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Abstract—We introduce the notion of Principal Component
Analysis (PCA) of image gradient orientations. As image data
is typically noisy, but noise is substantially different from
Gaussian, traditional PCA of pixel intensities very often fails to
estimate reliably the low-dimensional subspace of a given data
population. We show that replacing intensities with gradient
orientations and the ℓ2 norm with a cosine-based distance
measure offers, to some extend, a remedy to this problem. Our
scheme requires the eigen-decomposition of a covariance matrix
and is as computationally efficient as standard ℓ2 intensity-
based PCA. We demonstrate some of its favorable properties
for the application of face recognition.

NOTATION

S , {.} set

ℜ set of reals

C set of complex numbers

x scalar or complex

j j2 = −1
ejθ Euler form: cos θ + j sin θ
x column vector

X matrix

Im×m m×m identity matrix

x(k) k-th element of vector x

N(X ) cardinality of set X
||.|| ℓ2 norm

||.||F Frobenius norm

XH conjugate transpose of X

Re[x], Im[x] real and imaginary part of x

U [a, b] uniform distribution in [a, b]
E[.] mean value operator

x ∼ U [a, b] x follows U [a, b]

I. INTRODUCTION

Provision for mechanisms capable of handling gross errors

caused by possible arbitrarily large model deviations is a

typical prerequisite in computer vision. Such deviations are

not unusual in real-world applications where data contains

artifacts due to occlusions, illumination changes, shadows,

reflections or the appearance of new parts/objects. In most
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cases, such phenomena cannot be described by a mathemati-

cally well-defined generative model and are usually referred

as outliers in learning and parameter estimation.

In this paper, we propose a new avenue for Principal

Component Analysis (PCA), perhaps the most classical tool

for dimensionality reduction and feature extraction in pat-

tern recognition. Standard PCA estimates the k−rank linear

subspace of the given data population, which is optimal

in a least-squares sense. Unfortunately ℓ2 norm of pixel

intensities enjoys optimality properties only when image

noise is i.i.d. Gaussian; for data corrupted by outliers, the

estimated subspace can be arbitrarily biased.

Robust formulations to PCA, such as robust covariance

matrix estimators [1], [2], are computationally prohibitive for

high dimensional data such as images. Robust approaches,

well-suited for computer vision applications, include ℓ1 [3],

[4], robust energy function [5] and weighted combination

of nuclear norm and ℓ1 minimization [6], [7]. ℓ1-based ap-

proaches can be computationally efficient, however the gain

in robustness is not always significant. The M-Estimation

framework of [5] is robust but suitable only for relatively

low dimensional data or off-line processing. Under weak

assumptions [7], the convex optimization formulation of [6],

[7] perfectly recovers the low dimensional subspace of a

data population corrupted by sparse arbitrarily large errors;

nevertheless efficient reformulations of standard PCA can be

orders of magnitude faster.

In this paper we look at robust PCA from a completely

different perspective. Our scheme does not operate on pixel

intensities. In particular, we replace pixel intensities with

gradient orientations. We define a notion of pixel-wise image

dissimilarity by looking at the distribution of gradient ori-

entation differences; intuitively this must be approximately

uniform in [0, 2π). We then assume that local orientation

mismatches caused by outliers can be also well-described

by a uniform distribution which, under some mild assump-

tions, is canceled out when we apply the cosine kernel.

This last observation has been noticed in recently proposed

schemes for image registration [8]. Following this line of

research, we show that a cosine-based distance measure has

a functional form which enables us to define an explicit

mapping from the space of gradient orientations into a high-



dimensional sphere where essentially linear complex PCA is

performed. The mapping is one-to-one and therefore PCA-

based reconstruction in the original input space is direct

and requires no further optimization. Similarly to standard

PCA, the basic computational module of our scheme requires

the eigen-decomposition of a covariance matrix, while high

dimensional data can be efficiently analyzed following the

strategy suggested in [9].

II. ℓ2-BASED PCA OF PIXEL INTENSITIES

Let us denote by xi ∈ ℜp the p−dimensional vector

obtained by writing image Ii ∈ ℜm1×m2 in lexicographic

ordering. We assume that we are given a population of

n samples X = [x1| · · · |xn] ∈ ℜp×n. Without loss of

generality, we assume zero-mean data. PCA finds a set of

k < n orthonormal bases Bk = [b1| · · · |bk] ∈ ℜp×k by

minimizing the error function

ǫ(Bk) = ||X−BkB
T
kX||2F . (1)

The solution is given by the eigenvectors corresponding

to the k largest eigenvalues obtained from the eigen-

decomposition of the covariance matrix XXT . Finally, the

reconstruction of X from the subspace spanned by the

columns of Bk is given by X̃ = BkCk, where Ck = BT
kX

is the matrix which gathers the set of projection coefficients.

For high dimensional data and Small Sample Size (SSS)

problems (i.e. n ≪ p), an efficient implementation of PCA

in O(n3) (instead of O(p3)) was proposed in [9]. Rather

than computing the eigen-analysis of XXT , we compute

the eigen-analysis of XTX and make use of the following

theorem

Theorem I

Define matrices A and B such that A = ΓΓH and B =
ΓHΓ with Γ ∈ Cm×r. Let UA and UB be the eigenvectors

corresponding to the non-zero eigenvalues ΛA and ΛB of A

and B, respectively. Then, ΛA = ΛB and UA = ΓUBΛ
−

1

2

A .

III. RANDOM NUMBER GENERATION FROM GRADIENT

ORIENTATION DIFFERENCES

We formalize an observation for the distribution of gradi-

ent orientation differences which does not appear to be well-

known in the pattern recognition community 1. Consider a

set of images {Ji}. At each pixel location, we estimate the

image gradients and the corresponding gradient orientation
2. We denote by {Φi}, Φi ∈ [0, 2π)m1×m2 the set of

orientation images and compute the orientation difference

image

∆Φil = Φi −Φl. (2)

We denote by φi and ∆φil , φi − φl the p−dimensional

vectors obtained by writing Φi and ∆Φil in lexicographic

1This observation has been somewhat noticed in [10] without any further
comments on its implications.

2More specifically, we compute Φi = arctanGi,y/Gi,x, where Gi,x =

hx ⋆Ii, Gi,y = hy ⋆Ii and hx, hy are filters used to approximate the ideal
differentiation operator along the image horizontal and vertical direction re-
spectively. Possible choices for hx, hy include central difference estimators
of various orders and discrete approximations to the first derivative of the
Gaussian.

ordering and P = {1, . . . , p} the set of indices corresponding
to the image support. We introduce the following definition.

Definition Images Ji and Jl are pixel-wise dissimilar if ∀k ∈
P , ∆φil(k) ∼ U [0, 2π).
Not surprisingly, nature is replete with images exemplifying

Definition 1. This, in turn, makes it possible to set up a naive

image-based random number generator. To confirm this, we

used more than 70, 000 pairs of image patches of resolution

200×200 randomly extracted from natural images [11]. For

each pair, we computed ∆φil and formulated the following

null hypothesis

• H0: ∀k ∈ P ∆φil(k) ∼ U [0, 2π).

which was tested using the Kolmogorov-Smirnov test [12].

For a significance level equal to 0.01, the null hypothesis

was accepted for 94.05% of the image pairs with mean p-

value equal to 0.2848. In a similar setting, we tested Matlab’s

random generator. The null hypothesis was accepted for

99.48% of the cases with mean p-value equal to 0.501. Fig.
1 (a)-(b) show a typical pair of image patches considered in

our experiment. Fig. 1 (c) and (d) plot the histograms of the

gradient orientation differences and 40,000 samples drawn

from Matlab’s random number generator respectively.
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Fig. 1. (a)-(b) An image pair used in our experiment, (c) Image-
based random number generator: histogram of 40,000 gradient orientation
differences and (d) Histogram of 40,000 samples drawn from Matlab’s
random number generator.

IV. PCA OF GRADIENT ORIENTATIONS

A. Cosine-based correlation of gradient orientations

Given the set of our images {Ii}, we compute the corre-

sponding set of orientation images {Φi} and measure image

correlation using the cosine kernel

s(φi,φl) ,
∑

k∈P

cos[∆φil(k)] = cN(P) (3)

where c ∈ [−1, 1]. Notice that for highly spatially correlated

images ∆φil(k) ≈ 0 and c → 1.

Assume that there exists a subset P2 ⊂ P corresponding

to the set of pixels corrupted by outliers. For P1 = P −P2,



we have

s1(φi,φl) =
∑

k∈P1

cos[∆φil(k)] = c1N(P1) (4)

where c1 ∈ [−1, 1].
Not unreasonably, we assume that in P2, the images are

pixel-wise dissimilar according to Definition 1. For example,

Fig. 2 (a)-(b) show an image pair where P2 is the part of the

face occluded by the scarf and Fig. 2 (c) plots the distribution

of ∆φ in P2.
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Fig. 2. (a)-(b) An image pair used in our experiments. (c) The distribution
of ∆φ for the part of face occluded by the scarf.

Before proceeding for P2, we need the following theorem.

Theorem II

Let u(.) be a random process and u(t) ∼ U [0, 2π) then:

• E[
∫

X
cosu(t)dt] = 0 for any non-empty interval X of

ℜ.
• If u(.) is mean ergodic, then

∫

X
cosu(t)dt = 0.

Proof: Let us define the random process z(t) = cosu(t).
Let also fU (u) = U [0, 2π) and we assumed that u ∼ fU (u).

The integral s =
∫ b

a
z(t)dt of the stochastic process z(t)

is a random variable s [12]. By interpreting the above as a

Riemannian integral and using the linearity of the expectation

operator, we conclude that

E{s} =
∫ b

a
E{z(t)}dt =

∫ b

a

∫ +∞

−∞
cos(u)fU (u)du

=
∫ b

a

∫ 2π

0
cos(u)du = 0

(5)

which shows that the integral
∫

X
cosu(t)dt is equal to zero in

mean value. By further assuming mean-ergodicity, the time

average is equal to the mean, thus we get

E(Z) ∝

∫

z(t)dt ≡

∫

X

cosu(t)dt = 0 (6)

which proves the Theorem.

We also make use of the following approximation
∫

X

cos[∆φil(t)]dt ∝
∑

k∈P

cos[∆φil(k)] (7)

where with some abuse of notation, ∆φil is defined in the

continuous domain on the left hand side of (7). Completely

analogously, the above theorem and approximation hold for

the case of the sine kernel.

Using the above results, for P2, we have

s2(φi,φl) =
∑

k∈P2

cos[∆φil(k)] ≃ 0 (8)

It is not difficult to verify that ℓ2-based correlation i.e. the

inner product between two images will be zero if and only

if the images have interchangeably black and white pixels.

Our analysis and (8) show that cosine-based correlation of

gradient orientations allows for a much broader class of un-

correlated images. Overall, unlike ℓ2-based correlation where

the contribution of outliers can be arbitrarily large, s(.) mea-

sures correlation as s(φi,φl) = s1(φi,φl) + s2(φi,φl) ≃
c1N(P1), i.e. the effect of outliers is approximately canceled

out.

B. The principal components of image gradient orientations

To show how (3) can be used as a basis for PCA, we first

define the distance

d2(φi,φl) =

p
∑

k=1

{1− cos[∆φil(k)]} (9)

We can write (9) as follows

d2(φi,φl) =
1

2

p
∑

k=1

{2− 2 cos[φi(k)− φl(k)]}

=
1

2
||ejφi − ejφl ||2 (10)

where ejφi = [ejφi
(1), . . . , ejφi

(p)]T . The last equality

makes the basic computational module of our scheme ap-

parent. We define the mapping from [0, 2π)p onto a subset

of complex sphere with radius
√

N(P)

zi(φi) = ejφi (11)

and apply linear complex PCA to the transformed data zi.

Using the results of the previous subsection, we can

remark the following

Remark I If P = P1 ∪P2 with ∆φil(k) ∼ U [0, 2π), ∀k ∈
P2, then Re[zHi zl] ≃ c1N(P1)
Remark II If P2 = P , then Re[zHi zl] ≃ 0 and Im[zHi zl] ≃
0.
Further geometric intuition about the mapping zi is pro-

vided by the chord between vectors zi and zl

crd(zi, zl) =
√

(zi − zl)H(zi − zl) =
√

2d2(φi,φl) (12)

Using crd(.), the results of Remark 1 and 2 can be refor-

mulated as crd(zi, zl) ≃
√

2((1− c1)N(P1) +N(P2)) and
crd(zi, zl) ≃

√

2N(P) respectively.
Overall, Algorithm 1 summarizes the steps of our PCA

of gradient orientations.

Algorithm 1. Estimating the principal subspace

Inputs: A set of n orientation images Φi, i = 1, . . . , n of

p pixels and the number k of principal components.

Step 1. Obtain φi by writing Φi in lexicographic ordering.

Step 2. Compute zi = ejφi , form the matrix of the

transformed data Z = [z1| · · · |zn] ∈ Cp×n and compute the

matrix T = ZHZ ∈ Rn×n.

Step 3. Compute the eigen-decomposition of T = UΛUH

and denote by Uk ∈ Cp×k and Λk ∈ Rk×k the

k−reduced set. Compute the principal subspace from

Bk = ZUkΛ
−

1

2

k ∈ Cp×k.



Step 4. Reconstruct using Z̃ = BkB
H
k Z.

Step 5. Go back to the orientation domain using Φ̃ = ∠Z̃.

Let us denote by Q = {1, . . . , n} the set of image indices

and Qi any subset of Q. We can conclude the following

Remark III If Q = Q1 ∪ Q2 with zHi zl ≃ 0 ∀i ∈ Q2,

∀l ∈ Q and i 6= l, then, ∃ eigenvector bl of Bn such that

bl ≃
1

N(P)zi.

A special case of Remark III is the following

Remark IV If Q = Q2, then
1

N(P)Λ ≃ In×n and Bn ≃
1

N(P)Z.

To exemplify Remark IV, we computed the eigen-spectrum

of 100 natural image patches. In a similar setting, we

computed the eigen-spectrum of samples drawn from Mat-

lab’s random number generator. Fig. 3 plots the two eigen-

spectrums.
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Fig. 3. The eigen-spectrum of natural images and the eigen-spectrum of
samples drawn from Matlab’s random number generator.

Finally, notice that our framework also enables the direct

embedding of new samples. Algorithm 2 summarizes the

procedure.

Algorithm 2. Embedding of new samples

Inputs: An orientation image Θ of p pixels and the principal

subspace Bk of Algorithm 1.

Step 1. Obtain θ by writing Θ in lexicographic ordering.

Step 2. Compute z = ejθ and reconstruct using z̃ =
BkB

H
k z.

Step 3. Go back to the orientation domain using θ̃ = ∠z̃.

V. RESULTS

A. Face reconstruction

The estimation of a low-dimensional subspace from a set

of a highly-correlated images is a typical application of PCA

[13]. As an example, we considered a set of 50 aligned face

images of image resolution 192 × 168 taken from the Yale

B face database [14]. The images capture the face of the

same subject under different lighting conditions. This setting

usually induces cast shadows as well as other specularities.

Face reconstruction from the principal subspace is a natural

candidate for removing these artifacts.

We initially considered two versions of this experiment.

The first version used the set of original images. In the sec-

ond version, 20% of the images was artificially occluded by

a 70×70 “Baboon” patch placed at random spatial locations.

For both experiments, we reconstructed pixel intensities and

gradient orientations with ℓ2 intensiy-based PCA and PCA of

gradient orientations respectively using the first 5 principal

components.

Fig. 4 and Fig. 5 illustrate the quality of reconstruction

for 2 examples of face images considered in our experi-

ments. While PCA-based reconstruction of pixel intensities

is visually appealing in the first experiment, Fig. 4 (g)-

(h) clearly illustrate that, in the second experiment, the

reconstruction suffers from artifacts. In contrary, Fig. 5 (e)-(f)

and (g)-(h) show that PCA-based reconstruction of gradient

orientations not only reduces the effect of specularities but

also reconstructs the gradient orientations corresponding to

the “face” component only.

This performance improvement becomes more evident

by plotting the principal components for each method and

experiment. Fig. 6 shows the 5 dominant Eigenfaces of ℓ2
intensity-based PCA. Observe that, in the second experiment,

the last two Eigenfaces (Fig. 6 (i) and (j)) contain “Baboon”

ghosts which largely affect the quality of reconstruction. In

contrary, a simple visual inspection of Fig. 7 reveals that,

in the second experiment, the principal subspace of gradient

orientations (Fig. 7 (f)-(j)) is artifact-free which in turn makes

dis-occlusion in the orientation domain feasible.

Finally, to exemplify Remark III, we considered a third

version of our experiment where 20% of the images were

replaced by the same 192 × 168 “Baboon” image. Fig. 8

(a)-(e) and (f)-(j) illustrate the principal subspace of pixel

intensities and gradient orientations respectively. Clearly, we

may observe that ℓ2 PCA was unable to handle the extra-class

outlier. In contrary, PCA of gradient orientations successfully

separated the “face” from the “Baboon” subspace, i.e. no

eigenvector was corrupted by the Baboon image (the “Ba-

boon” orientation image appeared as a separate eigenvector).

Note that the “face” principal subspace is not the same as the

one obtained in versions 1 and 2. This is because only 80%
of the images in our dataset was used in this experiment.

Fig. 4. PCA-based reconstruction of pixel intensities. (a)-(b) Original
images used in version 1 of our experiment. (c)-(d) Corrupted images used in
version 2 of our experiment. (e)-(f) Reconstruction of (a)-(b) with 5 principal
components. (g)-(h) Reconstruction of (c)-(d) with 5 principal components.



Fig. 5. PCA-based reconstruction of gradient orientations. (a)-(b) Orig-
inal orientations used in version 1 of our experiment. (c)-(d) Corrupted
orientations used in version 2 of our experiment. (e)-(f) Reconstruction of
(a)-(b) with 5 principal components. (g)-(h) Reconstruction of (c)-(d) with
5 principal components.

Fig. 6. The 5 principal components of pixel intensities for (a)-(e) version
1 and (f)-(j) version 2 of our experiment.

Fig. 7. The 5 principal components of gradient orientations for (a)-(e)
version 1 and (f)-(j) version 2 of our experiment.

B. Face recognition

PCA-based feature extraction for face recognition goes

back to the classical work by Turk and Pentland [9] and still

remains a standard benchmark for performance evaluation

of new algorithms. We considered a single-sample-per-class

experiment using aligned frontal-view face images taken

Fig. 8. (a)-(e) The 5 principal components of pixel intensities for version
3 of our experiment and (f)-(j) The 5 principal components of gradient
orientations for the same experiment.

from the AR database [15]. The database consists of more

than 4,000 frontal view facial images of 126 subjects. Each

subject has up to 26 images taken in two sessions. The

first session contains 13 images, numbered from 1 to 13,

including different facial expressions (1-4), different lighting

(5-7) and different occlusions under different lighting (8-13).

The second session duplicated the first session two weeks

later. We randomly selected a subset with 100 subjects. For

training, we used 100 face images of 100 different subjects

from session 1. We investigated the robustness of our scheme

for the case of illumination variations and occlusions. In

particular, we carried out the following experiments:

1) In experiment 1, we used the images 5-7 of session 2

for testing (different illumination).

2) In experiment 2, we used images 8-13 of session 2 for

testing (occlusion by scarf or glasses under different

illumination).

Note that the second experiment is very challenging since

our single-sample-per-class training set does not allows us to

find discriminant projection bases by exploiting class-label

information, while the presence of the scarf or glasses in the

testing set occludes approximately 25-40 % of the total face

area.

Table I and Fig. 9 summarize the results for our single

sample per class experiments. The robustness of the proposed

scheme is evident. As our results show, PCA of gradient

orientations achieves almost 100% recognition rate for the

case of illumination changes (experiment 1) and approx-

imately 94% recognition rate for the case of occlusions

(experiment 2). The latter result is approximately 20% better

than the best reported recognition rate [18], which is obtained

using as testing set a subset of the occluded images with

no illumination variations.

Moreover, the presented results should not be compared

with those achieved by recent approaches such as the ones

in [16] or [17] which use for training 8 images per subject

taken from both sessions, while the test images are also

taken from both sessions (On the contrary, we used only

one sample from the first session and tested on the second

session). For our single-sample-per-class experiment, we



applied the method in [16] using

• features extracted using image resizing, intensity-based

PCA, LaplacianFaces as described in [16] for experi-

ment 1.

• the robust extended ℓ1 minimization formulation for

experiment 2.

The third column of Table I shows the best results achieved

by the method in [16]. As we may observe, our PCA of

gradient orientations is not only significantly faster but also

much more robust.

Recognition rate IGO-PCA I-PCA Best of [16]

Experiment 1 (illumination)% 99.67 74 74

Experiment 2 (occlusions)% 94 28 32.33

TABLE I

RECOGNITION RESULTS ON AR DATABASE FOR EXPERIMENTS 1 AND 2

(IGO-PCA STANDS FOR PCA OF IMAGE GRADIENT ORIENTATIONS

AND I-PCA STANDS FOR INTENSITY-BASED PCA.
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Fig. 9. Single sample per class face recognition experiment on the
AR database. (a) Experiment 1 (illumination changes) (b) Experiment 2
(occlusions-illumination changes).

VI. CONCLUSIONS

We introduced a new concept: PCA of gradient orienta-

tions. Our framework is as simple as standard ℓ2 intensity-

based PCA, yet much more powerful for efficient subspace-

based data representation. Central to our analysis is the

distribution of gradient orientation differences and the cosine

kernel which provide us a consistent way to measure image

dissimilarity. We showed how this dissimilarity measure can

be naturally used to formulate a robust version of PCA.

We demonstrated some of the favorable properties of our

framework for the application of face recognition. Extensions

of our scheme span a wide range of theoretical topics and

applications; from statistical machine learning and clustering

to object recognition and tracking.
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