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Abstract

A multi-objective optimization problem can be solved by decomposing it into one or
more single objective subproblems in some multi-objective metaheuristic algorithms.
Each subproblem corresponds to one weighted aggregation function. For example,
MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that at-
tempts to optimize multiple subproblems simultaneously by evolving a population
of solutions. However, the performance of MOEA/D highly depends on the initial
setting and diversity of the weight vectors. In this paper, we present an improved
version of MOEA/D, called EMOSA, which incorporates an advanced local search
technique (simulated annealing) and adapts the search directions (weight vectors) cor-
responding to various subproblems. In EMOSA, the weight vector of each subprob-
lem is adaptively modified at the lowest temperature in order to diversify the search
towards the unexplored parts of the Pareto-optimal front. Our computational results
show that EMOSA outperforms six other well-established multi-objective metaheuris-
tic algorithms on both the (constrained) multi-objective knapsack problem and the (un-
constrained) multi-objective traveling salesman problem. Moreover, the effects of the
main algorithmic components and parameter sensitivities on the search performance
of EMOSA are experimentally investigated.
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1 Introduction

Many real-world problems can be modelled as combinatorial optimization problems,
such as knapsack problem, traveling salesman problem, quadratic assignment prob-
lem, flowshop scheduling problem, vehicle routing problem, bin packing problem,
and university timetabling problem (Papadimitriou and Steiglitz, 1998). Often, these
problems are difficult to tackle due to their huge search space, many local optima,
and complex constraints. Many of them are NP-hard, which means that no exact al-
gorithms are known to solve these problems in polynomial computation time. In the
last two decades, research on combinatorial optimization problems with multiple ob-
jectives has attracted growing interest from researchers (Ehrgott and Gandibleux, 2000;
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Landa-Silva et al., 2004; Ehrgott, 2005). Due to possible conflicting objectives, optimal
solutions for a multi-objective combinatorial optimization (MOCO) problem represent
trade-offs among objectives. Such solutions are known as Pareto-optimal solutions.
Since the total number of Pareto-optimal solutions could be very large, many practi-
cal multi-objective search methods attempt to find a representative and diverse set of
Pareto-optimal solutions so that decision-makers can choose a solution based on their
preferences.

A number of metaheuristic algorithms including evolutionary algorithms (EA),
simulated annealing (SA), tabu search (TS), memetic algorithms (MA) and others (Blum
and Roli, 2003; Glover and Kochenberger, 2003; Burke and Kendall, 2005), have been
proposed for solving single objective combinatorial optimization problems. Most meta-
heuristic algorithms try to find global optimal solutions by both diversifying and inten-
sifying the search. Very naturally, these algorithms have also been extended to solve
MOCO problems (Gandibleux et al., 2004). Among them, evolutionary multi-objective
optimization (EMO) algorithms (Deb, 2001; Tan et al., 2005; Coello Coello et al., 2007)
have received much attention due to their ability to find multiple Pareto-optimal solu-
tions in a single run. Pareto dominance and decomposition (weighted aggregation or
scalarization) are two major schemes for fitness assignment in EMO algorithms.

Since the 1990s, EMO algorithms based on Pareto dominance have been widely
studied. Amongst the most popular methods are PAES (Knowles and Corne, 2000a),
NSGA-II (Deb et al., 2002) and SPEA-II (Zitzler et al., 2002). These algorithms have
been applied to many real-world and benchmark continuous multi-objective optimiza-
tion problems. In contrast, EMO algorithms based on decomposition appear to be more
successful on tackling MOCO problems. For example, IMMOGLS (Ishibuchi et al.,
2003) was applied to the multi-objective flowshop scheduling problem, while MOGLS
(Jaszkiewicz, 2002) and MOEA/D (Zhang and Li, 2007) dealt with the multi-objective
knapsack problem. In both IMMOGLS and MOGLS, one subproblem with random
weight vectors is considered in each generation or iteration. Instead of optimizing one
subproblem each time, MOEA/D optimizes multiple subproblems with fixed but uni-
form weight vectors in parallel in each generation. In most EMO algorithms based on
decomposition, local search or local heuristics can be directly used to improve offspring
solutions along a certain search direction towards the Pareto-optimal front. These algo-
rithms are also known as multi-objective memetic algorithms (MOMAs) (Knowles and
Corne, 2004).

Multi-objective simulated annealing (MOSA) is another class of promising stochas-
tic search techniques for multi-objective optimization (Suman and Kumar, 2006). Sev-
eral early MOSA-like algorithms (Serafini, 1992; Czyzak and Jaszkiewicz, 1998; Ulungu
et al., 1999) define the acceptance criteria for multi-objective local search by means of
decomposition. To approximate the whole Pareto-optimal front, multiple weighted ag-
gregation functions with different settings of weights (search directions) are required.
Therefore, one of the main challenging tasks in MOSA-like algorithms is to choose ap-
propriate weights for the independent simulated annealing runs or adaptively tune
multiple weights in a single run. More recently, MOSA-like algorithms based on dom-
inance have also attracted some attention from the research community (Smith et al.,
2008; Sanghamitra et al., 2008).

In recent years, EMO algorithms and MOSA-like algorithms have been investi-
gated and developed along different research lines. However, less attention has been
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given to the combination of EMO algorithms and simulated annealing. Recently, we
investigated the idea of using simulated annealing within MOEA/D for combinatorial
optimization (Li and Landa-Silva, 2008). Our preliminary results were very promising.
Following that idea, we now make the following contributions in this paper:

• We propose a hybrid between MOEA/D and simulated annealing, called EMOSA,
which employs simulated annealing for the optimization of each subproblem and
adapts search directions for diversifying non-dominated solutions. Moreover, new
strategies for competition among individuals and for updating the external popu-
lation are also incorporated in the proposed EMOSA algorithm.

• We compare EMOSA to three MOSA-like algorithms and three MOMA-like al-
gorithms on both the multi-objective knapsack problem and the multi-objective
traveling salesman problem. The test instances used in our experiments involve
two and three objectives for both problems.

• We also investigate the effects of important algorithmic components in EMOSA,
such as the strategies for the competition among individuals, the adaptation of
weights, the choice of neighborhood structure, and the use of ε-dominance for
updating the external population.

The remainder of this paper is organized as follows. Section 2 gives some ba-
sic definitions and also outlines traditional methods in multi-objective combinatorial
optimization. Section 3 reviews related work, while the description of the proposed
EMOSA algorithm is given in Section 4. Section 5 describes the two benchmark MOCO
problems used here. Section 6 provides the experimental results of the algorithm com-
parison, while Section 7 experimentally analyzes the components of EMOSA and pa-
rameter sensitivities. The final Section 8 concludes the paper.

2 Multi-objective Optimization

This section gives some basic definitions in multi-objective optimization and out-
lines two traditional multi-objective methods (weighted sum approach and weighted
Tchebycheff approach) from mathematical programming.

2.1 Pareto Optimality

A multi-objective optimization problem (MOP) with m objectives for minimization1

can be formulated as:

minimize F (x) = (f1(x), . . . , fm(x)) (1)

where x is the vector of decision variables in the feasible set X , F : X → Y ⊂ Rm is a
vector of m objective functions, and Y is the objective space. The MOP in (1) is called
a multi-objective combinatorial optimization (MOCO) problem if X has a finite number of
discrete solutions.

For any two objective vectors u = (u1, . . . , um) and v = (v1, . . . , vm), u is said to
dominate v, denoted by u ≺ v, if and only if ui ≤ vi for all i ∈ {1, . . . ,m} and there

1For maximization, all objectives can be multiplied by −1 to obtain a minimization MOCO problem.
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exists at least one index i satisfying ui < vi. For any two solutions x and y, x is said
to dominate y if F (x) dominates F (y). A solution x∗ is said to be Pareto-optimal if no
solution in X dominates x∗.

The set of all Pareto-optimal solutions in X is called Pareto-optimal set. Corre-
spondingly, the set of objective vectors of solutions in the Pareto-optimal set is called
Pareto-optimal front (POF). The lower and upper bounds of the POF are called the
ideal point z∗ and the nadir point znad respectively, that is, z∗i = min

u∈POF ui and

znad
i = max

u∈POF ui, i = 1, . . . ,m.

A solution x is said to ε-dominate y if F (x) − ε dominates F (y), where ε =
(ε1, . . . , εm) with εi > 0, i = 1, . . . ,m. If x dominates y, x also ε-dominates y. How-
ever, the reverse is not necessarily true, see (Deb et al., 2005) for more on ε-dominance.

2.2 Traditional Multi-objective Methods

In mathematical programming, a multi-objective optimization problem is often con-
verted into one or multiple single objective optimization subproblems by using linear
or nonlinear aggregation of objectives with some weights. This is called decomposition
or scalarization. In this section, we describe two commonly-used traditional methods -
weighted sum approach and weighted Tchebycheff approach (Miettinen, 1999).

• Weighted Sum Approach

This method considers the following single objective optimization problem:

minimize g(ws)(x, λ) =
∑m

i=1 λifi(x) (2)

where x ∈ X , λ = (λ1, . . . , λm) is the weight vector with λi ∈ [0, 1], i = 1, . . . ,m
and

∑m
i=1 λi = 1. Each component of λ can be regarded as the preference of the

associated objective. A solution x∗ of the MOP in (1) is a supported optimal solution
if it is the unique global minimum of the function in (2).

• Weighted Tchebycheff Approach

The aggregation function of this method has the following form:

minimize g(tch)(x, λ) = maxi∈{1,...,m} λi|fi(x)− z∗i | (3)

where x ∈ X , λ is the same as above, and z∗ is the ideal point.

Under some mild conditions, the global minimum of the function in (2) or (3) is
also a Pareto-optimal solution of the MOP in (1). To find a diverse set of Pareto-optimal
solutions, a number of weight vectors with evenly spread distribution across the trade-
off surface should be provided. The weighted Tchebycheff approach has the ability
to deal with non-convex POF but the weighted sum approach lacks this ability. Nor-
malization of objectives is often needed when the objectives are incommensurable, i.e.
have different scales.

3 Related Previous Work

Extensions of simulated annealing for multi-objective optimization have been studied
for about twenty years. Several well-known MOSA-like algorithms developed in the
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(c) Czyzak’s MOSA (d) IMMOGLS and MOGLS

Figure 1: Graphical illustration of different strategies used in multi-objective meta-
heuristics based on decomposition.

1990s use weighted aggregation for their acceptance criteria in local search. The main
differences between the various MOSA-like algorithms lie in the choice of weights dur-
ing the search. The MOSA proposed by Serafini (1992) is a single-point method that
optimizes one weighted aggregation function in each iteration (see Figure 1(a)). In
this method, the current weight vector is smoothly changed as the search progresses.
Similarly, IMMOGLS and MOGLS optimize a single weighted aggregation function in
each iteration (see Figure 1(d)). In contrast, two MOSA-like algorithms (Ulungu et al.,
1999; Czyzak and Jaszkiewicz, 1998) are population-based search methods and opti-
mize multiple weighted aggregation functions (see Figure 1(b) and (c)). In Ulungu’s
MOSA, a set of evenly-spread fixed weights is needed, while Czyzak’s MOSA adap-
tively tunes the weight vector of each individual according to its location with respect
to the nearest non-dominated neighbor.

In Zhang and Li (2007), a multi-objective evolutionary algorithm based on decom-
position, called MOEA/D, was proposed. It optimizes multiple subproblems simul-
taneously by evolving a population of individuals. In this algorithm, each individual
corresponds to one subproblem for which a weighted aggregation function is defined.
Like Ulungu’s MOSA, MOEA/D uses fixed weights during the whole search. Since
subproblems with similar weight vectors have optimal solutions close to each other,
MOEA/D optimizes each subproblem by using the information from the optimiza-
tion of neighboring subproblems. For this purpose, recombination and competition
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between neighboring individuals are taken into consideration for mating restriction.
Unlike other EMO algorithms, MOEA/D provides a general framework which allows
the application of any single objective optimization technique to its subproblems.

In Li and Landa-Silva (2008), we proposed a preliminary approach hybridizing
MOEA/D with simulated annealing. In the present work, competition and adapta-
tion of search directions are incorporated to develop an effective hybrid evolutionary
approach, called EMOSA. In the proposed algorithm, the current solution of each sub-
problem is improved by simulated annealing with different temperature levels. Af-
ter certain low temperature levels, the weight vectors of subproblems are modified in
the same way as Czyzak’s MOSA. Contrary to the original MOEA/D, no crossover is
performed in our hybrid approach. Instead, diversity is promoted by allowing uphill
moves following the simulated annealing rationale.

The hybridization of population-based global search coupled with local search is
the main idea of many memetic algorithms (also called genetic local search), which
have shown considerable success in single objective combinatorial optimization (Merz,
2000; Krasnogor, 2002; Hart et al., 2004). In these algorithms, genetic search is used to
explore promising areas of the search space (diversification) while local search is ap-
plied to examine high-quality solutions in a specific local area (intensification). There
have also been some extensions of memetic algorithms for multi-objective combinato-
rial optimization (Knowles and Corne, 2004).

In some well-known multi-objective memetic algorithms based on decomposi-
tion, such as MOGLS and MOEA/D, two basic strategies (random weights and fixed
weights) have been commonly used to maintain diversity of search directions towards
the POF. However, both strategies have their disadvantages. On the one hand, ran-
dom weights might provoke the population to get stuck in local POF or approximate
the same parts of the POF repeatedly. On the other hand, fixed weights might not be
able to cover the whole POF well. In Czyzak and Jaszkiewicz (1998), the dispersion of
non-dominated solutions over the POF is controlled by tuning the weights adaptively.

In our previous work (Li and Landa-Silva, 2008), the weight vector of each indi-
vidual is modified on the basis of its location with respect to the closest non-dominated
neighbor when the temperature goes below certain level. The value of each component
in the weight vector is increased or decreased by a small value. However, the diversity
of all weight vectors was not considered. The modified weight vector could be very
close to others if the change is too big. In this case, the aggregation function with the
modified weights might not be able to guide the search towards unexplored parts of the
POF. To overcome this weakness, the adaptation of each weight vector should consider
the diversity of all weight vectors in the current population.

As shown in Li and Zhang (2009), competition between solutions of neighboring
subproblems in MOEA/D could affect the diversity of the population. Particularly,
when the population is close to the POF, the competition between neighboring solu-
tions provokes duplicated individuals in the population. Then, in some cases, compe-
tition should not be encouraged. For this reason, we need an adaptive mechanism to
control competition at different stages during the search.

Like in many multi-objective metaheuristics, MOEA/D uses an external popula-
tion to store non-dominated solutions. When the POF is very large, maintaining such
population is computationally expensive. No diversity strategy is adopted to control
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the size of the external population in MOEA/D. Popular diversity strategies are crowd-
ing distance in NSGA-II and the nearest neighbor method in SPEA-II. Both strategies
have computational complexity of at least O(L2), where L is the current size of the
external population. The ε-dominance concept is a commonly-used technique for fit-
ness assignment and diversity maintenance (Grosan, 2004; Deb et al., 2005). We use
ε-dominance within EMOSA to maintain the diversity of the external population of
non-dominated solutions.

4 Description of EMOSA

In this section, we propose EMOSA, a hybrid adaptive evolutionary algorithm that
combines MOEA/D and simulated annealing. Like in MOEA/D, multiple single objec-
tive subproblems are optimized in parallel. For each subproblem, a simulated anneal-
ing based local search is applied to improve the current solution. To diversify the search
towards different parts of the POF, the weight vectors of subproblems are adaptively
modified during the search. The main features of EMOSA include: 1) maintenance
of adaptive weight vectors; 2) competition between individuals with respect to both
weighted aggregation and Pareto dominance; 3) use of ε-dominance for updating the
external population. In this section, we first present the main algorithmic framework
of EMOSA and then discuss its algorithmic component in more detail.

4.1 Algorithmic Framework

Procedure 1 EMOSA

1: initialize Q weight vectors Λ = {λ(1), . . . , λ(Q)} by SelectWeightVectors(Q)
2: generate Q initial individuals POP = {x(1), . . . , x(Q)} randomly or using heuristics
3: initialize external population EP with non-dominated solutions in POP
4: initialize the temperature setting: T ← Tmax, α← α1

5: repeat
6: for all s ∈ {1, . . . , Q} do
7: calculate the neighborhood Λ(s) for the s-th weight vector λ(s)

8: end for
9: repeat

10: estimate the nadir point znad and the ideal point z∗ using EP
11: for all s ∈ {1, . . . , Q} do
12: apply SimulatedAnnealing(x(s), λ(s), T ) to x(s) and obtain y
13: compete y with the current population POP by UpdatePopulation(y, s)
14: end for
15: decrease the current temperature value by T ← T × α
16: until T < Tmin

17: for all s ∈ {1, . . . , Q} do
18: modify the weight vector λ(s) by AdaptWeightVectors(s)
19: end for
20: reset the temperature settings: T ← Treheat and α← α2

21: until stopping conditions are satisfied
22: return EP

Two sets of weight vectors and two populations of individuals are maintained: 1)
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the current set of Q weight vectors Λ = {λ(1), . . . , λ(Q)} and the candidate set Θ of
weight vectors; 2) the current population POP = {x(1), . . . , x(Q)} and the external pop-
ulation EP. The candidate weight vectors in Θ are generated by using uniform lattice
points (see details in Section 4.2). The size of Θ is much larger than Q. The total number
of weight vectors in the current weight set Λ equals the population size Q since each
individual is associated to one weight vector.

The framework of EMOSA is shown in Procedure 1. Note that Θ, Λ, POP, and
EP are global memory structures, which can be accessed from any subprocedure of
EMOSA. In the following, we explain the main steps in EMOSA.

1. The initial weight vectors and population are generated in lines 1 and 2. The ex-
ternal population EP is formed with the non-dominated solutions in POP (line 3).

2. For each weight vector λ(s), the associated neighborhood Λ(s) is computed based
on the distance between weight vectors in lines 6-8. Once the current temperature
level T goes below the final temperature level Tmin, the neighborhood should be
updated.

3. The nadir and ideal points are estimated using all non-dominated solutions in
EP (line 10). More precisely, fmax

i = max
x∈EP fi(x), fmin

i = min
x∈EP fi(x),

i = 1, . . . ,m. These two points are used in the setting of ε-dominance.

4. For each individual in the population, simulated annealing local search is applied
for improvement (line 12). The resulting solution y is then used to update other
individuals in the population (line 13).

5. If the current temperature T is below the final temperature Tmin, the weight vector
of each individual is adaptively modified (lines 17-19).

6. In line 4, the current temperature level T is set to Tmax (starting temperature level),
and the current cooling rate is set to be α1 (starting cooling rate). The current
temperature is decreased in a geometric manner (line 15). To help the search escape
from the local optimum, the current temperature is re-heated (line 20) to Treheat

(< Tmax) and a faster annealing scheme is also applied with α = α2 (< α1).

More details of the main steps in EMOSA are given in the following sections.

4.2 Generation of Diverse Weight Vectors

Here, Θ is the set of all normalized weight vectors with components chosen from
the set: {0, 1/H, . . . , (H − 1)/H, 1}, with H a positive integer number. The size of Θ
is Cm−1

H+m−1, with m the number of objectives. Figure 2 shows a set of 990 uniformly-
distributed weight vectors produced using this method for H = 43 and m = 3.

In the initialization stage of EMOSA, Q initial weight vectors evenly spread are
selected from the candidate weight set Θ. Note that the size of Θ is much larger than Q.
This procedure SelectWeightVectors is shown in Procedure 2. In lines 1-3, the extreme
weight vectors are generated. Each of these extreme weight vectors corresponds to the
optimization of a single objective. In line 4, c is the number of weight vectors selected
so far and all selected weight vectors are copied into a temporary set Φ. In line 6, the
set A of all weight vectors in Θ with the same maximal distance to Φ are identified. In

Evolutionary Computation Volume x, Number x 8



Evolutionary Multi-objective Simulated Annealing

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

λ
1λ

2

λ 3

Figure 2: 990 uniform weight vectors.
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Figure 3: 50 selected weight vectors.

Procedure 2 SelectWeightVectors (Q)

1: for all s ∈ {1, . . . ,m} do

2: λ
(s)
j ← 1 if j = s; otherwise λ

(s)
j ← 0, j ∈ {1, . . . ,m}\{s}.

3: end for
4: c← m and Φ = {λ(1), . . . , λ(c)}.
5: repeat
6: A← {λ|λ = argmaxv∈Θdist(v,Φ)}. where dist(v,Φ) = minu∈Φ dist(v, u).

7: B ← {λ(c), λ(c−1), . . . , λ(bc/2c)}
8: λ(c+1) ← argmaxu∈Adist(u,B)

9: Φ = Φ ∪ {λ(c+1)} and c← c + 1.
10: until c = Q
11: return Λ = {λ(1), . . . , λQ}

line 7, the set B is formed with half of the recently selected weight vectors. In line 8, the
weight vector in A with the maximal distance to B is chosen as the next weight vector
in Λ. In this way, all weight vectors selected so far are well-distributed. For example,
Figure 3 shows the distribution of 50 weight vectors selected from the initial 990 weight
vectors shown in Figure 2.

The procedure SelectWeightVectors involvesO(Q2×|Θ|) basic operations in lines
6 and 7 as well as O(|Θ|2) distance calculations between the weight vectors in Θ. Ide-
ally, the large size of Θ leads to a good approximation to the POF since each Pareto
optimal solution is the optimal solution of a certain scalarizing function. However, as
the size of Θ increases, the computational complexity of SelectWeightVectors and also
AdaptWeightVectors (see details in the next subsection) increase. But, a small size of
Θ might not be enough to approximate the whole Pareto front. To guarantee efficiency,
H should be set properly.

In EMOSA, the neighborhood of each weight vector is determined using the same
method as in MOEA/D. More precisely, the neighborhood Λ(s) of λ(s) for s = 1, . . . , Q,
is formed by the indexes of its K closest neighbors in Λ. Note that the neighborhoods of
weight vectors in MOEA/D remain unchanged during the whole search process while
those in EMOSA are adaptively changed. This procedure involves O(Q2) distance cal-
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Figure 5: Cooling schemes in EMOSA.

culations and O(K ×Q2) basic comparison operators for sorting these distances.

In Czyzak’s MOSA, the basic idea is to move each non-dominated solution away
from its nearest neighbor. To implement this, the weight vector λ of each individual
x is modified at each local move step according to the location of the nearest non-
dominated neighbor of x, lets say y. The components of λ are changed as follows:

λi =

{

min{λi + δ, 1} if fi(x) < fi(y)
max{λi − δ, 0} otherwise

(4)

where δ > 0 is the variation level. Note that λ should be normalized after the
above change. However, there are two weaknesses in this method. First, the setting
of δ should be provided empirically. On the one hand, a large value of δ could push
the current solution towards the neighborhood of other solutions. On the other hand,
a very small value of δ might not be able to guide the search towards unexplored ar-
eas of the POF. Second, the diversity of all weight vectors in the current population is
not considered in setting the value of λ. This will reduce the chance to approximate
different parts of the POF with the same possibility.

Procedure 3 AdaptWeightVectors(s)

1: find the closest non-dominated neighbor x(t), t ∈ {1, . . . , Q} to x(s)

2: A← {λ ∈ Θ|dist(λ(s), λ(t)) < dist(λ, λ(t)) and dist(λ, λ(s)) ≤ dist(λ,Λ)}
3: if A is not empty then
4: λ(s) ← argmaxu∈Adist(u, λ(s))
5: end if
6: return λ(s)

To overcome the above weaknesses, we introduce a new strategy in EMOSA, il-
lustrated in Figure 4, for adapting weight vectors when T < Tmin, i.e. when the
simulated annealing enters the only improving phase. The corresponding proce-
dure AdaptWeightVectors is shown in Procedure 3. Instead of changing the compo-
nents of the weight vectors, our strategy picks one weight vector λ from the candi-
date set Θ to replace the current one λ(s). For the current solution x(s), we need to
find its closest non-dominated neighbor x(t), which corresponds to λ(t). The selected
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weight vector λ must satisfy two conditions: 1) dist(λ(s), λ(t)) < dist(λ, λ(t)), and 2)
dist(λ, λ(s)) ≤ dist(λ,Λ). Condition 1) indicates that the selected weight vector should
increase the distance between the weight vectors of x(s) and x(t). This could cause an
increase in the distance between x(s) and x(t) in the objective space. Condition 2) guar-
antees that the selected weight vector should not be too close to other weight vectors
in the current population. In line 2 of Procedure 3, all weight vectors in Θ satisfying
these two conditions are stored in A. From this set, the weight vector with the maximal
distance to λ(s) is selected. The procedure AdaptWeightVectors involves O(Q × |Θ|)
distance calculations when the current temperature is below the value of Tmin.

4.3 Local Search and Evolutionary Search

In EMOSA, each individual in the population is improved by a local search procedure,
namely SimulatedAnnealing shown in Procedure 4. Then, the improved solutions
are used to update other individuals in the neighborhood as shown in Procedure 5
UpdatePopulation.

Procedure 4 SimulatedAnnealing(x(s), λ(s), T )

1: y ← x(s)

2: repeat
3: generate neighboring solution x′ ∈ N (y)
4: if F (x′) is not dominated by F (y) then
5: update EP in terms of ε-dominance
6: end if
7: calculate the acceptance probability P (y, x′, λ(s), T )
8: if P (y, x′, λ(s), T ) > random[0, 1) then
9: y ← x′

10: end if
11: until Stopping conditions are satisfied
12: return y

In line 3 of Procedure 4, a neighboring solution x′ is generated from N (y), the
neighborhood of the current solution y. If F (x′) is not dominated by F (y), then update
EP in terms of ε-dominance. The components of ε are calculated by εi = β × (znad

i −
z∗i ), i = 1, . . . ,m. Here, β > 0 is a parameter to control the density of solutions in EP.
The update of EP using ε-dominance benefits two aspects: 1) maintain the diversity of
EP and 2) truncate the solutions of EP in dense areas of the objective space. In this work,
β is set to 0.002 for two-objective problems and 0.005 for three-objective problems.

In the simulated annealing component of EMOSA, the probability of accepting
neighboring solutions is given by:

P (x, x′, λ, T ) = min{1, exp(−τ ×
g(x′, λ)− g(x, λ)

T
)} (5)

where T ∈ (0, 1] is the normalized temperature level, τ is a problem-specific balance
constant, and g is a weighted aggregation function of x with the weight vector λ, which
can be the weighted sum function g(ws) or the weighted Tchebycheff approach g(te) or
the combination of both. According to (5), more uphill (worse) moves are accepted with
high probability when T is close to 1, but increasingly only downhill (better) moves are
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accepted as T goes to zero. The acceptance of worse neighboring solutions reduces the
possibility of getting trapped in local optima.

The degree of uphill moves acceptance is determined by the annealing schedule,
which is crucial to the performance of simulated annealing. In EMOSA, we apply the
following two annealing schedules, shown in Figure 5, in two stages.

• Schedule 1: Before the current temperature T goes below the final temperature
Tmin for the first time (early stage), local search seeks to improve all individuals
using high temperature Tmax and slow cooling rate α1 (line 4 in Procedure 1). This
is the same as many other simulated annealing algorithms. The main task at this
stage is to start from the initial population and then quickly find some representa-
tive solutions in the POF from the initial population.

• Schedule 2: Whenever the current temperature T goes below the final temperature
Tmin (late stage), T is increased to a medium temperature level Treheat, and a faster
cooling rate α2(< α1) is applied (line 20 in Procedure 1). Since all solutions in the
current population should by now be close to the POF, they should also be close to
the optimal solutions of aggregation functions with modified weight vectors. For
this reason, there is no need to start a local search from a high temperature level.
Fast annealing could help the intensification of the search near the POF since not
many uphill moves are allowed.

Moreover, the parameter τ in (5) should be set empirically. As suggested in Smith
et al. (2004), about half of non-improving neighbors should be accepted at the be-
ginning of simulated annealing. Based on this idea, we set τ to − log(0.5)Tmax/∆̄ in
EMOSA, where ∆̄ is the average of ∆g values in the first 1000 uphill moves. For these
first 1000 uphill moves, the acceptance probability is set to 0.5. In EMOSA, the Sim-
ulatedAnnealing procedure is terminated after examining #ls neighbors. Hence, at
each temperature level, this procedure mainly involves Q × #ls function evaluations
and the update of the external population EP.

Note that EMOSA optimizes different subproblems using the same temperature
cooling scheme. Actually, each subproblem can also be solved under different cooling
schemes. This idea has been used in previous work on simulated annealing algorithm
for multi-objective optimization (Tekinalp and Karsli, 2007) and also for single objective
optimization (Burke et al., 2001).

Procedure 5 UpdatePopulation(y, s)

1: if g(y, λ(s)) < g(x(s), λ(s)) then
2: x(s) ← y
3: end if
4: for all k ∈ Λ(s) and k 6= s do
5: if F (y) dominates F (x(k)) then
6: x(k) ← y
7: end if
8: end for

The key difference between EMOSA and other population-based MOSA-like al-
gorithms, such as Ulungu and Czyzak’s algorithms, is the competition between indi-
viduals. As shown in Li and Zhang (2009), the competition may affect the balance
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between diversity and convergence in MOEA/D. On the one hand, the competition
among individuals could speed up the convergence towards the POF when the current
population is distant to the POF. On the other hand, the competition between individ-
uals close to the POF could cause loss of diversity. This is because one solution that
is non-dominated with respect to its neighbors could be worse if the comparison is
made using a weighted aggregation function. In this paper, we apply different criteria
to update the current solution and its neighbors. The details of the process for updat-
ing the population are shown in Procedure 5. In lines 1-3, the current solution x(s) is
compared to the solution y obtained by local search and the comparison is made using
the weighted aggregation function. In lines 4-8, the neighbors of x(s) are replaced only
if they are dominated by y. By doing this, the selection pressure among individuals
is weak when the current population is close to the POF. Therefore, the diversity of
individuals in the neighborhood can be preserved.

5 Two Benchmark MOCO Problems

In this paper, we consider two NP-hard MOCO test problems, the multi-objective
knapsack problem and the multi-objective traveling salesman problem. These prob-
lems have been widely used when testing the performance of various multi-objective
metaheuristics (Jaszkiewicz, 2002; Zhang and Li, 2007; Paquete and Stützle, 2003;
Garcia-Martinez et al., 2007; Li et al., 2010).

5.1 The 0-1 Multi-objective Knapsack Problem

Given n items and m knapsacks, the 0-1 multi-objective knapsack problem (MOKP) can
be formulated as:

maximize fi(x) =
∑n

j=1 pijxj , (6)

subject to
∑n

j=1 wijxj ≤ ci, i = 1, . . . ,m (7)

where x = (x1, . . . , xn) is a binary vector. That is, xj = 1 if item j is selected to
be included in the m knapsacks and xj = 0 otherwise, pij and wij are the profit and
weight of item j in knapsack i, respectively, and ci is the capacity of knapsack i.

Due to the constraint on the capacity of each knapsack, the solutions generated
by local search moves or genetic operators could be infeasible. One way to deal with
this is to design a heuristic for repairing infeasible solutions. Some repair heuristics
have been proposed in the literature (Zitzler and Thiele, 1999; Zhang and Li, 2007).
In this paper, we use the same greedy heuristic adopted in Zhang and Li (2007) for
constraint handling. The basic idea is to remove some items with heavy weights and
little contribution to an objective function from the overfilled knapsacks.

In Knowles and Corne (2000b), neighboring solutions for the MOKP are produced
by flipping each bit in the binary vector with probability k/n, called k-bit flipping here.
For example, if the j-th bit of x is chosen for flipping, then xj = 1− xj . After flipping,
the modified solution x might be infeasible and a repair heuristic might be needed. In
this paper, we suggest a new neighborhood structure, k-bit insertion, in which only the
bits equal to zero may be flipped. This means that more items are added into the knap-
sacks but no items are removed. Consequently, the modified solution after flipping bits
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with value of zero is very likely to be infeasible but will have higher profits. Then, the
repair heuristic is called to remove some items as described above until the solution
becomes feasible again.

5.2 The Multi-objective Traveling Salesman Problem

The Traveling Salesman Problem (TSP) can be modeled as a graph G(V,E), where V =
{1, . . . , n} is the set of vertices (cities) and E = {ei,j}n×n is the set of edges (connections
between cities). The task is to find a Hamiltonian cycle of minimal length, which visits
each vertex exactly once. In the case of the multi-objective TSP (MOTSP), each edge ei,j

is associated with multiple values such as cost, length, traveling time, etc. Each of them
corresponds to one criterion. Mathematically, the MOTSP can be formulated as:

minimize fi(π) =

n−1
∑

j=1

c
(i)
π(j),π(j+1) + c

(i)
π(1),π(n) i = 1, . . . ,m (8)

where π = (π(1), . . . , π(n)) is a permutation of cities in Π, the set of all permu-

tations of I = {1, . . . , n} and c
(i)
s,t, s, t ∈ I is the cost of the edge between city s and

city t regarding criterion i. Unlike the MOKP problem, no repair strategy is needed for
solutions to the MOTSP problem because all permutations represent feasible solutions.

Like in the single objective TSP problem, the neighborhood move used here for
the MOTSP is the 2-opt local search procedure constructed in two steps: 1) remove two
non-adjacent edges from the tour and then 2) reconnect vertices associated with the
removed edges to produce a different neighbor tour.

6 Computational Experiments

In this section, we experimentally compare the proposed EMOSA to three other
MOSA-like algorithms, namely SMOSA (Serafini, 1992), UMOSA (Ulungu et al., 1999),
CMOSA (Czyzak and Jaszkiewicz, 1998) and three MOMA-like algorithms, namely
MOEA/D (Zhang and Li, 2007), MOGLS (Jaszkiewicz, 2002), and IMMOGLS (Ishibuchi
et al., 2003). All algorithms were implemented in C++. We ran all experiments on a PC
Pentium CPU (Duo Core) 1.73 GHZ with 2GB memory.

6.1 Performance Indicators

The performance assessment of various algorithms is one of the most important issues
in the EMO research. It is well established that the quality (in the objective space) of
approximation sets should be evaluated on the basis of two criteria: the closeness to
the POF (convergence) and the wide and even coverage of the POF (diversity). In this
paper, we use the following two popular indicators for comparing the performance of
the multi-objective metaheuristics under consideration.

6.1.1 Inverted Generational Distance (IGD-metric)

This indicator (see Coello Coello and Cruz Cortés (2005)) measures the average distance
from a set of reference points P ∗ to the approximation set P . It can be formulated as
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Table 1: Test instances of MOKP and MOTSP and computational cost.
MOKP MOTSP

Instance n m # nfes Instance n m # nfes
KS2502 250 2 75000 KROAB50 50 2 500000
KS5002 500 2 100000 KROCD50 50 2 500000
KS7502 750 2 125000 KROAB100 100 2 2500000
KS2503 250 3 100000 KROCD100 100 2 2500000
KS5003 500 3 125000 KROABC100 100 3 5000000
KS7503 750 3 150000 KROBCD100 100 3 5000000

Table 2: The setting of population size in MOSA-like algorithms.
MOKP MOTSP

Instance EMOSA UMOSA CMOSA Instance EMOSA UMOSA CMOSA
KS2502 50 100 100 KROAB50 50 100 100
KS5002 50 100 100 KROCD50 50 100 100
KS7502 50 100 100 KROAB100 100 100 100
KS2503 50 300 300 KROCD100 100 100 100
KS5003 50 300 300 KROABC100 100 100 100
KS7503 50 300 300 KROBCD100 100 100 100

IGD(P, P ∗) = 1
|P∗|

∑

u∈P∗ minv∈P dist(u, v). Ideally, the reference set should be the

whole true POF. Unfortunately, the true POF of many MOCO problems is unknown in
advance. Instead, a very good approximation to the true POF can be used. In this paper,
the reference sets P ∗ are formed by collecting all non-dominated solutions obtained by
all algorithms in all runs. The smaller the IGD-metric value, the better the quality of the
approximation set P . To have a lower value of the IGD-metric, the obtained solutions
should be close to P ∗ and should not miss any part of P ∗. Therefore, the IGD-metric can
assess the quality of approximation sets with respect to both convergence and diversity.

6.1.2 Hypervolume (S-metric or Lebesgue measure)

This indicator (see Zitzler and Thiele (1999)) measures the volume enclosed by the ap-
proximation set P wrt a reference point r = (r1, . . . , rm). In the case of minimiza-
tion, this metric can be written as S(P, r) = VOL

(
⋃

u∈P E(u, r)
)

, where E(u, r) =
{v|ui ≤ vi ≤ ri, i = 1, . . . ,m} (i.e. E(u, r) is the hyperplane between two m-
dimensional points u and r)2. Compared to the reference set required in the IGD-
metric, establishing the reference point in the S-metric is relatively easier and more
flexible. In our experiments, r can be set to be a point dominated by the nadir point:
ri = znad

i + 0.5(znad
i − zideal

i ), i = 1, . . . ,m. The larger the S-metric value, the better
the quality of the approximation set P , which means a smaller distance to the true POF
and a better distribution of the approximation set. Similar to the IGD-metric, better
S-metric values can be achieved when the obtained solutions are close to the POF and
achieve a full coverage of the POF. Therefore, the S-metric also estimates the quality of
approximation sets both in terms of convergence and diversity.

6.2 EMOSA vs. MOSA-like Algorithms

6.2.1 Experimental Settings

In this first set of experiments, we used the test instances with two and three objectives
shown in Table 1. We used the same following parameters in the annealing schedule
of the four algorithms: Tmax = 1.0, Tmin = 0.01, Treheat = 0.1, α1 = 0.8, and α2 = 0.5.
Moreover, all four algorithms were allocated the same number of function evaluations

2In the case of maximization, E(u, r) = {v|ri ≤ vi ≤ ui, i = 1, . . . , m}.
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Table 3: Mean and standard deviation of IGD-metric values on MOKP instances.
Instance EMOSA UMOSA CMOSA SMOSA
KS2502 16.2 (1.86) 34.0 (2.23) 223.5 (19.54) 30.6 (2.17)
KS5002 23.1 (1.33) 64.9 (2.31) 382.6 (42.57) 80.5 (3.42)
KS7502 32.2 (2.10) 102.2 (3.75) 657.1 (68.96) 145.2 (6.54)
KS2503 54.2 (1.10) 71.0 (1.08) 115.2 (5.17) 78.9 (1.45)
KS5003 86.4 (1.40) 129.5 (1.80) 325.0 (16.37) 184.6 (5.12)
KS7503 110.7 (2.56) 193.8 (3.76) 547.7 (36.66) 274.0 (4.68)

Table 4: Mean and standard deviation of of S-metric values on MOKP instances.
Instance EMOSA UMOSA CMOSA SMOSA
KS2502 1.27E+07 (1.17E+04) 1.26E+07 (0.64E+04) 1.16E+07 (8.33E+04) 1.26E+07 (0.93E+04)
KS5002 3.55E+07 (0.17E+05) 3.51E+07 (0.27E+05) 3.16E+07 (2.97E+05) 3.50E+07 (0.36E+05)
KS7502 1.04E+08 (0.46E+05) 1.03E+08 (0.56E+05) 9.30E+07 (10.5E+05) 1.03E+08 (0.87E+05)
KS2503 5.83E+10 (0.49E+08) 5.77E+10 (0.51E+08) 5.55E+10 (1.93E+08) 5.73E+10 (0.62E+08)
KS5003 4.16E+11 (0.29E+09) 4.11E+11 (0.26E+09) 3.80E+11 (1.69E+09) 4.03E+11 (5.52E+09)
KS7503 1.26E+12 (0.85E+11) 1.25E+12 (0.63E+11) 1.11E+12 (13.4E+11) 1.21E+12 (1.93E+11)

in each of 20 runs for the same test instance as detailed in column # nfes of Table 1.
The population sizes for the three population-based MOSA-like algorithms are given
in Table 2. We use a smaller (than in UMOSA and CMOSA) population size in EMOSA
for most of the test instances. The reason for this is that EMOSA has the ability to
search different parts of the POF by adapting weight vectors. Note that SMOSA is a
single point based search method.

At every temperature level, the number #ls of neighbors examined by local search
is set to 10 for each MOKP instance and 250 for each MOTSP instance. It should be
noted that the total number of neighbors examined in SMOSA at each temperature level
equals the total number of neighbors examined for the whole population in UMOSA
and CMOSA at the same temperature level. For all test instances in both problems, the
neighborhood size in EMOSA is set to K = 10. In both SMOSA and CMOSA, each
component of the weight vectors is increased or decreased by 2.0/Q randomly or using
the heuristic in eq. (4).

6.2.2 Experimental Results

The mean and standard deviation values of the IGD-metric and S-metric found by the
four algorithms are shown in Tables 3 and 4, respectively. From these results, it is evi-
dent that EMOSA outperforms the three other MOSA-like algorithms in terms of both
performance indicators on all six MOKP test instances. The superiority of EMOSA is
due to the stronger selection pressure to move towards the POF by having competition
among individuals. We believe that this competition allows the local search in EMOSA
to start from a high-quality initial solution at every temperature level.

We can also observe from Tables 3 and 4 that CMOSA is clearly inferior to the
three other MOSA-like algorithms. This is due to the fact that CMOSA modifies the
weight vector of each individual while examining every neighboring solution. This
change of weight vectors in the early stage of the multi-objective search does not affect
the distribution of the non-dominated solutions because the current population is still
distant to the POF. However, the frequent change of weight vectors could potentially
guide each individual to move along different search directions in the objective space.
Of course, this will slow down the convergence speed towards the POF. This is why
our proposed EMOSA approach only adapts the weight vector of each individual once
the temperature is below Tmin.
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Figure 6: Non-dominated solutions found by the four MOSA-like algorithms on three
bi-objective knapsack instances.
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Figure 7: Non-dominated solutions found by the four MOSA-like algorithms on the
three-objective knapsack instance KS7503.
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Table 5: Mean and standard deviation of IGD-metric values on MOTSP instances.
Instance EMOSA UMOSA CMOSA SMOSA
KROAB50 781.20 (184.6) 1427.1 (233.7) 12409 (618.3) 6385.5 (447.8)
KROCD50 751.54 (132.0) 1405.0 (129.9) 11696 (672.0) 6279.6 (392.4)
KROAB100 1607.1 (234.4) 4327.0 (311.2) 36191 (733.5) 24426 (676.7)
KROCD100 1464.8 (217.2) 4032.7 (171.3) 35588 (931.8) 23227 (872.3)
KROABC100 4421.5 (173.3) 5126.9 (143.6) 29819 (659.4) 38646 (473.6)
KROBCD100 4253.3 (134.8) 4972.0 (150.2) 29008 (626.2) 37269 (460.1)

Table 6: Mean and standard deviation of S-metric values on MOTSP instances.
Instance EMOSA UMOSA CMOSA SMOSA
KROAB50 7.46E+11 (5.32E+10) 5.44E+11 (3.83E+10) 2.43E+11 (2.72E+10) 3.00E+11 (3.31E+10)
KROCD50 9.83E+11 (5.96E+10) 7.88E+11 (3.65E+10) 3.47E+11 (3.0E+10) 4.33E+11 (4.16E+10)
KROAB100 4.25E+12 (2.66E+11) 3.71E+12 (2.58E+11) 2.10E+12 (1.42E+11) 2.06E+12 (2.42E+11)
KROCD100 4.00E+12 (2.39E+11) 3.45E+12 (3.09E+11) 1.84E+12 (1.05E+11) 1.77E+12 (1.68E+11)
KROABC100 9.12E+20 (7.0E+19) 7.32E+20 (4.57E+19) 3.06E+20 (2.86E+19) 1.40E+20 (1.79E+19)
KROBCD100 9.12E+20 (6.02E+10) 7.35E+20 (4.65E+10) 2.95E+20 (2.81E+19) 1.34E+20 (2.14E+19)

Figure 6 shows the non-dominated solutions found by the four algorithms on three
bi-objective MOKP instances for the run for which each algorithm achieved its best
value for the IGD-metric. We can see that EMOSA clearly found better solutions than
the other three MOSA-like algorithms on KS5002 and KS7502. For the smallest instance
KS2502, EMOSA is only slightly better. Moreover, both UMOSA and SMOSA perform
quite similarly on these three instances while CMOSA has the tendency to locate the
non-dominated solutions close to the middle part of the POF.

In Figure 7, we plot the non-dominated solutions obtained by the four algorithms
on the largest MOKP instance with three objectives (KS7503) in the run for which each
algorithm achieved its best value for the IGD-metric. It is clear that EMOSA produced
the non-dominated front with the best diversity while the non-dominated front by
CMOSA has the worst distribution. This is because EMOSA tunes the weight vec-
tors according to distances of both objective vectors and weight vectors to maintain the
diversity of the set of current weight vectors, which are less likely to be very similar. In
contrast, CMOSA is unable to preserve the diversity of weight vectors particularly in
the case of test instances with more than two objectives.

From Figure 7, we can also note that the set of non-dominated solutions found by
UMOSA consists of many isolated clusters. This is because this MOSA-like algorithm
with fixed weights has no ability to approximate all parts of the POF when the size
of this front is very large. However, it can still produce a good approximation to the
POF. This is why EMOSA uses fixed weights only in the early stage of its search pro-
cess. It should be pointed out that the population size used in UMOSA and CMOSA
is six times that of EMOSA for all 3-objective instances (50 vs. 300). This also demon-
strates the efficiency of the strategy for adapting weights in EMOSA which requires a
considerably smaller population size.

Tables 5 and 6 show the mean and standard deviation values of the IGD-metric
and S-metric obtained by the four MOSA-like algorithms on the six MOTSP instances.
Again, EMOSA performs better than the other three MOSA-like algorithms on all six
MOTSP test instances in terms of the IGD-metric and the S-metric. In contrast, CMOSA
shows again the worst performance.

Figure 8 shows the distributions of the non-dominated solutions obtained by the
four MOSA-like algorithms in the run for which each algorithm achieved its best value
for the IGD-metric value. It is clear that EMOSA found better non-dominated solu-
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Table 7: The average running time (seconds) of four MOSA-like algorithms on two
100-city MOTSP instances.

Instance EMOSA UMOSA CMOSA SMOSA
KROAB100 6.7 3.4 31.2 13.7
KROABC100 169.3 127.4 142.0 39.0

tions in terms of both convergence and diversity. Figure 9 shows the non-dominated
solutions obtained in the best run of each algorithm for the three-objective instance -
KROABC100. It can be seen that the diversity of the solutions found by EMOSA is the
best among the four algorithms.

From all above results, we can also conclude that the overall performance of
UMOSA is better than that of CMOSA and SMOSA for both problems. These results
are also consistent with those reported in previous studies (Banos et al., 2007). The poor
performance of CMOSA and SMOSA is caused by the frequent modification of weight
vectors, which might slow down the convergence speed.

The four MOSA-like algorithms use different strategies to maintain the diversity
of weight vectors. The running times of these algorithms rely on the computational
complexity of the related strategies. Table 7 shows the average computational time
used by the four MOSA-like algorithms on two 100-city MOTSP instances. From this
table, we can make the following observations:

• For the smaller 2-objective instance KROAB100, UMOSA is the fastest algorithm
while CMOSA is the slowest. This is because UMOSA maintains a set of fixed
weight vectors which does not have a computational cost because it is not required
to tune the weight vectors. In contrast, both CMOSA and SMOSA modify weight
vectors at each single local search move. The computational complexity of the
strategy in CMOSA is much higher than that in SMOSA, however EMOSA is still
faster. Therefore, it seems that it is not reasonable to tune the weight vectors at
every local search move.

• For the larger 3-objective instance KROABC100, both EMOSA and UMOSA are
slower than SMOSA. This is contrary to the above observation. The reason for
this is that the the number of non-dominated solutions found by the former two
algorithms is much larger than those found by SMOSA. In this case, most of the
computational cost is allocated to maintaining the external population. This is also
the reason why CMOSA is faster than EMOSA.

6.3 EMOSA vs. MOMA-like Algorithms

6.3.1 Experimental Settings

In this section, we compare EMOSA to three MOMA-like algorithms, namely
MOEA/D, MOGLS, and IMMOGLS. All parameter settings used in EMOSA are the
same as in the previous section. The population sizes used in the other three algo-
rithms are given in Table 8. Like EMOSA, the neighborhood size used in MOEA/D is
also 10 for all test instances. In MOGLS, the size of the mating pool is set to 20 for every
test instance. In IMMOGLS, 10 elite solutions are randomly selected from the external
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Figure 8: The non-dominated solutions found by MOSA-like algorithms on bi-objective
MOTSP instances.
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Figure 9: The non-dominated solutions found by MOSA-like algorithms on instance
KROABC100.
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Table 8: The population size used in the MOMA-like algorithms.
MOKP MOTSP

Instance MOEA/D MOGLS IMMOGLS Instance MOEA/D MOGLS IMMOGLS
KS2502 100 100 100 KROAB50 100 100 100
KS5002 100 100 100 KROCD50 100 100 100
KS7502 100 100 100 KROAB100 100 100 100
KS2503 300 300 300 KROCD100 100 100 100
KS5003 300 300 300 KROABC100 100 100 100
KS7503 300 300 300 KROBCD100 100 100 100

Table 9: Mean and standard deviation of IGD-metric values found by MOMA-like al-
gorithms on MOKP instances.

Instance EMOSA MOEA/D MOGLS IMMOGLS
KS2502 16.2 (1.86) 24.0 (4.42) 21.5 (4.70) 100.5 (15.23)
KS5002 23.1 (1.33) 64.3 (5.82) 55.6 (2.88) 292.8 (29.68)
KS7502 32.2 (2.10) 157.5(10.87) 134.6(9.08) 620.3 (40.70)
KS2503 54.2 (1.10) 66.6 (1.68) 56.4 (2.0) 252.1 (23.12)
KS5003 86.4 (1.40) 166.6(4.11) 134.8(3.84) 734.1 (59.79)
KS7503 110.7(2.56) 334.5(12.77) 233.3(5.20) 1160.7(44.70)

population. For the MOKP problem, single-point crossover is performed, and each bit
of the binary string is mutated by flipping with probability 0.01. The neighborhood
structures for both the MOKP problem and the MOTSP problem are the same as in the
previous section. For the MOTSP instances, offspring solutions are sampled by using
cycle crossover (Larranaga et al., 1999) in these three MOMA-like algorithms.

6.3.2 Experimental Results

The mean and standard deviation of the IGD-metric and S-metric values found by
EMOSA and the three MOMA-like algorithms on six MOKP test instances are shown
in Table 9 and Table 10, respectively. From this set of results, it is evident that EMOSA
performs better than the three MOMA-like algorithms on all test instances. We think
that the superiority of EMOSA is due to i) the use of a diverse set of weight vectors and
ii) the use of simulated annealing for local search.

Among the four algorithms, IMMOGLS has the worst performance on all test in-
stances. This is because IMMOGLS uses a fixed population size and updates the current
population with all offspring solutions without competition. In EMOSA, individuals
with similar weight vectors interact with each other via competition, which helps for a
good performance of EMOSA in terms of convergence.

Zhang and Li (2007) showed that MOEA/D constantly performs better than
MOGLS on the MOKP test instances when local search heuristic is applied. When
simple hill-climber local search is used in both algorithms, MOEA/D performs slightly
worse than MOGLS regarding the IGD-metric since the population size is not large

Table 10: Mean and standard deviation of S-metric values found by MOMA-like algo-
rithms on MOKP instances.

Instance EMOSA MOEA/D MOGLS IMMOGLS
KS2502 1.27E+07(1.17E+04) 1.27E+07(1.34E+04) 1.27E+07(1.12E+04) 1.21E+07(7.73E+04)
KS5002 3.55E+07(0.18E+05) 3.51E+07(0.58E+05) 3.51E+07(0.44E+05) 3.21E+07(3.02E+05)
KS7502 1.04E+08(0.46E+05) 1.02E+08(1.42E+05) 1.02E+08(1.56E+05) 9.14E+07(10.6E+05)
KS2503 5.83E+10(0.49E+08) 5.80E+10(0.59E+08) 5.77E+10(1.10E+08) 4.90E+10(9.31E+08)
KS5003 4.16E+11(0.29E+09) 4.07E+11(0.55E+09) 4.04E+11(1.09E+09) 3.10E+11(5.51E+09)
KS7503 1.26E+12(0.85E+09) 1.20E+12(2.37E+09) 1.20E+12(3.57E+09) 8.87E+11(15.1E+09)
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Figure 10: Non-dominated solutions found by MOMA-like algorithms on bi-objective
knapsack instances.
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Figure 11: Non-dominated solutions found by MOMA-like algorithms on the KS7503
instance.
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Table 11: Mean and standard deviation of IGD-metric values found by MOMA-like
algorithms on MOTSP instances.

Instance EMOSA MOEA/D MOGLS IMMOGLS
KROAB50 781.2(184.6) 1253.8(219.7) 3574.7(620.7) 8412.4(923.9)
KROCD50 751.5(132.0) 1220.9(201.2) 3744.7(430.4) 8182.6(851.6)
KROAB100 1607.1(234.4) 2184.5(258.7) 17100(1524) 24052(1156)
KROCD100 1464.8(217.2) 2030.9(307.2) 16337(930) 22840(2050)
KROABC100 4421.5(173.3) 6126.6(254.8) 22789(868) 34419(831.6)
KROBCD100 4253.3(134.8) 6189.3(236.4) 22079(963) 33475(1291.4)

Table 12: Mean and standard deviation of S-metric values found by four MOMA algo-
rithms on six MOTSP instances.

Instance EMOSA MOEA/D MOGLS IMMOGLS
KROAB50 7.46E+11(5.33E+10) 5.98E+11(5.44E+10) 3.62E+11(7.07E+10) 1.97E+11(2.72E+10)
KROCD50 9.83E+11(5.96E+10) 8.31E+11(5.68E+10) 5.02E+11(6.69E+10) 3.02E+11(5.12E+10)
KROAB100 4.25E+12(2.66E+11) 3.37E+12(3.11E+10) 1.84E+12(1.62E+11) 1.59E+12(2.25E+11)
KROCD100 4.01E+12(2.39E+11) 3.20E+12(2.90E+11) 1.49E+12(2.36E+11) 1.35E+12(2.06E+11)
KROABC100 9.12E+20(7.00E+19) 2.63E+20(1.80E+19) 1.32E+20(2.75E+19) 8.82E+19(2.17E+19)
KROBCD100 9.12E+20(6.03E+19) 2.45E+20(1.99E+19) 1.13E+20(2.70E+19) 7.91E+19(2.03E+19)

enough, but better in terms of the S-metric. In contrast, EMOSA clearly outperforms
MOGLS, which gives an indication that the use of advanced local search based meta-
heuristics can enhance the performance of EMO algorithms.

The final solutions found by EMOSA and the three MOMA-like algorithms on
three 2-objective MOKP instances are plotted in Figure 10. For KS2502, EMOSA per-
forms similarly to MOEA/D and MOGLS. However, the solutions found by EMOSA
are better than those obtained by MOEA/D and MOGLS on two larger test instances
KS5002 and KS7502. It is clear that the solutions of IMMOGLS are dominated by those
of the other three algorithms.

Figure 11 shows the solutions found by the four algorithms on instance KS7503
for the run in which each algorithm achieved the best IGD-metric value. It is evident
that EMOSA has the best performance wrt diversity. In MOEA/D, the non-dominated
solutions are located in a number of clusters. This is because MOEA/D uses fixed
weights during the whole search process. Therefore, the performance of MOEA/D
depends on the population size. For large test instances, a reasonable large number of
weight vectors is required to achieve good diversity in the final non-dominated set of
solutions. However, although the population size in EMOSA is small, this algorithm
is still capable of solving large test instances due to the effective adaptation of weight
vectors.

Table 11 and Table 12 give the mean and standard deviation of IGD-metric and
S-metric values found by EMOSA and the three MOMA-like algorithms on six MOTSP
test instances. From these experimental results, it is clear that EMOSA found the best
solutions in terms of both indicators. Figure 12 shows the distribution of the solutions
obtained by the four algorithms on four bi-objective MOTSP test instances. As we can
see, both EMOSA and MOEA/D have good performance in terms of convergence. The
solutions found by both algorithms are quite close to each other. As for diversity, the
distribution of the solutions found by EMOSA is more uniform. Both MOGLS and
IMMOGLS have worse performance than EMOSA in all test instances. This could be
due to the lack of efficient genetic operators for sampling promising offspring solutions
for multi-objective local search.
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Figure 12: Non-dominated solutions found by MOMA-like algorithms on bi-objective
TSP instances.

Figure 13 shows the distribution of the non-dominated solutions found by the
four algorithms on the 3-objective KROABC100 instance. Unlike the concave POF of
instance KS7503, the POF of instance KROABC100 is convex. We can observe that
EMOSA has the best performance in finding a good distribution of non-dominated so-
lutions.

7 Effect of Algorithmic Components and Analysis of Parameter Sensitivity
in EMOSA

7.1 Effect of Algorithmic Components

7.1.1 Adaptation of Weight Vectors

In our early work on EMOSA (Li and Landa-Silva, 2008), we tried the same strategy
as in CMOSA to adapt weight vectors. As we discussed in section 3, that strategy has
some weaknesses. In this section, we demonstrate the improvement of EMOSA due to
the new diversity strategy. We modified the EMOSA approach shown in Procedure 1
by replacing our weights adaptation strategy with the strategy used in CMOSA and ap-
plied the modified algorithm to instance KROABC100. All parameters in this modified
EMOSA remain the same as those in section 6.2.1. Figure 14 shows the non-dominated
solutions found by this modified EMOSA. Compared to the results in Figure 13, the
modified EMOSA performs worse in terms of diversity. This indicates that our new di-
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Figure 13: Non-dominated solutions found by MOMA-like algorithms on the
KROABC100 instance.

versity strategy works better in guiding the multi-objective search towards unexplored
parts of the POF by maintaining the diversity of weight vectors.

7.1.2 Competition Strategies

As we said before, EMOSA distinguishes itself from other algorithms by the adaptive
competition scheme between individuals. We carried out three further experiments to
study the effect of the competition among individuals on the performance of EMOSA.

To study the effect of weighted aggregation function on the convergence of
EMOSA, we compared two versions of EMOSA, one using the weighted sum approach
and the other one using the weighted Tchebycheff approach. Both versions use the

0.5

1

1.5
x 10

5

5

10

15x 10
4

0.5

1

1.5

x 10
5

f
1

KROABC100

f
2

f 3

Figure 14: CMOSA’s diversity strategy.
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Figure 17: No Pareto selection.

same parameter settings described in Section 6.2.1. Figure 15 shows the non-dominated
solutions found by these two versions. From these results, we can observe that the
weighted Tchebycheff approach performs very similar to the weighted sum approach
on KROAB100. Zhang and Li (2007) made a different observation, that the former has
worse performance on the MOKP problem. The reason for this is that the weighted
sum approach has higher effectiveness in preserving the quality of infeasible solutions
in the repair heuristic.

Also, we tried the version of EMOSA with no competition between individuals.
That is, the current solution of each weighted aggregation function does not compete
with its neighboring solutions. To implement this, lines 4-8 in Procedure 5 were re-
moved. We tested this version of EMOSA on the KROAB100 instance using the same
parameters as in section 6.2.1. Figure 16 shows the non-dominated solutions found
by EMOSA without competition between individuals. Clearly, the convergence of this
version is worse than the EMOSA with competition.

Moreover, we tested another version of EMOSA with competition based on only
scalarization. In Procedure 5, lines 5-7 were removed. Instead, each neighboring so-
lution x(k) is replaced with y if g(y, λ(k)) < g(x(k), λ(k)). This variant of EMOSA was
tested on instance KROABC100. The final solutions found by this variant are plotted
in Figure 17. It can be observed that the modified EMOSA failed to find a set of well-
distributed non-dominated solutions despite having the adaptation of weight vectors.
As mentioned before, this is caused by the loss of diversity in the population. When
the current population is close to the POF, neighboring solutions are very likely to be
mutually non-dominated. However, one solution can still be replaced by its neighbors
in terms of a weighted sum function. In this case, EMOSA might miss the chance to
approximate the part of POF nearby such a solution. This is why EMOSA does not
work well on KROABC100 wrt diversity.

7.1.3 Choice of Neighborhood Structure

The choice of appropriate neighborhood structure plays a very important role in local
search methods for combinatorial optimization. In this paper, we have proposed a k-bit
insertion neighborhood structure for the MOKP problem. In this section, we compare
two versions of EMOSA on the instance KS2502, one using the k-bit insertion neighbor-
hood and another version using the k-bit flipping neighborhood. Figure 18 shows the
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Figure 18: k-bit insertion vs. k-bit flipping.
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Figure 19: External population update.

final solutions found by both versions in the best of 20 runs regarding the IGD-metric.
It can be observed that the non-dominated solutions obtained by EMOSA with the k-bit
insertion neighborhood dominate all solutions produced by the version with the k-bit
flipping neighborhood. Moreover, the mean IGD-metric value obtained when using
the k-bit flipping neighborhood is 76.934, which is worse than the value obtained when
using the k-bit insertion (16.245).

7.1.4 Updating the External Population with ε-dominance

In MOEA/D, no diversity strategy is applied to manage the external population. This
is not a problem when the size of the POF is small. However, for large fronts, the ex-
ternal population might contain more and more non-dominated solutions as the search
progresses. The computational time needed to update the external population may ex-
ceed substantially the time used by all other components of EMOSA. This is why we
incorporate ε-dominance into EMOSA to help in keeping the diversity of EP automat-
ically. Figure 19 shows the results obtained by EMOSA without using ε-dominance on
instance KROABC100. Compared to the results in Figure 9, the distribution of non-
dominated solutions is more dense that the distribution obtained with EMOSA using
ε-dominance. Up to 20,000 non-dominated solutions are saved in the external popu-
lation while EMOSA with ε-dominance reports only about 3000 solutions at the end
of each run. In terms of the computational time, we also noticed that EMOSA with-
out ε-dominance used about 1600 seconds to complete one run, while EMOSA with
ε-dominance only spent less than 170 seconds to complete a single run, which repre-
sents almost a ten-fold reduction.

7.2 Analysis of Parameter Sensitivity

7.2.1 Parameters in Two-stage Cooling Scheme

Like the simulated annealing algorithms for single objective optimization, the per-
formance of EMOSA might also be influenced by the setting of parameters in the
cooling scheme. To verify this, we studied two parameters Treheat (reheat tempera-
ture value) and α2 (fast cooling rate). EMOSA with the combinations of Treheat =
{0.1, 0.3, 0.5, 0.8, 1.0} and α2 = {0.3, 0.5, 0.8}were tested on KROAB50 and KROAB100
in 20 runs. Figure 20 plots the mean IGD-metric values found by EMOSA with differ-
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Figure 20: The mean IGD-metric values found by EMOSA with 15 combinations of
Treheat and α2.
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Figure 21: The non-dominated solutions found by EMOSA with H = 23 (left) and
H = 53 (right) for KROABC100.

ent combinations of Treheat and α2. It can be observed that EMOSA with lower reheat
temperature has better performance. For the smaller instance KROAB50, the best result
was found by EMOSA using a faster cooling rate (0.5). However, such a strategy does
not perform best for KROAB100. For this larger instance, EMOSA with a slower cool-
ing rate (0.8) worked better. For the small instance, the current population of EMOSA is
very likely to be well-converged towards the Pareto front. In this case, EMOSA needs to
intensify the search near the Pareto front. Therefore, the temperature levels in EMOSA
should be in lower values. In contrast, EMOSA with slow cooling rate is able to increase
the diversity of the search for large instances.

7.2.2 Population Size (Q) and the Number of Uniform Weight Vectors (H)

In EMOSA, the set of current weight vectors are chosen from a set of predefined uni-
form weight vectors. Such a set is controlled by a parameter H . In this section, we
study the influence of H on the performance of EMOSA. We tested EMOSA with a
smaller H=23 (300 uniform weight vectors) and a larger H=53 (1485 uniform weight
vectors) for KROABC100. Figure 21 shows the distribution of non-dominated solu-
tions found by EMOSA with H = 23 and H = 53. We can observe from this figure that
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EMOSA with the larger value of H performed better than that with the smaller value of
H wrt diversity. It is easy to understand that more uniform weight vectors are needed
in EMOSA when the size of Pareto front is very large. However, a very large value of
H will increase the computational time of adapting weight vectors in EMOSA.

As we mentioned before, EMOSA produced better results than other MOMA-like
algorithms although its population size is much smaller. The main reason for this is
that EMOSA uses a strategy to adapt weight vectors. We also tested EMOSA with pop-
ulation sizes of 100, 200, 300, 400 and 500 on instance KROABC100. Correspondingly,
the obtained mean IGD values were 4308.13, 4078.63, 4396.37, 5280.28 and 5792.63. It
is clear that EMOSA with population sizes smaller than 300 found similar IGD-metric
values. In contrast, EMOSA with larger population sizes performed worse.

8 Conclusions

Both evolutionary algorithms and simulated annealing are popular stochastic search
techniques for tackling multi-objective combinatorial optimization. However, the hy-
bridization of both methods has not yet been studied in the context of MOCO problems.
Most of the existing research work on multi-objective memetic algorithms only focuses
on the use of simple hill-climber local search within evolutionary algorithms. In this
paper, we proposed an adaptive evolutionary multi-objective approach combined with
simulated annealing. We call this approach Evolutionary Multi-objective Simulated
Annealing (EMOSA). The algorithm seeks to optimize multiple weighted aggregation
functions. To approximate various parts of the POF, we have suggested a new method
to tune the weight vectors of these aggregation functions. Moreover, ε-dominance was
used to update the external population of non-dominated solutions in EMOSA for en-
hancing computational efficiency.

We also compared EMOSA to six other algorithms using weighted aggregation
(three MOMA-like algorithms and three MOSA-like algorithms) on both the multi-
objective knapsack problems and the multi-objective traveling salesman problem. Our
experimental results show that EMOSA performs better than all other algorithms con-
sidered in terms of both the IGD-metric (inverted generational distance) and the S-
metric (hypervolume). In particular, EMOSA is capable of finding a very good distri-
bution of non-dominated solutions for the 3-objective test instances of both problems.
The main reason for this is that our new strategy for tuning weight vectors directs
the search towards different portions of the POF in a more effective way than the old
strategy. Moreover, we also studied here the effects of important components on the
performance of the proposed EMOSA algorithm. We have shown that the use of ε-
dominance significantly reduces the computational time for maintaining the external
population of non-dominated solutions.

It should be noted that the POF shapes of all test instances in both MOCO prob-
lems considered in this paper do not present difficulties to EMOSA using the weighted
sum approach. As future work, in order to deal with some hard POF shapes, such as
discontinuity, we intend to design a robust version of EMOSA to tackle such MOCO
problems. Moreover, we also intend to investigate the ability of EMOSA to solve other
challenging MOPs, such as continuous MOPs with many local optima, MOCO prob-
lems with complex constraints, many-objective problems, and dynamic MOPs. The
C++ source code of EMOSA is available from the authors at request.
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Paquete, L. and Stützle, T. (2003). A two-phase local search for the biobjective traveling
salesman problem. In Proc. of the Second International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), pages 479–493. Springer-Verlag.

Sanghamitra, B., Sriparna, S., Ujjwal, M., and Kalyanmoy, D. (2008). A simulated
annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions
on Evolutionary Computation, 12(3):269–283.

Serafini, P. (1992). Simulated annealing for multiobjective optimization problems. In
Procceedings of the 10th International Conference on Multiple Criteria Decision Making,
pages 87–96.

Smith, K., Everson, R., and Firldsend, J. (2004). Dominance measures for multi-
objective simulated annealing. In Proc. of the 2004 IEEE Congress on Evolutionary Com-
putation (CEC 2004), pages 23–30, Portland, USA. IEEE Press.

Smith, K. I., Everson, R. M., Fieldsend, J. E., Murphy, C., and Misra, R. (2008).
Dominance-based multiobjective simulated annealing. IEEE Transactions on Evolu-
tionary Computation, 12(3):323–342.

Suman, B. and Kumar, P. (2006). A survey of simulated annealing as a tool for single and
multiobjective optimization. Journal of the Operational Research Society, 57(10):1143–
1160.

Tan, K., Khor, E., and Lee, T. (2005). Multiobjective Evolutionary Algorithms and Applica-
tions. Advanced Information and Knowledge Processing. Springer.

Tekinalp, O. and Karsli, G. (2007). A new multiobjective simulated annealing algo-
rithm. Journal of Global Optimization, 39(1):49–77.

Ulungu, E., Teghem, J., Fortemps, P., and Tuyttens, D. (1999). MOSA method - a tool for
solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria
Decision Analysis, 8(4):221–236.

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization. In Proc. of Evolutionary Meth-
ods for Design, Optimisation and Control with Applications to Industrial Problems (EURO-
GEN 2001), pages 95–100.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A compara-
tive case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271.

Evolutionary Computation Volume x, Number x 32


