depressed LF/HF and 

TP than those affected by mild HF. Comparisons with other 

papers had some limitations: difference in the lengths of  ECG 

records (5min versus 24h) and in HRV features. In fact, on the 

same databases, the performance of our classifiers was higher 

than or comparable with the one of Asyali’s classifier [19], 

which were based on HRV long term measures. Moreover, we 

used all the records, even those rejected by Asyali. The 

performance of our classifier was lower than those of Isler’s 

classifier [20], which used HRV short-term measures, 

including wavelet entropy measures. This may be because of 

the discrimination power of wavelet entropy measures, which 

we did not use because they were not standard short-term 

measures and presumably too complex for most clinicians. In 

this regard, unlike other studies, we provided a set of rules, 

which are fully understandable by cardiologists. As regards HF 

severity assessment, we did not find a similar study. In any 

case, during the clinical trials, direct physician visits will 

provide further insights into the results of automatic 

classification. This study present some limits. Overall is the 

standardization of the ECG/HRV measurements that could 

greatly affect the measure (e.g. subject’s and electrodes’ 

position, the time of day). Moreover, the population of patients 

used in this preliminary experiment is pretty small. The first 

step to improve this research will be the enrolling of new 

patients and the use of data-mining on new significant signals, 

signs or symptoms. At this regard, we already tested more 

powerful methods of data-mining on the same data set. 

Nonetheless, our clinician partners are more confident with 

CART, as this method provides classifiers, which are full 

understandable. 

VIII. CONCLUSIONS 

The platform improved home monitoring by adding data 

mining functionalities. This was important in order to improve 

HM effectiveness and efficiency, especially benchmarking 

telemedicine to other DMPs, and not only to ambulatory 

follow-up. In this paper, we present preliminary results of 

classifiers for HF severity detection, which are innovative in 

comparison to the others previously published. These results 

are clinically consistent and confirm that patients suffering 

from HF present a depressed HRV. Similarly those patients 

suffering from severe HF present a more depressed HRV 

compared to those affected by mild HF. Compared to the other 

studies, we obtained higher precision and specificity values, 

but lower sensitivity. Moreover, our classifier is fully human-

understandable. To enter into every-day clinical practices, this 

is a prerequisite of paramount importance for data-mining. 

Further data will help to improve classifiers’ performance and 

trials on patients enrolled on site will provide further insights 

due to the clinicians’ efforts. 
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