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Abstract

In this paper we propose and analyze a hp-adaptive discontinuous finite element

method for computing the band structure of 2D periodic photonic crystals. The

problem can be reduced to the computation of the discrete spectrum of each mem-

ber in a family of periodic Hermitian eigenvalue problems on the primitive cell,

parametrised by a two-dimensional parameter - the quasimomentum. We propose

a residual-based error estimator and show that it is reliable and efficient for all

eigenvalue problems in the family. In particular we prove that if the error estima-

tor converges to zero then the distance of the computed eigenfunction from the

true eigenspace also converges to zero and the computed eigenvalue converges to a

true eigenvalue. The results hold for eigenvalues of any multiplicity. We illustrate

the benefits of the resulting hp-adaptive method in practice, both for fully periodic

crystals and also for the computation of eigenvalues in the band gaps of crystals

with defects.

1 Introduction

Photonic crystals (PCs) are constructed by assembling portions of periodic
media composed of dielectric materials and they are designed to exhibit in-
teresting properties in the propagation of electromagnetic waves, such as
spectral band gaps - i.e., monochromatic electromagnetic waves of certain
frequencies may not propagate inside them. Media with band gaps have
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many potential applications, for example, in optical communications, filters,
lasers, switches and optical transistors; see [22, 28, 23, 8] for an introduction.
In this paper we consider only 2D PCs, whose structure is periodic in the
plane determined by two orthogonal directions and is constant in the direc-
tion normal to that plane. The behavior of light in these kind of devices can
be predicted solving a family of problems of the form: seek eigenpairs of the
form (λ, u) ∈ C × H1

π(Ω), with u appropriately normalized, such that
∫

Ω

(A(∇+ iκ)u) · ((∇ + iκ)v) = λ

∫

Ω

Buv in Ω, for all v ∈ H1
π(Ω), (1.1)

where Ω is the primitive cell of the photonic crystal and H1
π(Ω) is the space

all functions of H1(Ω) satisfying periodic boundary conditions on ∂Ω. The
scalar functions A and B in (1.1) are real and bounded above and below by
positive constants for all x ∈ Ω, i.e.

0 < a ≤ A(x) ≤ a for all x ∈ Ω, (1.2)

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (1.3)

In this paper we will assume (as it is generally the case in applications), that
A and B are both piecewise constant on Ω and we will also assume that any
jumps in A and B are aligned with the meshes used in this work.

A very popular practical numerical method for PCs is the Fourier spectral
method (also called the “plane-wave expansion method”) [27, 22, 13, 25, 26].
This method exploits the periodicity in the PC and uses modern highly tuned
FFT algorithms to obtain fast implementations. However the overall rate
of convergence of approximate spectra to true spectra is slow because the
jumps in the dielectric permittivity destroy the exponential accuracy which
is achieved by Fourier spectral methods on smooth problems.

In recent years papers on finite element methods (FEMs) for PC prob-
lems have started to appear, especially on low order FEMs [10, 12, 14, 15].
Even more recently there has been considerable interest in h-adaptive and
hp-adaptive FEMs. Examples of the former technology applied to PCs can
be found in [21, 20]. In this paper we are going to focus in the latter technol-
ogy which could achieve an exponential convergence rate. The are already
examples of a priori hp-adaptive methods in [29, 30], but as far as we know
a derivation for this problem of a reliable and efficient a posteriori error es-
timator with hp-adaptivity is still missing. Also in contrast to the majority
of works mentioned above we are not using a continuous Galerkin method,
but instead a discontinuous Galerkin (DG) method.

One of the main reasons why DG methods are widely used is because they
offer advantages in the context of hp–adaptivity over standard conforming
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FEMs. For example they provide increased flexibility in mesh design (irregu-
lar grids are admissible) and the freedom to choose the elemental polynomial
degrees, without the need to enforce continuity between elements, make the
realization of numerical codes simpler. It is already possible to find a DG
method for PCs in [16]. However in that paper there is no a posteriori error
analysis and also the DG method is different from the one presented here
because it is non-Hermitian.

The paper is structured as follows. In the next section we derive the
family of eigenvalue problems for photonic crystals. We then introduce the
symmetric interior penalty discretisation for the model problem after first
defining some appropriate function spaces and trace operators. The a pos-
teriori error estimator is stated in Section 4 and its reliability and efficiency
shown, up to higher order terms. In Section 5 we describe in details our
numerical method and how we use it. Then we present two numerical exper-
iments to validate our theoretical results. The first experiment is on periodic
structure, while the second one is on a photonic crystal with a defect.

2 Photonic crystal eigenvalue problem

The mathematical development (see e.g. [23]) begins with the Maxwell’s
equations for a monochromatic electromagnetic wave of frequency ω:

∇×Eω = − iω
c
µHω, ∇ · µHω = 0 ,

∇×Hω = iω
c
εEω , ∇ · εEω = 0 .

(2.4)

where Eω is the electric field, Hω is the magnetic field, ε and µ are, respec-
tively, the dielectric permittivity and magnetic permeability tensors, and c
is the speed of light in a vacuum. We assume the medium is periodic in the
(x, y) plane and is constant in the third (z) direction and that the material is
non-magnetic (so µ = 1). The problem (2.4) splits naturally into two inde-
pendent problems, called transverse magnetic (TM) and transverse electric
(TE) modes, as explained in [23]. On the assumption that the medium is
isotropic (so ε is scalar-valued), the problems are

∆uω +
ω2

c2
εuω = 0 (TM case) , (2.5)

and

∇ ·
1

ε
(∇uω) +

ω2

c2
uω = 0, (TE case) . (2.6)

Both problems (2.5) and (2.6) may be written in the abstract form as that
of seeking (λ, u) with u 6= 0 such that

∇ · (A∇u) + λBu = 0 . (2.7)
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So far (2.7) is posed over R2, with periodic coefficients.
A 2D periodic medium can be described using a lattice L := {R =

n1r1 + n2r2 , n1, n2 ∈ Z} , where {r1, r2} is a basis for R
2. The (Wigner-

Seitz) primitive cell for L is the set Ω of all points in R2 which are closer
to 0 than to any other point in L - see [9]. When Ω is translated through
all R ∈ L, we obtain a covering of R2 with overlap of measure 0. The
reciprocal lattice for L is the lattice L̂ generated by a basis {k1,k2}, chosen
so that ri · kj = 2πδi,j , i, j = 1, 2 , where δi,j is the Kronecker delta and
the primitive cell for the reciprocal lattice is called the first Brillouin zone,
which we denote here by K [9].

For example, if L is the square lattice generated by {e1, e2} (where ei

are the standard basis functions in R2), then Ω = [−0.5, 0.5]2, L̂ is generated
by {2πe1, 2πe2} and the first Brillouin zone is K = [−π, +π]2. Such square
lattices are used in all numerical experiments in Section 5.

The Floquet transform - see, e.g. [23] - may them be used to show the
equivalence of the problem (2.7) to a family of problems on the primitive cell
Ω parametrized by quasimomentum κ ∈ K. This is the family

(∇ + iκ) · A(∇ + iκ)ũ + λBũ = 0 on Ω, κ ∈ K , (2.8)

where ũ is the Floquet transform of u and λ is the corresponding eigenvalue
which now depends on κ. This equation should again be understood in the
weak form - a rigorous derivation can be found for example in [11]. In order
to recover the spectrum of the problem (2.7), it is sufficient to compute the
union of all the spectra of the problems in the family (2.8) for all κ ∈ K, and
these problems have discrete spectra [23]. Writing (2.8) in weak form gives
precisely (1.1).

Throughout L2(Ω) denotes the usual space of square integrable complex
valued functions equipped with the weighted norm

‖f‖0,B = b(f, f)1/2 , b(f, g) :=

∫

Ω

Bf ḡ . (2.9)

H1(Ω) denotes the usual space of functions in L2(Ω) with square integrable
gradient, with H1-norm denoted ‖f‖1, and H1

π(Ω) denotes the subspace of
functions in f ∈ H1(Ω) which satisfy periodic boundary conditions on ∂Ω.
We will also need the fractional order spaces H1+s(Ω), s ∈ [0, 1]. When we
want to restrict these norms to a measurable subset S ⊆ Ω, we write ‖f‖0,B,S,
‖f‖1,S, etc.

Problem (1.1) can be rewritten as: seek eigenpairs of the form (λj, uj) ∈
R × H1

π(Ω) such that

aκ(uj, v) = λj b(uj , v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1 ,

}
(2.10)
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where

aκ(u, v) :=

∫

Ω

(A(∇ + iκ)u) · ((∇ + iκ)v) , b(u, v) :=

∫

Ω

Buv .

It is easy to see that aκ is a Hermitian form on H1
π(Ω), which is bounded on

H1(Ω) independently of κ ∈ K.

3 Discontinuous Galerkin discretization

In this section, we introduce the hp-version of the symmetric interior penalty
(SIP) finite element method for the discretization of (2.10). Our formulation
differs from the formulation in [16] because it is Hermitian and due to the
design of the penalty parameter, it is suitable for hp-adaptivity.

Throughout, we assume that the computational domain Ω can be parti-
tioned into a shape-regular triangulation T , i.e. there exists a constant Creg

such that for any element K

hK ≤ Creg ρK , (3.11)

where hK is the diameter of the element and ρK is the diameter of the biggest
ball inscribed in K. Also we assume that the elements are affine triangles. We
store the elemental diameters in the mesh size vector h = { hK : K ∈ T }.
Let us also denote by h the maximum of all hK in the mesh. We refer
to F as an interior mesh face of T if F = ∂K ∩ ∂K ′ for two neighboring
elements K, K ′ ∈ T whose intersection has a positive surface measure. For
PC problems we do not have any boundary faces because problem (2.10) is
subject to periodic boundary conditions, therefore all faces of the mesh along
∂Ω are actually interior faces, too. For this reason we don’t need to treat
the faces on ∂Ω differently from any other face in the interior of the mesh.
The set of all interior mesh faces is denoted by F(T ), the diameter of a face
F is denoted by hF . We allow for 1-irregularly refined meshes T defined as
follows. Let K be an element of T and F an elemental face in F(K), then
F may contain at most one hanging node located in the center of F and at
most one hanging node in the middle of each elemental face of F .

In order to define the hp-version finite element space on T , we begin by
introducing polynomial spaces on elements and faces. To that end, let K ∈ T
be an element, we set Pp(K) to be the set of polynomials on the element K
of total degree less than or equal to p. Similarly for any face F ∈ F(K) we
define Pp(F ) to be he set of polynomials on F of total degree less than or
equal to p. Then, we assign a polynomial degree pK ≥ 1 with each element
K of the mesh T . We then introduce the degree vector p = { pK : K ∈ T }.



3 Discontinuous Galerkin discretization 6

We assume that p is of bounded local variation, that is, there is a constant
̺ ≥ 1, independent of the mesh T sequence under consideration, such that

̺−1 ≤ pK/pK ′ ≤ ̺ (3.12)

for any pair of neighboring elements K, K ′ ∈ T . For a mesh face F ∈ F(T ),
we introduce the face polynomial degree pF by

pF = max{pK , pKe}, if F = ∂K ∩ ∂Ke ∈ F(T ). (3.13)

Let us also denote by p the minimum of all pK in the mesh.
For a partition T of Ω and a polynomial degree vector p on T , we define

the hp-version DG finite element spaces by

Sp(T ) = { v ∈ L2(Ω) : v|K ∈ PpK
(K), K ∈ T }. (3.14)

Σp(T ) = { v ∈ [L2(Ω)]2 : v|K ∈ [PpK
(K)]2, K ∈ T }. (3.15)

Next, we define some trace operators that are required for the DG meth-
ods. Let K+ and K− be two adjacent elements of T , and F ∈ F(T ) given
by F = ∂K+ ∩∂K−. Furthermore, let v be a complex scalar-valued function
and let τ be a complex vector-valued function, that are smooth inside each
element K±. By v± and τ±, we denote the traces of v and τ on F taken
from within the interior of K±, respectively. Then, since we are dealing with
jumping coefficients we need to use the definition of the weighted average of
the diffusive flux Aτ , for any τ ∈ Σp(T ), along F ∈ F(T ) introduced in [34]

{{Aτ}} = ω−(Aτ)− + ω+(Aτ)+ ,

where

ω− =
nt

K+A+nK+

nt
K−A−nK− + nt

K+A+nK+

, ω+ =
nt

K−A−nK−

nt
K−A−nK− + nt

K+A+nK+

,

where we denote by nK± the unit outward normal vector of ∂K±, respectively.
Similarly, for a scalar function v ∈ Sp(T ) we have the following weighted
average

{{v}} = ω−v+ + ω+v− .

Then, the jump of v and τ across F ∈ F(T ) is given by

[[v]] = v+ nK+ + v− nK−, [[Aτ ]] = (Aτ)+ · nK+ + (Aτ)− · nK−.

The derivation of the SIP method for the operator in (2.10) follows the
argument in [1]. First we write the problem −(∇+ iκ) · (A(∇+ iκ)u) = fB,
for all f in L2(Ω), as a first order system with periodic boundary conditions:

σ = A(∇ + iκ)u, −(∇ + iκ) · σ = fB in Ω, (3.16)
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which should be intended in weak form. Then we consider the following
general discrete problem of the variational formulation of (3.16): Find uhp ∈
Sp(T ) such that for all K ∈ T we have

∫

K

σhp · τ dx = −

∫

K

uhp(∇ + iκ) · (Aτ) dx

+

∫

∂K

ûK AKτ · nK ds ∀τ ∈ Σp(T ) , (3.17)
∫

K

σhp · (∇ + iκ)v dx =

∫

K

Bf v dx

+

∫

∂K

σ̂K · nKv ds ∀v ∈ Sp(T ) , (3.18)

where the numerical fluxes û = (ûK)K∈T and σ̂ = (σ̂K)K∈T are approxima-
tions of u and σ, which are defined as

û : H1(T ) → T (Γ), σ̂ : H2(T ) × [H1(T )]2 → [T (Γ)]2 ,

where the space Hs(T ) ⊂ L2(Ω) contains all the functions whose restriction
to each element K belongs to Hs(K) and where T (Γ) := ΠK∈T L2(∂K).
Summing (3.17) and (3.18) over all elements K we obtain

∫

Ω

σhp · τ dx = −

∫

Ω

uhp(∇ + iκ) · (Aτ) dx +
∑

K∈T

∫

∂K

ûK AKτ · nK ds ,

∫

Ω

σhp · (∇ + iκ)v dx =

∫

Ω

Bf v dx +
∑

K∈T

∫

∂K

σ̂K · nKv ds ,

and then using the identity

∑

K∈T

∫

∂K

qKAKφK · nK ds =

∫

Γ

[[q]] · {{Aφ}} + {{q}}[[Aφ]] ds ,

we obtain taking v = uhp

∫

Ω

σhp · τ dx = −

∫

Ω

uhp(∇ + iκ) · (Aτ) dx

+

∫

Γ

[[û]] · {{Aτ}} + {{û}}[[Aτ ]] ds (3.19)
∫

Ω

σhp · (∇ + iκ)v dx =

∫

Ω

Bf v dx +

∫

Γ

[[v]] · {{σ̂}} + {{v}}[[σ̂]] ds .(3.20)

Using the following identity on (3.19)

−

∫

Ω

v(∇ + iκ)·(Aτ) dx =

∫

Ω

A(∇+iκ)v ·τ dx−

∫

Γ

[[v]]·{{Aτ}}+{{v}}[[Aτ ]] ds ,
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we obtain
∫

Ω

σhp ·τ dx =

∫

Ω

A(∇+iκ)uhp ·τ dx+

∫

Γ

[[û−uhp]]·{{Aτ}}+{{û−uhp}}[[Aτ ]] ds .

(3.21)
Recalling that (∇ + iκ)Sp(T ) ⊂ Σp(T ) and defining the lifting operators:

r : [L2(Γ)]2 → Σp(T ) and l : L2(Γ) → Σp(T ) by

∫

Ω

r(ϕ) · Aτ dx = −

∫

Γ

ϕ · {{Aτ}} ds ,

∫

Ω

l(q) · Aτ dx = −

∫

Γ

q[[Aτ ]] ds ,

we may rewrite (3.21) as

σhp := A(∇ + iκ)uhp −A r([[û − uhp]]) −A l({{û − uhp}}) (3.22)

Then substituting (3.22) in (3.20) we obtain
∫

Ω

A(∇ + iκ)uhp · (∇ + iκ)v dx +

∫

Γ

[[û − uhp]] · {{A(∇ + iκ)v}} ds

+

∫

Γ

{{û − uhp}}[[A(∇ + iκ)v]] − {{σ̂}} · [[v]] − [[σ̂]]{{v}} ds

=

∫

Ω

Bfv dx . (3.23)

Finally defining the numerical fluxes as û := {{Iuhp}} and σ̂ := {{A(∇ +
iκ)uhp}} − γp2

F/hF [[uhp]] and choosing f = λhpuhp we obtain the SIP method
of (2.10): Find (λhp, uhp) ∈ R × Sp(T ) such that

ahp,κ(uhp, vhp) = λhp b(uhp, vhp) ∀ vhp ∈ Sp(T ), (3.24)

and with ‖uhp‖0 = 1, where

ahp,κ(u, v) =
∑

K∈T

∫

K

A(∇ + iκ)u · (∇ + iκ)v dx

−
∑

F∈F(T )

∫

F

(
{{A(∇ + iκ)u}} · [[v]] + {{A(∇ + iκ)v}} · [[u]]

)
ds

+
∑

F∈F(T )

γp2
F

hF

∫

F

[[u]] · [[v]] ds ,

(3.25)

where the parameter γ > 0 is the interior penalty parameter.
We need another norm in the analysis, the following norm is the modifi-

cation for PC problems of the DG norm already used in [6, 35]:
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Definition 3.1 (Energy norm): For any u ∈ S(h) := Sp(T ) + H1(Ω)

‖ u ‖2
E,T =

∑

K∈T

‖u‖2
1,K +

∑

F∈F(T )

γp2
F

hF
‖[[u]]‖2

0,F . (3.26)

To be able to carry on the a posteriori analysis, we must perform a non-
consistent reformulation of the DG discretization (3.24). To this end, we
introduce the following lifting operator already used in [5, 1]. For any v
belonging to S(h), we define L(v) ∈ Σp(T ) by L(v) := −r([[v]]). Now the
following extended bilinear form ãhp,κ(u, v) can be introduced:

ãhp,κ(u, v) =
∑

K∈T

∫

K

A(∇ + iκ)u · (∇ + iκ)v dx

−
∑

K∈T

∫

K

AL(u) · (∇ + iκ)v + AL(v) · (∇ + iκ)u dx

+
∑

F∈F(T )

γp2
F

hF

∫

F

[[u]] · [[v]] ds = λ

∫

Ω

uBv dx .

(3.27)

Remark 3.2: It is clear that ãhp,κ(·, ·) ≡ ahp,κ(·, ·) on Sp(T ) × Sp(T ) and

ãhp,κ(·, ·) ≡ a(·, ·) on H1
π(Ω) × H1

π(Ω).

It is easy to see that both ahp,κ and ãhp,κ are Hermitian forms and by the
positiveness of A assumed in (1.2), we have

ãhp,κ(u, u) ≥ a

∫

Ω

|(∇ + iκ)u|2 ≥ 0 , for all u ∈ H1
π(Ω) . (3.28)

Since ãhp,κ(u, u) is not always strictly positive (for u 6= 0), since if κ =
(0, 0) then ãhp,κ(1, 1) = 0. Thus we introduce the shifted Hermitian form:
ãhp,κ,s(u, v) := ãhp,κ(u, v)+s b(u, v) with the fixed shift s := maxκ∈K |κ|2a/b +
1. Similarly we introduce also the shifted Hermitian form ahp,κ,s(u, v) :=
ahp,κ(u, v)+s b(u, v). These shifted forms are never used in the computations,
only in the analysis.

So the shifted versions of problems (2.10), (3.24), (3.27) are: Seek eigen-
pairs of the form (δj, uj) ∈ R × H1

π(Ω) such that

aκ,s(uj, v) = δj b(uj, v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1

}
(3.29)

Seek eigenpairs of the form (δj,hp, uj,hp) ∈ R × Sp(T ) such that

ahp,κ,s(uj,hp, vhp) = δj,hp b(uj,hp, vhp) ∀ vhp ∈ Sp(T ),

‖uj,hp‖0,B = 1

}
(3.30)
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Seek eigenpairs of the form (δj , uj) ∈ R × S(h) such that

ãhp,κ,s(uj, v) = δj b(uj, v) , for all v ∈ S(h)
‖uj‖0,B = 1

}
(3.31)

The presence of the value s shifts the spectrum by a length s, keeping the
eigenfunctions the same. So for example if (λj,hp, uj,hp) is an eigenpair of
(3.24), then (δj,hp, uj,hp) is an eigenpair of (3.30) with λj,hp = δj,hp − s.

It is possible to prove, reworking the proofs in [5, Lemma 4.3, Lemma 4.4],
that the bilinear form ãhp,κ,s(·, ·) is continuous on S(h), i.e.,

|ãhp,κ,s(u, v)| ≤ C
Ã
‖ u ‖E,T ‖ v ‖E,T , (3.32)

with a constant C
Ã

> 0 independent of h and p, and that it is also coercive
in H1

p i(Ω), i.e.,

‖ u ‖2
E,T . ãhp,κ,s(u, u) .

The distance of an approximate eigenfunction from the true eigenspace
is a crucial quantity in the convergence analysis for eigenvalue problems es-
pecially in the case of non-simple eigenvalues.

Definition 3.3: Given a function v ∈ L2(Ω) and a finite dimensional subspace
P ⊂ L2(Ω), we define:

dist(v,P)0 := min
w∈P

‖v − w‖0 . (3.33)

Similarly, given a function v ∈ Sp(T ) and a finite dimensional subspace

P ⊂ H1
π(Ω), we define:

dist(v,P)E,T := min
w∈P

‖ v − w ‖E,T . (3.34)

Lemma 3.5 links together the two quantities of interest in the convergence
analysis, namely the error in the eigenvalues and the error in the eigenfunc-
tions.

Definition 3.4 (Residual of the eigenvalue problem): Let define the residual of
(3.31)

R(uj, v) := ãhp,κ,s(uj, v) − δjb(uj, v) , (3.35)

where u ∈ Hs(Ω), with s ≥ 2, is the solution of the linear problem and
v ∈ S(h).
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Lemma 3.5 (Identity result for the extended form): Let (λl, ul) be a true eigen-
pair of problem (2.10) with ‖ul‖0 = 1 and let (λj,hp, uj,hp) be a computed
eigenpair of problem (3.24) with ‖uj,hp‖0 = 1. Then we have:

ãhp,κ,s(ul −uj,hp, ul −uj,hp) = δl‖ul −uj,hp‖
2
0 + δj,hp− δl +2R(ul, uj −uj,hp).

Proof. Using the linearity of the bilinear form ãhp,κ(·, ·) and using (3.29) ,
(3.24); we have

ãhp,κ,s(ul−uj,hp, ul−uj,hp) = δl + δj,hp − 2ãhp,κ,s(ul, uj,hp)+2δlb(ul, uj,hp)−2δlb(ul, uj,hp) .
(3.36)

Furthermore, by analogous arguments we obtain

‖ul − uj,hp‖
2
0 = 2 − 2b(ul, uj,hp). (3.37)

Substituting (3.37) into (3.36) we obtain

ãhp,κ,s(ul−uj,hp, ul−uj,hp) = δl‖ul−uj,hp‖
2
0 + δj,hp−δl−2ãhp,κ,s(ul, uj,hp)+2δlb(ul, uj,hp) .

Finally noticing that ãhp,κ,s(ul, uj) = δlb(ul, uj) and using (3.35) we obtain
the result.

Remark 3.6: Since problems (3.30), (3.31) are Hermitian, all the missing
proofs of continuity and coercivity for the the bilinear forms and consequently
the proof of a priori convergence for such problems can be reworked form the
proofs in [33].

4 Residual-based error estimator

In this section we write A . B when A/B is bounded by a constant which
may depend on the functions A in (1.2) and B in (1.3), on a, a, b and b, on
Creg in (3.11), ̺ in (3.12), γ in (3.25), the size of K and on the shift s. The
hidden constant never depends on h or p.

Let (λj,hp, uj,hp) be a computed eigenpair of (3.24). For each element
K ∈ T , we introduce the following local error indicator ηj,K which is given
by the sum of the three terms:

η2
j,K = η2

j,RK
+ η2

j,FK
+ η2

j,JK
, (4.38)

where the first term ηj,RK
is the residual in the interior of the element K:

η2
j,RK

= p−2
K h2

K‖λj,hpBuj,hp + (∇ + iκ) · A(∇ + iκ)uj,hp‖
2
0,K ,
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the second term ηj,FK
is the residual on the faces of K:

η2
j,FK

=
1

2

∑

F∈F(K)

p−1
F hF‖[[A(∇ + iκ)uj,hp]]‖

2
0,F ,

and finally the residual ηj,JK
measures the jumps on the faces of K of the

approximate solution uj,hp:

η2
j,JK

=
1

2

∑

F∈F(K)

γ2p3
F

hF
‖[[uj,hp]]‖

2
0,F .

Summing (4.38) on all elements we obtain the global error estimator ηj:

η2
j =

∑

K∈T

η2
j,K. (4.39)

Remark 4.1: In the definition of residual-based error estimators in other works,
e.g. [33], the faces on the boundary of the domain Ω and the faces in the
interior contribute differently to the error estimator. Instead, in (4.39) all
faces contribute in the same way due to the periodic boundary condition
imposed on ∂Ω.

We recall the standard hp-approximation results from [3, Lemma 3.7]:
For any v ∈ H1

π(Ω), there exists a function vhp ∈ Sp(T ) such that

p2
Kh−2

K ‖v − vhp‖
2
0,K . ‖∇v‖2

0,K,

‖∇(v − vhp)‖
2
0,K . ‖∇v‖2

0,K,

pKh−1
K ‖v − vhp‖

2
0,∂K . ‖∇v‖2

0,K,

(4.40)

for any element K ∈ T .
In order to prove the reliability, we decompose a computed eigenfunction

uj,hp into a conforming part and a remainder:

uj,hp = uc
j,hp + ur

j,hp,

where uc
j,hp = Ihpuj,hp ∈ Sc

p(T ) ⊂ H1
π(Ω) is defined using the averaging

operator Ihp in [5, Lemma 4.6] for which the following results holds:

∑

K∈T

‖∇(v − Ihpv)‖2
0,K .

∑

F∈F(T )

p2
Fh−1

F ‖[[v]]‖2
0,F , (4.41)

∑

K∈T

‖v − Ihpv‖
2
0,K .

∑

F∈F(T )

p−2
F hF‖[[v]]‖2

0,F . (4.42)
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Then the remainder ur
j,hp is given by ur

j,hp = uj,hp − uc
j,hp ∈ Sp(T ).

‖ uj − uj,hp ‖E,T ≤ ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E,T . (4.43)

Then to prove reliability for eigenfunctions it is just necessary to bound both
terms in the right hand side of (4.43) using ηj . The proof that

‖ur
hp‖E,T . ηj , (4.44)

uses (4.41), (4.42) and it is equivalent to [5] or to [4, Lemma 4.1] and we
omit it for brevity.

On the other hand, to bound ‖ uj − uc
j,hp ‖E,T in (4.43), we split ahp,κ,s(·, ·) =

Dhp(·, ·) + Chp(·, ·) where

Dhp(u, v) =
∑

K∈T

∫

K

A(∇ + iκ)u · (∇ + iκ)v + suBv dx +
∑

F∈F(T )

γp2
F

hF

∫

F

[[u]] · [[v]] ds,

Chp(u, v) = −
∑

F∈F(T )

∫

F

{{A(∇ + iκ)u}} · [[v]] ds −
∑

F∈F(T )

∫

F

{{A(∇ + iκ)v}} · [[u]] ds.

The form Dhp(u, v) is well-defined for u, v ∈ S(h), whereas Chp(u, v) is only
well-defined for discrete functions u, v ∈ Sp(T ). Furthermore, we have

aκ,s(u, v) = Dhp(u, v) ∀u, v ∈ H1
π(Ω), (4.45)

as well as

ahp,κ,s(u, v) = Dhp(u, v) + Chp(u, v) ∀u, v ∈ Sp(T ). (4.46)

Lemma 4.2: For any v ∈ H1
π(Ω), we have

∫

Ω

δjujB(v − vhp) dx−Dhp(uj,hp, v−vhp)+Chp(uj,hp, vhp) .
(
ηj+Ehp

)
‖ v ‖E,T ,

where

Ehp =
h

p
‖λjuj − λj,hpuj,hp‖0 +

h

p
s‖uj − uj,hp‖0 .

Here, vhp ∈ Sp(T ) is the hp-approximation of v satisfying (4.40).

Proof. For brevity, let us set

T =

∫

Ω

δjujB(v − vhp) dx − Dhp(uj,hp, v − vhp) + Chp(uj,hp, vhp).
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Integrating the volume terms by parts we obtain

T =
∑

K∈T

∫

K

(δjujB + (∇ + iκ) · A(∇ + iκ)uj,hp − suj,hpB)(v − vhp) dx

−
∑

F∈F(T )

γp2
F

hF

∫

F

[[uj,hp]] · [[v − vhp]] ds

−
∑

F∈F(T )

∫

F

[[A(∇ + iκ)uj,hp]]{{v − vhp}} ds−
∑

F∈F(T )

∫

F

{{A(∇ + iκ)vhp}} · [[uj,hp]] ds

≡ T1 + T2 + T3 + T4.

Using the Cauchy-Schwarz inequality and the approximation properties (4.40)
and recalling that δj − s = λj and that δj,hp − s = λj,hp we have that

T1 =
∑

K∈T

∫

K

(λj,hpBuj,hp + (∇ + iκ) · A(∇ + iκ)uj,hp)(v − vhp) dx

+
∑

K∈T

∫

K

(λjuj − λj,hpuj,hp)B(v − vhp) + s(uj − uj,hp)B(v − vhp) dx

.
( ∑

K∈T

η2
j,RK

) 1

2

‖ v ‖E,T +
h

p
‖λjuj − λhpuj,hp‖0‖ v ‖E,T +

h

p
s‖uj − uj,hp‖0‖ v ‖E,T .

For term T2, we again exploit the Cauchy-Schwarz inequality to conclude
that

T2 ≤
( ∑

F∈F(T )

γ2p3
Fh−1

F ‖[[uj,hp]]‖
2
0,F

) 1

2
( ∑

F∈F(T )

pF h−1
F ‖[[v − vhp]]‖

2
0,F

) 1

2

.

Thus, from (3.11), (3.12) and (4.40), we obtain the bound

T2 .
( ∑

K∈T

η2
j,JK

) 1

2

‖ v ‖E,T .

Similarly, term T3 can be bounded by

T3 ≤
( ∑

F∈FI(T )

p−1
F hF‖[[A(∇ + iκ)uj,hp]]‖

2
0,F

) 1

2
( ∑

F∈FI(T )

pF h−1
F ‖{{v − vhp}}‖

2
0,F

) 1

2

.
( ∑

K∈T

η2
j,FK

) 1

2

‖ v ‖E,T .
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In a similar way we use Cauchy-Schwarz inequality, (3.11) and (3.12) also for
the term T4:

T4 . γ−1
( ∑

F∈F(T )

γ2p2
Fh−1

F ‖[[uj,hp]]‖
2
0,F

) 1

2
( ∑

K∈T

p−2
K hK‖A(∇ + iκ)vhp‖

2
0,∂K

) 1

2

.

From the standard hp-version inverse trace inequality, see [7], we conclude
that

T4 . γ−1
( ∑

K∈T

η2
j,JK

) 1

2
( ∑

K∈T

‖vhp‖
2
1,K

) 1

2

,

furthermore, using the approximation properties in (4.40),

∑

K∈T

‖vhp‖
2
1,K .

∑

K∈T

‖v − vhp‖
2
1,K +

∑

K∈T

‖v‖2
1,K . ‖ v ‖2

E,T ,

where we have assumed safely that hK/pK . 1. Hence

T4 . γ−1
( ∑

K∈T

η2
j,JK

) 1

2

‖ v ‖E,T .

The bounds for T1, T2, T3, and T4 imply the assertion.
We are now ready to bound ‖ uj − uc

j,hp ‖E,T in (4.43).

Lemma 4.3: Let (λj,hp, uj,hp) be a computed eigenpair of (3.24) and let (λj , uj)
be an eigenpair of (1.1). Then we have for uc

j,hp = Ihp uj,hp that:

‖ uj − uc
j,hp ‖E,T . ηj + ‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0.

Proof. Since uj − uc
j,hp ∈ H1

π(Ω), we have from [21, Lemma 2.1] that

‖ uj − uc
j,hp ‖

2
E,T . ahp,κ,s(uj − uc

j,hp, v), (4.47)

where v = uj − uc
j,hp. To bound the right-hand side of (4.47), we note that,

by (4.45),

ahp,κ,s(uj−uc
j,hp, v) =

∫

Ω

δjBujv dx−ahp,κ,s(u
c
j,hp, v) =

∫

Ω

δjBujv dx−Dhp(u
c
j,hp, v).

It is straightforward to see that Dhp(u
c
j,hp, v) = Dhp(uj,hp, v) + R, with

R = −
∑

K∈T

∫

K

A(∇ + iκ)ur
j,hp · (∇ + iκ)v dx .
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Furthermore, from (3.30) and (4.46), we have
∫

Ω

δj,hpBuj,hpvhp dx = Dhp(uj,hp, vhp) + Chp(uj,hp, vhp),

where vhp ∈ Sp(T ) is the hp-approximation of v. Combining these results,
we thus arrive at

ahp,κ,s(uj − uc
j,hp, v) =

∫

Ω

(δjBuj − δj,hpBuj,hp)vhp dx +

∫

Ω

δjBuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) + Chp(uj,hp, vhp) − R .
(4.48)

Using (4.40) we have

‖vhp‖0 . ‖∇v‖0 + ‖v‖0 . ‖v‖1,Ω,

then from (4.48) we obtain:

ahp,κ,s(uj − uc
j,hp, v) ≤ ‖δjuj − δj,hpuj,hp‖0‖ v ‖E,T +

∫

Ω

δjBuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) + Chp(uj,hp, vhp) − R.
(4.49)

The estimate from Lemma 4.2 and the fact that

‖δjuj − δj,hpuj,hp‖0 ≤ ‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0 ,

now yield

ahp,κ(uj −uc
j,hp, v) .

(
ηj + ‖λjuj −λj,hpuj,hp‖0 + s‖uj −uj,hp‖0

)
‖ v ‖E,T + |R|.

(4.50)
It remains to bound |R|; from the Cauchy-Schwarz inequality and (4.44), we
readily obtain

|R| . ‖ ur
j,hp ‖E,T ‖ v ‖E,T . ηj‖ v ‖E,T . (4.51)

The desired result now follows from (4.50) and (4.51).
The proof of Theorem 4.4 readily follows from (4.43), (4.44) and Lemma 4.3.

Theorem 4.4 (Reliability for eigenfunctions): Let (λj,hp, uj,hp) be a computed
eigenpair of (3.24) converging to the true eigenvalue λj of multiplicity R+1 >
0. Then we have that:

dist(uj,hp, E1(λj))E,T . ηj + G ,

where
G = ‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0 ,

and where uj is the minimizer of (3.33).
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Proof. From (4.43), (4.44) and Lemma 4.3 we have that:

dist(uj,hp, E1(λj))E,T ≤ ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E,T

. ηj + ‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0 .

Theorem 4.5 (Reliability for eigenvalues): Let (λj,hp, uj,hp) be a computed eigen-
pair of (3.30) and converging to λj of multiplicity R + 1 > 0. Then we have
that:

|λj − λhp| . η2
j + G′ ,

where

G′ =
(
‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0

)2

+ 2ηj

(
‖λjuj − λj,hpuj,hp‖0 + s‖uj − uj,hp‖0

)

+2|R(ûj, ûj − uj,hp)|,

where uj is the minimizer of (3.33) and ûj is the minimizer of (3.34).

Proof. Applying (3.32) to Lemma 3.5 and also noticing that δj‖ûj−uj,hp‖
2
0 >

0 we have

|λj − λj,hp| = |δj − δj,hp| . dist(uj,hp, E1(λj))
2
E,T + 2|R(ûj, ûj − uj,hp)| .

Applying Theorem 4.4

|λj−λj,hp| .
(
ηj +‖λjuj−λj,hpuj,hp‖0+s‖uj−uj,hp‖0

)2

+2|R(ûj, ûj−uj,hp)|.

Remark 4.6: The terms G and G′ are not computed since they are higher
order terms [33].

The proof for the efficiency of the error estimator ηj follows standard
arguments involving bubble functions ([32, Lemma 3.3]), that have been
already presented in [33, 32] and in other papers, so for sake of brevity we
are omitting the proofs of the following lemmas. As already mentioned in
other paper, i.e. [2, 4], the efficiency result is robust only in h.

Lemma 4.7: Let (λj,hp, uj,hp) be a computed eigenpair of (3.24) and converg-
ing to λj of multiplicity R + 1 > 0. Then we have that:

( ∑

K∈TK

η2
j,JK

)1/2

. dist(uj,hp, E1(λj))E,T .
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Lemma 4.8: Let (λj,hp, uj,hp) be a computed eigenpair of (3.24) converging to
eigenvalue λj of multiplicity R + 1 > 0. Then we have that:

( ∑

K∈TK

η2
j,RK

)1/2

. dist(uj,hp, E1(λj))E,T +
h

p
‖λj,hpuj,hp−λjuj‖0+

h

p
s‖uj−uj,hp‖0,

where uj be the minimizer of (3.34).

Lemma 4.9: Let (λj,hp, uj,hp) be a computed eigenpair of (3.24) and converg-
ing to λj of multiplicity R + 1 > 0. Then we have that:

( ∑

K∈TK

η2
j,FK

)1/2

. dist(uj,hp, E1(λj))E,T +
h

p
‖λjuj−λj,hpuj,hp‖0+

h

p
s‖uj−uj,hp‖0,

where uj is the minimizer of (3.34).

The proof of the efficiency result Theorem 4.10 follows in a straightfor-
ward manner from Lemmas 4.7-4.9.

Theorem 4.10: Let uj be an eigenvalue of (2.10) and uj,hp ∈ Sp(T ) be its
DG approximation obtained by (3.24) with γ sufficiently large. Let the error
estimator ηj be defined by (4.39). Then we have the bound

ηj . dist(uj,hp, E1(λj))E,T +
h

p
‖λj,hpuj,hp − λjuj‖0 +

h

p
s‖uj,hp − uj‖0 .

5 Numerical methods and numerical results

First of all we would like to illustrate with an example and presenting plots
and pictures the way to proceed in order to compute the spectrum of a PC.
The spectra of photonic crystals typically contain band gaps, but, for many
applications, the identification of band gaps is not enough. Commonly it is
necessary to create eigenvalues inside the gaps in the spectra of the media.
The importance of these eigenvalues is due to the fact that electromagnetic
waves, which have frequencies corresponding to these eigenvalues, may re-
main trapped inside the crystal [17, 19]. The common way to create such
eigenvalues is by introducing a localized defect in the periodic structures —
see [19] and [18, Theorem 2]. Such localized defects do not change the bands
of the essential spectrum [18, Theorem 1]. For sake of brevity we are going
to consider only the TE case in this example. In this case A is piecewise
constant, B = 1 and there are typically localized singularities in the gradi-
ent of the eigenfunctions at corner points of the interface in the dielectric ε,
leading to a strong need for adaptivity.
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The first step in order to analyze a PC is to compute the band structure
of the periodic structure of the crystal. In this example we consider a square
unit cell with a square inclusion of side 0.5 centered inside it. We choose
A to take the value 1 outside the inclusion and the value 0.05 inside it,
see Figure 1. This is a realistic example, since expected jumps in dielectric
permittivity of real photonic crystals are of this order.

Fig. 1: Structure of the primitive cell.

In order to produce accurately the band structure of the crystal it is
just necessary to compute the eigenvalues of (1.1) for the values of κ in the
reduced Brillouin zone, see Figure 2, instead of using the entire first Brillouin
zone.
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1

κ 2

Fig. 2: The dark triangle is the reduced Brillouin zone for the primitive cell
in Figure 1.
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Each eigenvalue of (1.1) can be seen as a function of the quasimomentum
λj(κ), in this way we can obtain the plot in Figure 3, where we have plotted
just the first four bands and for sake of clarity we just considered the values of
κ on the border of the reduced Brillouin zone. As can be seen the minimum
and the maximum of each function λj(κ) delimit a band of the spectrum and
between bands sometimes gaps can be found. In this example there is a gap
between the first and the second band. The frequencies of light corresponding
to points in the gap are not allowed to travel across the periodic structure of
the PC.

Fig. 3: Band structure of the spectrum for the periodic crystal. The gap
between the first two bands has been highlighted in yellow.

Now considering as a primitive cell a bigger portion of the periodic struc-
ture, like in Figure 4, has no impact on the presence or positions of gaps in
the spectrum, see Figure 5. On the other hand the structure of the bands
changed in the way that each band split in a multitude of smaller bands.
Now the gap is between the 25th and the 26th band.
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Fig. 4: Structure of the bigger primitive cell.

Fig. 5: Band structure of the spectrum for the periodic crystal with primitive
cell as in Figure 4. The first gap has been highlighted in yellow.

Finally, as predicted by the theory [23], the presence of a compact defect
in the periodic structure can consequently create localized eigenvalues in
the gaps that correspond to trapped modes. These modes can travel the
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all length of the PC with almost no losses. The best way to search for
these trapped mode is to consider the supercell framework [31], in which
the considered primitive cell (called supercell) is a portion of the periodic
structure including the defect. Since of the periodic boundary conditions,
the defect is not any more compact because it is repeated in each supercell,
see Figure 6. So the introduction of the defect in the supercell will not lead
to the creation of eigenvalues in the gaps but it could create narrow new
bands in the gaps which shrink exponentially fast to eigenvalues when the
number of layers of periodic structure around the defect in the supercell is
increased [21, Table 7]. Computing the band structure of the supercell we
obtain Figure 7 where a new narrow band of index j = 25 is now present in
the first gap.
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Fig. 6: Structure of the supercell with a defect in the center.
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Fig. 7: Band structure of the spectrum for the supecell in Figure 6. The first
gap has been highlighted in yellow and the newly created trapped
band in red.

So the best way to numerically discover these trapped mode is first to
compute the position of the gaps in the spectrum of the periodic structure
with no defects and then check for the presence of any band for the supercell
problem in span of the already computed gaps for the periodic structure.

This way to proceed, that could seem rather complicated, is numerically
efficient because the localization of the gaps is done on the single cell problem,
that is a small problem to solve. Then on the supercell with the defect, only
the eigenvalues in the gaps are computed. That could be easily done using
the shift and invert spectral transformation in ARPACK [24] and setting the
shift value to be the middle point of a gap.

The algorithm used to compute all numerical results in this section is
presented in Algorithm 1, which takes as input: an initial mesh T , an initial
DG space Sp, the index j of the eigenpair to approximate, a real value 0 ≤ θ ≤
1 to tune the fixed-fraction marking strategy and finally a real and positive
value tol which prescribes the required tolerance. The algorithm has a very
simple structure that consists of a repeat-until loop. During each iteration of
the loop a new approximation of the eigenpair of interest is computed, then

the error estimator is calculated and, if the estimated error
(∑

K∈T
η2

j,K

)1/2
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is smaller than the prescribed tolerance tol the algorithm stops; otherwise
the mesh T and the space Sp are refined and another iteration follows. The
function Refine applies a simple fixed-fraction strategy to mark a minimal
subset of elements containing a portion of the error proportional to θ. Then
the choice for each marked element between splitting the element into smaller
elements (h-refinement) or increasing the polynomial order (p-refinement) is
made by testing the local analyticity of the solution in the interior of the
element as described in [36]. In the case that we are only interested to use
h-refinement the local analyticity test can be avoided.

Algorithm 1 hp-adaptive algorithm

(λj,hp, uj,hp) := AdaptDG(T , Sp(T ), j, θ, tol)
repeat

Compute the j-th eigenpair (λj,n, uj,n) on T
Compute ηj,K for all K ∈ T

if
(∑

K∈T
η2

j,K

)1/2
< tol then

exit
else

Refine(T , Sp(T ), θ, ηj)
end if

until

5.1 TE case problem on periodic medium

We first consider the TE problem for a periodic medium with primitive cell
as in Figure 1 and with the same choice for A as above.

Starting with a structured mesh of 162 triangular elements and with order
of polynomials equal to 2 everywhere, we use Algorithm 1 with either h- or
hp-adaptivity. To make the test more complete, we compare the two adap-
tive strategies for different values of the quasimomentum. Figures (8)-(10)
contain the convergence plots for the second eigenvalue for the all considered
different values of quasimomentum. It is possible to see that in all cases with
the hp-adaptivity the convergence is much faster than with only h-adaptivity.
The fact that the curves for the hp-adaptivity approximate a straight line in
semi-log scale, suggests a convergence rate close to be exponential. In con-
trast h-adaptivity delivers only a polynomial rate of convergence, as comes
from the theory.
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Fig. 8: Convergence plots for quasimomentum κ = (0, 0)
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Fig. 9: Convergence plots for quasimomentum κ = (π, 0)
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Fig. 10: Convergence plots for quasimomentum κ = (π, π)

In Figure 11 we depict the mesh coming from the twelfth iteration of
Algorithm 1 using hp-adaptivity. The colors indicate the order of polynomials
in each elements, as can be seen in the four corners of the inclusion the
elements are very small, sign of possible singularities in the gradient of the
eigenfunction. In Figure 12 we depict the eigenfunction corresponding to
the eigenvalue in the second band of the problem with quasimomentum κ =
(0, 0).
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Fig. 11: A refined mesh coming from the hp-adaptive method for κ = (0, 0).

5.2 TE mode problem on supercell

Now we are interested in approximating the trapped band discovered in Fig-
ure 7, in order to do that we are now considering as domain of the problem
the supercell in Figure 6. Since now the domain is [−2.5, 2.5]2, it comes that
the first Brillouin zone is smaller: [−π/5, π/5]2. As before we compared h-
with hp-adaptivity for different values of the quasimomentum.

Figures (13)-(15) contain the convergence plots for the eigenvalue on
the trapped band for the all considered different values of quasimomentum.
Again it is possible to see that in all cases with the hp-adaptivity the con-
vergence is much faster than with only h-adaptivity.
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Fig. 12: The eigenfunction of the eigenvalue in the second band of the TE
mode problem with quasimomentum κ = (0, 0).

200 300 400 500 600 700 800 900 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

DOFS1/2

|λ
j−

λ j,h
p

 

 
hp
h

Fig. 13: Convergence plots for quasimomentum κ = (0, 0)
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Fig. 14: Convergence plots for quasimomentum κ = (π/5, 0)
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Fig. 15: Convergence plots for quasimomentum κ = (π/5, π/5)

In Figure 16 we depict the mesh coming from the fifth iteration of Al-
gorithm 1, as can be seen there is a lot of refinement around the defect,
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especially around the corners of the inclusions. Away enough from the de-
fect the corners of the inclusions are not much refined anymore. Since the
trapped mode has a fast decay away from the defect, this prevent any strong
singularity to appear in the corners of the inclusions far enough from the de-
fect. This is the reason why the refinement is so concentrated near the defect
and why the corners of the inclusions away from the defect seem not to show
important singularities. In Figure 17 we depict the eigenfunction correspond-
ing to the eigenvalue in the second band of the problem with quasimomentum
κ = (0, 0).
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Fig. 16: An adapted mesh for a trapped eigenvalue of the TE case problem
on a supercell with quasimomentum κ = (0, 0).
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Fig. 17: A picture of the eigenfunction trapped in the defect of the TE case
problem on a supercell with quasimomentum κ = (0, 0).
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