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Abstract. In this article we study discontinuous Galerkin �nite element discretizations

of linear second-order elliptic partial di�erential equations with Dirac delta right-hand

side. In particular, assuming that the underlying computational mesh is quasi-uniform,

we derive an a priori bound on the error measured in terms of the L2�norm. Additionally,

we develop residual�based a posteriori error estimators that can be used within an

adaptive mesh re�nement framework. Numerical examples for the symmetric interior

penalty scheme are presented which con�rm the theoretical results.
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1. Introduction

In this article, we will consider the numerical approximation of the boundary value model
problem

−∆u = δx0 in Ω, (1)

u = 0 on ∂Ω, (2)

based on employing discontinuous Galerkin (DG) �nite element discretizations. Here, Ω ⊂ R2 is
an open bounded polygonal domain, and δx0 denotes the Dirac delta distribution at some given
point x0 ∈ Ω. Throughout, in order to avoid technical di�culties due to corner singularities, we
suppose that the domain Ω is convex (this assumption can be relaxed in some parts of the article;

this will be remarked on later). The weak formulation of (1)�(2) is to �nd u ∈W 1,p
0 (Ω) such that

a(u, v) :=
∫

Ω

∇u · ∇v dx = v(x0) ∀v ∈W 1,q
0 (Ω), (3)

with 1 ≤ p < 2, and 1
p + 1

q = 1. In this manuscript, for s ∈ N0 and t ≥ 1, W s,t(Ω) signi�es the

standard Sobolev space of all functions whose (weak) derivatives up to order s are bounded in the

Lt�norm. Moreover, W s,t
0 (Ω) is the subspace of functions belonging to W s,t(Ω) with zero trace

along the boundary ∂Ω. If t = 2, we simply write Hs(Ω) = W s,2(Ω). Following [3, Section 2] the
above weak formulation is well-posed.
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Second-order elliptic partial di�erential equations of the form (1)�(2) are employed, for instance,
in the modelling of di�usion processes, heat �ow, structural mechanics applications, or electric
potentials, whenever point sources or loads occur. In addition, problems with a δ-source appear
as dual problems in deriving point-wise error estimates for �nite element discretizations; see,
e.g., [6, 10, 12]. From an analytical point of view, the challenge in describing such problems in a
proper manner lies in the fact that the Dirac δ-distribution in R2 does not belong to H−1(Ω);
thereby, the solution of (1)�(2) is not an H1�function. Consequently, the numerical approximation
of (1)�(2) by, for example, �nite element methods, requires a non-standard analysis. Here, in the
context of conforming FEM, we mention the a priori results in [7, 17], as well as the a posteriori

error analysis in [3]. For DG approximations to low-regularity problems, see, e.g., [13, 19].
The focus of the current paper is to extend some of the results developed for standard FEM to

the context of discontinuous Galerkin methods. In particular, we shall derive a priori, as well as
residual-based (global upper and local lower) a posteriori error estimates with respect to the L2�
norm. Whilst striving to keep matters rather general, we will use the symmetric interior penalty
discontinuous Galerkin method (SIPG), see [4, 9, 18], as an example to illustrate our results.

The outline of the article is as follows: In Section 2, we recall some basic de�nitions for dis-
continuous Galerkin discretizations. Then, in Section 3 the a priori error analysis of a general
class of DG methods on quasi-uniform meshes is presented. Section 4 presents the residual�based
a posteriori error analysis. Subsequently, in Section 5 numerical experiments are undertaken to
con�rm the theoretical results. Finally, in Section 6 we add some concluding remarks.

2. Discontinuous Galerkin Methods

In this paper, we are interested in solving (1)�(2) numerically by means of suitable discontinuous
Galerkin discretizations. Before discussing these schemes, we will �rst introduce a suitable �nite
element mesh framework for them.

2.1. Meshes, Spaces, and Element Boundary Operators

We consider shape-regular meshes T that partition Ω into open a�ne disjoint triangular or
quadrilateral elements {K}K∈T , i.e., Ω =

⋃
K∈T K. We suppose that T is constructed in such a

manner that x0 lies in the interior of some element K0 ∈ T . Furthermore, we permit meshes to

be 1-irregular. Each element K ∈ T is an image of the open reference triangle T̂ = {(x̂1, x̂2) :
−1 < x̂1 < 1,−1 < x̂2 < −x̂1} or of the open reference square Q̂ = (−1, 1)2, respectively.
By hK , we denote the diameter of an element K ∈ T ; the elemental diameters are stored in a
vector h = [hK ]K∈T .

Moreover, we will de�ne some suitable element boundary operators that are required for DG
methods. To this end, we denote by EI the set of all interior edges and by EB the set of all
boundary edges in T . Additionally, we set E = EI ∪ EB. The boundary ∂K of an element K and
the sets ∂K \ ∂Ω and ∂K ∩ ∂Ω will be identi�ed in a natural way with the corresponding subsets
of E .

Let K] and K[ be two adjacent elements of T , and x an arbitrary point on the interior edge
e ∈ EI given by e = ∂K] ∩ ∂K[. Furthermore, let v and q be scalar- and vector-valued functions,
respectively, that are su�ciently smooth inside each element K]/[. By (v]/[, q]/[), we denote the
traces of (v, q) on e taken from within the interior of K]/[, respectively. Then, the averages of v
and q at x ∈ e are given by

〈〈v〉〉 =
1
2
(v] + v[), 〈〈q〉〉 =

1
2
(q] + q[),

respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v] nK]
+ v[ nK[

, [[q]] = q] · nK]
+ q[ · nK[

,
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respectively. Here, for K ∈ T , we denote by nK the unit outward normal vector to ∂K. On a
boundary edge e ∈ EB, we set 〈〈v〉〉 = v, 〈〈q〉〉 = q and [[v]] = vn, with n denoting the unit outward
normal vector on the boundary ∂Ω.

2.2. DG Discretizations

For a given �nite element mesh T and a �xed polynomial degree ` ≥ 1, let us consider the DG
�nite element space

VDG(T ) = {v ∈ L2(Ω) : v|K ∈ S`(K) ∀K ∈ T }, (4)

where, for K ∈ T , S`(K) signi�es either the space P`(K) of all polynomials of total degree at
most ` on K, when K is a triangle, or the space Q`(K) of all polynomials of degree at most ` in
each coordinate direction, when K is a quadrilateral.

Let us now consider a DG bilinear form aDG(·, ·) which discretizes the problem (1)�(2), i.e., we
seek a DG solution uDG ∈ VDG(T ) such that

aDG(uDG, v) = v(x0) ∀v ∈ VDG(T ). (5)

We assume that the matrix corresponding to aDG(·, ·) on VDG(T ) × VDG(T ) is non-singular, so
that the discrete solution uDG is uniquely de�ned. Moreover, we suppose that aDG(·, ·) is of the
form

aDG(w, v) =
∫

Ω

∇hw · ∇hv dx + F(w, v), (6)

where ∇h denotes the elementwise gradient, and F(·, ·) is a bilinear form featuring the numerical
�uxes of the DG scheme under consideration.

In order to give an example, we recall the symmetric interior penalty discontinuous Galerkin
method (SIPG); see, e.g., [4, 5, 15, 18]. More precisely, for a �xed parameter γ > 0, we de�ne the
DG form

aDG(w, v) =
∫

Ω

∇hw · ∇hv dx−
∫
E
〈〈∇hw〉〉 · [[v]] ds

−
∫
E
[[w]] · 〈〈∇hv〉〉ds+ γ

∫
E
h−1[[w]] · [[v]] ds.

(7)

Here, h ∈ L∞(E) is given by

h(x) =

{
min(hK]

, hK[
) for x ∈ ∂K] ∩ ∂K[ ∈ EI ,

hK for x ∈ ∂K ∩ ∂Ω ∈ EB.

For su�ciently large γ > 0, the form aDG(·, ·) is coercive with respect to a suitable DG energy norm
and hence, using the SIPG form (7) in (5), the matrix corresponding to the bilinear form aDG(·, ·)
is invertible; cf., e.g., [16].

3. Convergence Behavior on Quasi-Uniform Meshes

The aim of this section is to prove an a priori error estimate for the DG method (5) with
respect to the L2�norm. To this end, let us suppose that the mesh T is quasi-uniform, with mesh
size h := maxK∈T hK , that is, there exists a constant ρ > 0 such that

ρ <
hK
hK′

< ρ−1,

for any two elements K,K ′ ∈ T .
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3.1. A Discrete δ-Function

Following the approach [17], we commence by constructing a discrete approximation δh ∈
VDG(T ) of the Dirac delta function δx0 . More precisely, let

δh :=

{
0 on Ω \K0,

δK0 on K0,

where K0 ∈ T is the unique element which x0 belongs to. We de�ne δK0 ∈ S`(K0) by∫
K0

δK0v dx = v(x0) ∀v ∈ S`(K0).

Clearly, we have that ∫
Ω

δhv dx = v(x0) (8)

for any v ∈ VDG(T ). We now write Π`
K0

to be the L2�projection operator onto S`(K0); more

precisely, given w ∈ L2(K0), we de�ne Π`
K0
w ∈ S`(K0) as follows:∫

K0

(w −Π`
K0
w)v dx = 0 ∀v ∈ S`(K0). (9)

Thereby,

‖δh‖L2(Ω) = sup
v∈L2(K0)

v 6≡0

∫
K0

δhv dx

‖v‖L2(K0)

= sup
v∈L2(K0)

v 6≡0

∫
K0

δhΠ`
K0
v dx

‖v‖L2(K0)

. (10)

Now, using that ‖w‖L2(K0)
≥
∥∥Π`

K0
w
∥∥
L2(K0)

for any w ∈ L2(K0), we obtain

‖δh‖L2(Ω) ≤ sup
v∈L2(K0)

Π`
K0

v 6≡0

∫
K0

δhΠ`
K0
v dx∥∥Π`

K0
v
∥∥
L2(K0)

= sup
v∈L2(K0)

Π`
K0

v 6≡0

∣∣Π`
K0
v(x0)

∣∣∥∥Π`
K0
v
∥∥
L2(K0)

≤ sup
v∈L2(K0)

Π`
K0

v 6≡0

∥∥Π`
K0
v
∥∥
L∞(K0)∥∥Π`

K0
v
∥∥
L2(K0)

.

Furthermore, employing the inverse estimate

‖w‖L∞(K0)
≤ Ch−1

K0
‖w‖L2(K0)

∀w ∈ S`(K0), (11)

it follows that
‖δh‖L2(Ω) ≤ Ch−1

K0
. (12)

In addition, letting v ≡ 1 in (10) leads to

‖δh‖L2(Ω) ≥
v(x0)

‖v‖L2(K0)

=
1

‖1‖L2(K0)

≥ Ch−1
K0
. (13)

3.2. A Priori Error Analysis

The function δh from (8) is used to de�ne the ensuing auxiliary problem:

−∆Uh = δh in Ω,

Uh = 0 on ∂Ω.

The standard weak formulation is to �nd Uh ∈ H1
0 (Ω) such that

a(Uh, v) =
∫

Ω

δhv dx ∀v ∈ H1
0 (Ω).
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Since Ω is convex, the Laplace operator ∆ : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is an isomorphism; see,

e.g., [8, 11]. In particular, ∥∥∆−1
∥∥
L2→H2(Ω)∩H1

0 (Ω)
<∞. (14)

Thus, we have ∥∥Uh∥∥
H2(Ω)

≤ C ‖δh‖L2(Ω) . (15)

Referring to [17], the following error bound holds∥∥u− Uh
∥∥
L2(Ω)

≤ Ch, (16)

where u is the solution of (1)�(2), and C > 0 is a constant depending on the distance of x0 to ∂Ω.
In addition, using (8), we notice that the DG solution uDG from (5) satis�es

aDG(uDG, v) = v(x0) =
∫

Ω

δhv dx

for any v ∈ VDG(T ). Consequently, uDG can be seen to be the DG approximation of Uh. Hence,
provided that (14) holds, we may assume that we have the estimate∥∥Uh − uDG

∥∥
L2(Ω)

≤ Ch2
∥∥Uh∥∥

H2(Ω)
. (17)

Indeed, this bound is true for various DG schemes in the literature (such as, for instance, the
SIPG method (7)); see [5]. Thus, employing (12) we conclude that∥∥Uh − uDG

∥∥
L2(Ω)

≤ Ch2 ‖δh‖L2(Ω) ≤ Ch. (18)

Thereby, exploiting the triangle inequality, gives

‖u− uDG‖L2(Ω) ≤
∥∥u− Uh

∥∥
L2(Ω)

+
∥∥Uh − uDG

∥∥
L2(Ω)

; (19)

inserting the bounds (16) and (18) into (19), we deduce the following result.

Theorem 3.1. Let T be a quasi-uniform mesh of mesh size h. Furthermore, suppose that (14),
as well as the L2�error estimate (17) hold. Then, we have the following a priori error bound

‖u− uDG‖L2(Ω) ≤ Ch,

where u and uDG are the solutions of (1)�(2) and (5), respectively, and C > 0 is a constant

independent of h.

Remark 3.2. We remark that the above error bound may be improved on meshes that are
appropriately graded about the point x0; see [2].

4. Residual-Based A Posteriori Error Analysis

We now proceed by developing an L2�norm a posteriori error analysis of the DG schemes
de�ned in (5). Here, we derive both general upper and (local) lower bounds on the error measured
in terms of the L2�norm. Additionally, in order to present a speci�c example, the general results
will be applied to the SIPG method.
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4.1. Upper Bound

For any p ∈ L2(Ω), let us consider the dual problem

−∆ψ = p in Ω, (20)

ψ = 0 on ∂Ω. (21)

The weak formulation reads: �nd ψ ∈ H1
0 (Ω) such that

a(ψ, v) =
∫

Ω

pv dx ∀v ∈ H1
0 (Ω),

where a(·, ·) is the bilinear form de�ned in (3). By (14), we have the elliptic regularity estimate

‖ψ‖H2(Ω) ≤ C ‖p‖L2(Ω) . (22)

For the L2�norm of the error u− uDG in the DG discretization, we may write

‖u− uDG‖L2(Ω) = sup
p∈L2(Ω)

p6≡0

∫
Ω

(u− uDG)pdx

‖p‖L2(Ω)

. (23)

Here, for the integral we have∫
Ω

(u− uDG)pdx = a(u, ψ) +
∫

Ω

uDG∆ψ dx = ψ(x0) +
∫

Ω

uDG∆ψ dx.

Twofold integration by parts (element by element) of the last term results in∫
Ω

uDG∆ψ dx = −
∑
K∈T

∫
K

∇uDG · ∇ψ dx +
∑
K∈T

∫
∂K

(∇ψ · nK)uDG ds

=
∑
K∈T

∫
K

ψ∆uDG dx−
∑
K∈T

∫
∂K

(∇uDG · nK)ψ ds

+
∑
K∈T

∫
∂K

(∇ψ · nK)uDG ds.

Furthermore, applying some elementary calculations, we obtain∫
Ω

uDG∆ψ dx =
∑
K∈T

∫
K

ψ∆uDG dx−
∫
EI

[[∇huDG]]ψ ds+
∫
E
[[uDG]] · ∇ψ ds.

For any ψh ∈ VDG(T ), there holds

ψh(x0) = aDG(uDG, ψh) =
∫

Ω

∇huDG · ∇hψh dx + F(uDG, ψh);

cf. (6). An elementwise integration by parts and elementary manipulations as before, yield that∫
Ω

∇huDG · ∇hψh dx

= −
∑
K∈T

∫
K

ψh∆uDG dx +
∑
K∈T

∫
∂K

(∇uDG · nK)ψh ds

= −
∑
K∈T

∫
K

ψh∆uDG dx +
∫
E
〈〈∇huDG〉〉 · [[ψh]] ds+

∫
EI

[[∇huDG]]〈〈ψh〉〉ds.
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Therefore, we obtain that

∫
Ω

(u− uDG)pdx = (ψ − ψh)(x0) +
∑
K∈T

∫
K

(ψ − ψh)∆uDG dx

−
∫
EI

[[∇huDG]]〈〈ψ − ψh〉〉ds+R[uDG, ψ](ψh),

where

R[uDG, ψ](ψh) =
∫
E
〈〈∇huDG〉〉 · [[ψh]] ds+

∫
E
[[uDG]] · ∇ψ ds+ F(uDG, ψh) (24)

is a residual term. We make the assumption that

|R[uDG, ψ](ψh)| ≤ CΥ(uDG)|||ψ − ψh|||h, (25)

where C > 0 is a constant independent of h, Υ(uDG) is a computable quantity, and ||| · |||h is a
semi-norm such that we can �nd an interpolant ψh ∈ VDG(T ) of the solution ψ of (20)�(21) with

h−2
K0

sup
x∈K0

|(ψ − ψh)(x)|2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2L2(K)

+
∑
K∈T

h−2
K ‖∇(ψ − ψh)‖2L2(K) + |||ψ − ψh|||2h ≤ C ‖ψ‖2H2(Ω) ,

(26)

for a constant C > 0 independent of h. Here, K0 ∈ T is again the element containing the point x0

which the δ-distribution δx0 from (1) is centered at.
In order to proceed, we recall the L2�projection onto S`(K0) from (9). Then, applying (8),

gives

(ψ − ψh)(x0) = (ψ −Π`
K0
ψ)(x0) + Π`

K0
(ψ − ψh)(x0)

= (ψ −Π`
K0
ψ)(x0) +

∫
K0

Π`
K0

(ψ − ψh)δh dx

= (ψ −Π`
K0
ψ)(x0) +

∫
K0

(ψ − ψh)δh dx.

Hence,

∫
Ω

(u− uDG)pdx = (ψ −Π`
K0
ψ)(x0) +

∑
K∈T

∫
K

(ψ − ψh)(∆uDG + δh) dx

−
∫
EI

[[∇huDG]]〈〈ψ − ψh〉〉ds+R[uDG, ψ](ψh).
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Therefore, using (25), it follows that∣∣∣∣ ∫
Ω

(u− uDG)pdx

∣∣∣∣
≤ sup

x∈K0

∣∣(Π`
K0
ψ − ψ)(x)

∣∣+ ∑
K∈T

‖ψ − ψh‖L2(K) ‖∆uDG + δh‖L2(K)

+
∥∥∥h 3

2 [[∇huDG]]
∥∥∥
L2(EI)

∥∥∥h− 3
2 〈〈ψ − ψh〉〉

∥∥∥
L2(EI)

+ CΥ(uDG)|||ψ − ψh|||h

≤ C

(
h2
K0

+
∑
K∈T

h4
K ‖∆uDG + δh‖2L2(K) +

∥∥∥h 3
2 [[∇huDG]]

∥∥∥2

L2(EI)
+ Υ(uDG)2

) 1
2

×
(
h−2
K0

sup
x∈K0

∣∣(ψ −Π`
K0
ψ)(x)

∣∣2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2L2(K)

+
∥∥∥h− 3

2 〈〈ψ − ψh〉〉
∥∥∥2

L2(EI)
+ |||ψ − ψh|||2h

) 1
2

.

Here, employing a standard trace inequality, we notice that∥∥∥h− 3
2 〈〈ψ − ψh〉〉

∥∥∥2

L2(EI)
≤ C

∑
K∈T

h−3
K ‖ψ − ψh‖2L2(∂K\∂Ω)

≤ C
∑
K∈T

(
h−4
K ‖ψ − ψh‖2L2(K) + h−2

K ‖∇(ψ − ψh)‖2L2(K)

)
.

Furthermore,

sup
x∈K0

∣∣(ψ −Π`
K0
ψ)(x)

∣∣ ≤ sup
x∈K0

|(ψ − ψh)(x)|+ sup
x∈K0

∣∣Π`
K0

(ψ − ψh)(x)
∣∣ .

Applying the inverse estimate (11), leads to

sup
x∈K0

∣∣Π`
K0

(ψ − ψh)(x)
∣∣ ≤ Ch−1

K0

∥∥Π`
K0

(ψ − ψh)
∥∥
L2(K0)

≤ Ch−1
K0
‖ψ − ψh‖L2(K0)

.

It follows that∣∣∣∣ ∫
Ω

(u− uDG)pdx

∣∣∣∣
≤ C

(
h2
K0

+
∑
K∈T

h4
K ‖∆uDG + δh‖2L2(K) +

∑
K∈T

h3
K ‖[[∇huDG]]‖2L2(∂K\∂Ω) + Υ(uDG)2

) 1
2

×
(
h−2
K0

sup
x∈K0

|(ψ − ψh)(x)|2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2L2(K)

+
∑
K∈T

h−2
K ‖∇(ψ − ψh)‖2L2(K) + |||ψ − ψh|||2h

) 1
2

.

Recalling (26), this becomes

∣∣∣∣ ∫
Ω

(u− uDG)pdx

∣∣∣∣ ≤ C

(
h2
K0

+ Υ(uDG)2 +
∑
K∈T

η̃K

) 1
2

‖ψ‖H2(Ω) ,
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where, for each K ∈ T , the local error indicator η̃K is given by

η̃K := h4
K ‖∆uDG + δh‖2L2(K) + h3

K ‖[[∇huDG]]‖2L2(∂K\∂Ω) .

Thereby, for any constant κ > 0, de�ning the error indicators

ηκ,K := h4
K ‖∆uDG + δh‖2L2(K) + h3

K ‖[[∇huDG]]‖2L2(∂K\∂Ω) + κ2hK ‖[[uDG]]‖2L2(∂K) , (27)

noting that [[u]]|E = 0 (for u ∈ W 1,p
0 (Ω)), employing the elliptic regularity bound (22), and

recalling (23), yields the following result.

Theorem 4.1. Let uDG be the DG solution given by (5) and ψ be the solution of (20)�(21).
Assume that the residual R[uDG, ψ](ψh) de�ned in (24) satis�es (25) and (26) for some semi-

norm ||| · |||h and some interpolant ψh ∈ VDG(T ). Then, the a posteriori error estimate holds

‖u− uDG‖2L2(Ω) + κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
≤ C

(
h2
K0

+ Υ(uDG)2 +
∑
K∈T

ηκ,K

)
, (28)

where ηκ,K , K ∈ T , are the local error indicators de�ned in (27). The constant C > 0 is indepen-

dent of h and κ.

Remark 4.2. The two equivalent terms
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
and

∑
K∈T hK ‖[[uDG]]‖2L2(∂K) have

been added on both sides of the a posteriori error estimate (28) since the extended L2�norm

‖u− uDG‖20,h ≡ ‖u− uDG‖2L2(Ω) + κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)

of the error appears to be a suitable norm for proving local lower a posteriori error estimates; see
the subsequent section.

4.2. Local Lower Estimates

Whilst our result in the previous section proves the reliability of the proposed a posteriori error
estimator, we now focus on e�ciency bounds in the sequel. We note that the convexity of the
domain Ω is not required in this part of the article.

Let us consider the individual terms in the error indicator ηκ,K , K ∈ T , from (27).

Proposition 4.3. For each K ∈ T , the lower error bounds

‖∆uDG + δh‖L2(K0)
≤ Ch−2

K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
,

and

‖∆uDG + δh‖L2(K) ≤ Ch−2
K ‖u− uDG‖L2(K) , K ∈ T \ {K0},

hold.

Proof. For each element K ∈ T we de�ne a smooth bubble function bK on K that satis�es

supp bK ⊆ K, bK ≥ 0, sup
x∈K

bK(x) = 1, bK |∂K = 0, ∇bK |∂K = 0. (29)

Then, focusing on K0 �rst and using the equivalence of norms in �nite dimensional spaces, we
have that

C ‖∆uDG + δh‖2L2(K0)
≤
∫
K0

v(∆uDG + δh) dx =
∫

Ω

(δh − δx0)v dx +
∫
K0

v∆(uDG − u) dx,
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where v := bK(∆uDG + δh). Noticing that v|∂K0 = 0 and

∇v|∂K0 = bK |∂K0∇(∆uDG + δh)|∂K0 +∇bK |∂K0(∆uDG + δh)|∂K0 = 0,

integrating by parts twice in the second integral yields

C ‖∆uDG + δh‖2L2(K0)
≤
∫

Ω

(δh − δx0)v dx +
∫
K0

∆v(uDG − u) dx

≤
(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖v‖H2(K0)

.

Again, due to equivalence of norms in �nite dimensional spaces, and scaling, we have

‖v‖H2(K0)
≤ Ch−2

K0
‖v‖L2(K0)

.

Hence,

C ‖∆uDG + δh‖2L2(K0)
≤ h−2

K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖v‖L2(K0)

≤ h−2
K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖∆uDG + δh‖L2(K0)

.

Dividing both sides of the above inequality by ‖∆uDG + δh‖L2(K0)
proves the proposition for K0.

For K ∈ T \ {K0} we let v = bK∆uDG and notice that δh|K = 0 and v(x0) = 0. Thence,

C ‖∆uDG + δh‖2L2(K) = C ‖∆uDG‖2L2(K) ≤
∫
K

v∆uDG dx =
∫
K

v∆(uDG − u) dx.

The remainder of the proof is very similar as before. �

Proposition 4.4. On K0, the following local lower bound holds

hK0 ≤ C
(
‖u− uDG‖L2(K0)

+ ‖δh − δx0‖H−2(Ω)

)
.

Proof. On the element K0 consider a smooth bubble function bK0 that satis�es the properties (29)
as well as

bK0(x0) = 1, ‖bK0‖L2(K0)
≤ 1

2
‖δh‖−1

L2(K0)
= O(hK0), ‖∆bK0‖L2(K0)

≤ Ch−1
K0
.

Due to (12) and (13), this construction is possible by choosing a bubble function possessing a
su�ciently small support in K0. Then,

1 =
∫

Ω

δx0bK0 dx =
∫
K0

∇(u− uDG) · ∇bK0 dx +
∫
K0

∇uDG · ∇bK0 dx.

Integration by parts, leads to

1 = −
∫
K0

(u− uDG)∆bK0 dx−
∫
K0

bK0∆uDG dx

= −
∫
K0

(u− uDG)∆bK0 dx−
∫
K0

(δh + ∆uDG)bK0 dx +
∫
K0

δhbK0 dx

≤ ‖u− uDG‖L2(K0)
‖∆bK0‖L2(K0)

+ ‖δh + ∆uDG‖L2(K0)
‖bK0‖L2(K0)

+ ‖δh‖L2(K0)
‖bK0‖L2(K0)

≤ Ch−1
K0
‖u− uDG‖L2(K0)

+ ChK0 ‖δh + ∆uDG‖L2(K0)
+

1
2
.
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This implies the bound

hK0 ≤ C
(
‖u− uDG‖L2(K0)

+ h2
K0
‖δh + ∆uDG‖L2(K0)

)
.

Invoking the bound from Proposition 4.3 shows the estimate. �

In order to bound the term ‖[[∇huDG]]‖L2(∂K\∂Ω) from (27) we assume that the mesh T is

regular (i.e., it does not contain any hanging nodes).

Proposition 4.5. Let T be regular. Consider two elements K],K[ ∈ T that share an interface e =
(∂K] ∩ ∂K[)◦ ∈ EI . We let ωe := (K] ∪K[)◦. Then, the lower bound holds

∥∥∥h 3
2 [[∇uDG]]

∥∥∥
L2(e)

≤ C

(
‖u− uDG‖L2(ωe) +

∥∥∥h 1
2 [[u− uDG]]

∥∥∥
L2(e)

+ ‖δh − δx0‖H−2(Ω)

)
.

Proof. Following [13, 14], let us de�ne an auxiliary function χe ∈ H1
0 (ωe) (which depends on the

function [[∇uDG]]|e) with the following properties:

χe|∂ωe
= 0, ∇χe|∂ωe

= 0, [[∇χe]]|e = 0,

as well as

‖[[∇uDG]]‖2L2(e) ≤ C

∫
e

χe[[∇uDG]] ds,

and ∥∥∥h− 1
2∇χe

∥∥∥
L2(e)

+
∥∥h−2χe

∥∥
L2(ωe)

+ ‖χe‖H2(ωe) ≤ C
∥∥∥h− 3

2 [[∇uDG]]
∥∥∥
L2(e)

. (30)

Then, we have

C ‖[[∇uDG]]‖2L2(e) ≤
∫
e

χe[[∇uDG]] ds =
∫
∂K]

χe(∇uDG · nK]
) ds+

∫
∂K[

χe(∇uDG · nK[
) ds.

Applying Green's formula, we obtain

C ‖[[∇uDG]]‖2L2(e) ≤
∫
ωe

∇χe · ∇huDG dx +
∫
ωe

χe∆huDG dx

= −
∫
ωe

∇χe · ∇h(u− uDG) dx +
∫
ωe

χe(∆huDG + δh) dx

−
∫
ωe

(δh − δx0)χe dx,

where ∆h signi�es the elementwise Laplacian. Integrating by parts we get

−
∫
ωe

∇χe · ∇h(u− uDG) dx = −
∫
e

∇χe · [[u− uDG]] ds+
∫
ωe

(u− uDG)∆hχe dx.

Thence,

‖[[∇uDG]]‖2L2(e) ≤ C

(∥∥∥h− 1
2∇χe

∥∥∥
L2(e)

∥∥∥h 1
2 [[u− uDG]]

∥∥∥
L2(e)

+ ‖u− uDG‖L2(ωe) ‖∆hχe‖L2(ωe)

+ ‖χe‖L2(ωe) ‖∆huDG + δh‖L2(ωe) + ‖δh − δx0‖H−2(Ω) ‖χe‖H2(ωe)

)
.
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Furthermore, we have

‖[[∇uDG]]‖2L2(e) ≤ C

(∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(e)
+ ‖u− uDG‖2L2(ωe) +

∥∥h2(∆huDG + δh)
∥∥2

L2(ωe)

+ ‖δh − δx0‖
2
H−2(Ω)

) 1
2

×
(∥∥∥h− 1

2∇χe
∥∥∥2

L2(e)
+
∥∥h−2χe

∥∥2

L2(ωe)
+ ‖χe‖2H2(ωe)

) 1
2

.

Using (30), and recalling the previous Proposition 4.3, it follows that

‖[[∇uDG]]‖2L2(e)

≤ C

(∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(e)
+ ‖u− uDG‖2L2(ωe) + ‖δh − δx0‖

2
H−2(Ω)

) 1
2

‖h− 3
2 [[∇uDG]]‖L2(e).

Now, noting that h|ωe
∼ hK]

∼ hK[
, completes the proof. �

Finally, we have the identity∥∥∥h 1
2 [[uDG]]

∥∥∥
L2(∂K)

=
∥∥∥h 1

2 [[u− uDG]]
∥∥∥
L2(∂K)

, K ∈ T , (31)

by observing again that [[u]]|E = 0.

Remark 4.6. The term ‖δh − δx0‖H−2(Ω) appearing in the lower error estimates above takes the

role of a data approximation term. We note that∫
Ω

(δx0 − δh)ψ dx = (ψ − ψh)(x0)−
∫

Ω

δh(ψ − ψh)

≤ sup
x∈K0

|(ψ − ψh)(x)|+ ‖δh‖L2(K0)
‖ψ − ψh‖L2(K0)

for any ψ ∈ H2(Ω) and any ψh ∈ VDG(T ). Let us choose ψh ∈ S1(K), K ∈ T , to be an interpolant
that satis�es the standard approximation estimate

h−2
K ‖ψ − ψh‖2L2(K) + ‖∇(ψ − ψh)‖2L2(K) ≤ Ch2

K ‖ψ‖
2
H2(K) , K ∈ T . (32)

Evidently, since ∇2ψh ≡ 0 on each element, we additionally have that∥∥∇2(ψ − ψh)
∥∥
L2(K)

≤ C ‖ψ‖H2(K) , (33)

where the constant C > 0 is independent of h. Furthermore, due to the continuous Sobolev
embedding H2(Ω) ↪→ L∞(Ω) (see, e.g., [1]), and by using a scaling argument, we conclude that

sup
x∈K

|(ψ − ψh)(x)| ≤ ChK ‖ψ‖H2(K) . (34)

Therefore, using the above bounds, together with (12), we obtain∫
Ω

(δx0 − δh)ψ dx ≤ ChK0 ‖ψ‖H2(K0)

for a constant C > 0 independent of h. Therefore,

‖δx0 − δh‖H−2(Ω) = sup
ψ∈H2(Ω),ψ 6≡0

∫
Ω

(δx0 − δh)ψ dx

‖ψ‖H2(Ω)

≤ ChK0 .



TITLE WILL BE SET BY THE PUBLISHER 13

4.3. Application to the SIPG method

We will now apply Theorem 4.1 to the SIPG method (7). More precisely, the quantity Υ(uDG)
from (25) will be de�ned explicitly. To this end, we start by noticing that the numerical �uxes in
the SIPG form aDG(·, ·) from (7) satisfy

F(uDG, ψh) = −
∫
E
〈〈∇huDG〉〉 · [[ψh]] ds−

∫
E
[[uDG]] · 〈〈∇hψh〉〉ds+ γ

∫
E
h−1[[uDG]] · [[ψh]] ds

for any ψh ∈ VDG(T ). Consequently, the residual R from (24) satis�es

R[uDG, ψ](ψh) =
∫
E
[[uDG]] · 〈〈∇h(ψ − ψh)〉〉ds+ γ

∫
E
h−1[[uDG]] · [[ψh]] ds.

Using that ψ ∈ H1
0 (Ω), we notice that [[ψ]] = 0 on E . Therefore, we obtain

|R[uDG, ψ](ψh)|

≤
∣∣∣∣∫
E
[[uDG]] · 〈〈∇h(ψ − ψh)〉〉ds

∣∣∣∣+ ∣∣∣∣γ ∫
E
h−1[[uDG]] · [[ψ − ψh]] ds

∣∣∣∣
≤
∥∥∥h 1

2 [[uDG]]
∥∥∥
L2(E)

∥∥∥h− 1
2 〈〈∇h(ψ − ψh)〉〉

∥∥∥
L2(E)

+
∥∥∥γh 1

2 [[uDG]]
∥∥∥
L2(E)

∥∥∥h− 3
2 [[ψ − ψh]]

∥∥∥
L2(E)

.

Employing the Cauchy-Schwarz inequality, this implies (25), with

Υ(uDG) :=
√

1 + γ2
∥∥∥h 1

2 [[uDG]]
∥∥∥
L2(E)

≤ C
√

1 + γ2

(∑
K∈T

h2
K ‖[[uDG]]‖2L2(∂K)

) 1
2

, (35)

and

|||ψ − ψh|||2h :=
∥∥∥h− 1

2 〈〈∇h(ψ − ψh)〉〉
∥∥∥2

L2(E)
+
∥∥∥h− 3

2 [[ψ − ψh]]
∥∥∥2

L2(E)

≤ C
∑
K∈T

(
h−3
K ‖ψ − ψh‖2L2(∂K) + h−1

K ‖∇(ψ − ψh)‖2L2(∂K)

)
.

Applying the trace inequality, with scaling, yields

|||ψ − ψh|||2h ≤ C
∑
K∈T

(
h−4
K ‖ψ − ψh‖2L2(K) + h−2

K ‖∇(ψ − ψh)‖2L2(K) +
∥∥∇2(ψ − ψh)

∥∥2

L2(K)

)
.

We choose ψh ∈ VDG(T ) to be an interpolant of ψ that ful�ls the bounds (32)�(34); this then
implies that (26) holds.

Thus, employing Theorem 4.1 and recalling (35), we deduce the following result.

Theorem 4.7. The SIPG method (7) for the numerical approximation of (1)�(2) satis�es the a
posteriori error estimate

‖u− uDG‖2L2(Ω) + κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
≤ C

(
h2
K0

+
∑
K∈T

ηSIPG
κ,K

)
, (36)

where

ηSIPG
κ,K := h4

K ‖∆uDG + δh‖2L2(K) + h3
K ‖[[∇huDG]]‖2L2(∂K\∂Ω) + (1 + γ2 + κ2)h2

K ‖[[uDG]]‖2L2(∂K) ,

for any K ∈ T , and any constant κ > 0. Here, C > 0 is a constant independent of h, uDG, γ,
and of κ.
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Figure 1. Initial mesh, consisting of 988 elements.

Remark 4.8. Local lower a posteriori error estimates for the SIPG scheme are given by the gener-
ally valid estimates from Section 4.2. Evidently, a sensible choice of κ is given by κ ∼ γ. This will

ensure the equivalence of the terms κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
and (1+γ2+κ2)

∑
K∈T ‖[[uDG]]‖2L2(∂K)

appearing on the left and right-hand side of the a posteriori error estimate (36), respectively;
cf. (31).

Remark 4.9. We note that the convexity of Ω is not essential in the a posteriori error analy-
sis above. In the non-convex case, however, the presence of possible corner singularities in the
solution ψ of (20)�(21) implies that ψ ∈ W 2,p(Ω) for some p < 2 rather than ψ ∈ H2(Ω); see,
e.g., [11]. Consequently, a re�ned analysis based on Lp spaces is required. This can again be done
along the lines of [3]; cf. also [19].

5. Numerical Examples

We consider the case when the computational domain Ω is the unit disc, i.e., Ω = {x ∈ R2 :
|x| < 1}. Setting x0 = 0, the analytical solution to (1)�(2) is the fundamental solution of the
Laplace equation; namely,

u(x) = − 1
2π

ln |x|.

Our numerical experiments are based on the SIPG method (7); here, we choose γ = κ = 10.
Firstly, we investigate the asymptotic convergence of the SIPG on a sequence of successively �ner
quasi-uniform unstructured triangular meshes for ` = 1, 2. Here, the initial mesh consists of 988
elements; cf. Figure 1. In Tables 1 and 2 we present a comparison of the L2(Ω)�norm, as well as the
extended L2(Ω)�norm de�ned in Remark 4.2, of the error u−uDG for ` = 1, 2, respectively, as the
initial mesh is uniformly re�ned. In each case we show the number of elements in the computational
mesh, the number of degrees of freedom in the �nite element space VDG(T ), the corresponding
L2(Ω)�norm and extended L2(Ω)�norm of the error, together with their respective computed rate
of convergence k. Here, we observe that (asymptotically) ‖u−uDG‖L2(Ω) converges to zero at the
rate O(h) as h tends to zero, cf. Theorem 3.1. Similar behavior of the norm ‖u− uDG‖0,h is also
observed asymptotically.

Secondly, we now investigate the performance of the a posteriori error estimate derived in
Theorem 4.7 within an automatic h�version adaptive re�nement procedure which is based on 1-
irregular triangular elements, with ` = 1. The h�adaptive meshes are constructed by marking the
elements for re�nement/dere�nement according to the size of the local error indicators de�ned on
the right-hand side of (36); this is done by employing the �xed fraction strategy, with re�nement
and dere�nement fractions set to 25% and 10%, respectively. The initial starting mesh for adaptive
re�nement is the same one depicted in Figure 1. In Figure 2(a) we show the history of the
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Elements Dof ‖u− uDG‖L2(Ω) k ‖u− uDG‖0,h k
988 2964 0.5096E-02 0.00 0.1019 0.00
3952 11856 0.3004E-02 0.76 0.4105E-01 1.31
15808 47424 0.2133E-02 0.49 0.1677E-01 1.29
63232 189696 0.8467E-03 1.33 0.9547E-02 0.81
252928 758784 0.5272E-03 0.68 0.4981E-02 0.94

Table 1. Convergence of ‖u − uDG‖L2(Ω) and ‖u − uDG‖0,h on quasi-uniform
triangular meshes with ` = 1.

Elements Dof ‖u− uDG‖L2(Ω) k ‖u− uDG‖0,h k
988 5928 0.2112E-02 0.00 0.1100 0.00
3952 23712 0.1451E-02 0.54 0.3400E-01 1.69
15808 94848 0.7444E-03 0.96 0.1715E-01 0.99
63232 379392 0.3484E-03 1.10 0.8688E-02 0.98
252928 1517568 0.1817E-03 0.94 0.6064E-02 0.52

Table 2. Convergence of ‖u − uDG‖L2(Ω) and ‖u − uDG‖0,h on quasi-uniform
triangular meshes with ` = 2.
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Figure 2. (a) Comparison of the actual and estimated extended L2(Ω)�norm of
the error with respect to the number of degrees of freedom; (b) E�ectivity indices.

actual and estimated extended L2(Ω)�norm of the error on each of the meshes generated based
on employing h�adaptive mesh re�nement. Here, we observe that the a posteriori bound over-
estimates the true error by a consistent factor. Indeed, the e�ectivity index tends to a value of
around 4 as the mesh is adaptively re�ned, cf. Figure 2(b). In Figure 3 we plot the meshes overlayed
onto the corresponding computed DG solution after 0 (initial mesh), 2, 4, 6, 8, and 9 adaptive
re�nement steps have been undertaken. Here, we observe that the mesh has been signi�cantly
re�ned in the vicinity of the origin of the computational domain, where the delta-source term is
centered, as expected.

6. Conclusions

In this article we have developed both the a priori and a posteriori error analysis of a general
class of DG �nite element methods for the numerical approximation of linear second-order elliptic
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(a) (b)

(c) (d)

(e) (f)

Figure 3. DG solution and mesh. (a) Initial mesh, with 988 elements; (b)
2 adaptive re�nements, with 3409 elements; (c) 4 adaptive re�nements, with
11035 elements; (d) 6 adaptive re�nements, with 33556 elements; (e) 8 adaptive
re�nements, with 97915 elements; (f) 9 adaptive re�nements, with 165043 ele-
ments.



TITLE WILL BE SET BY THE PUBLISHER 17

partial di�erential equations with Dirac delta right-hand side. In particular, the a priori bound
indicates that the L2�norm of the discretization error converges to zero at the rate O(h) as the
mesh size h tends to zero. Secondly, computable residual�based a posteriori error indicators have
been derived when the error is measured in terms of an extended L2�norm; the use of this norm
facilitates the derivation of local lower bounds. These theoretical results have been con�rmed
numerically; in particular, the a posteriori error bound has been employed within an automatic
adaptive mesh re�nement algorithm.
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