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Review
Sir James Black developed b-blockers, one of the most
useful groups of drugs in use today. Not only are they
being used for their original purpose to treat angina and
cardiac arrhythmias, but they are also effective thera-
peutics for hypertension, cardiac failure, glaucoma, mi-
graine and anxiety. Recent studies suggest that they
might also prove useful in diseases as diverse as osteo-
porosis, cancer and malaria. They have also provided
some of the most useful tools for pharmacological re-
search that have underpinned the development of con-
cepts such as receptor subtype selectivity, agonism and
inverse agonism, and ligand-directed signalling bias.
This article examines how b-blockers have evolved
and indicates how they might be used in the future.

Introduction
Sir James Black made a massive contribution to pharma-
cology by demonstrating that new major classes of drugs
could be developed by applying basic knowledge of recep-
tor-driven cell-signalling systems to clinical problems. He
developed two new classes of drugs at a time when few
specific medical treatments were available: b-blockers* for
cardiovascular disease and H2-antihistamines as antacids
for gastric and duodenal ulceration [1]. His less well-pub-
licised contribution was to analytical pharmacology, in
which many of his pioneering approaches will continue
to resonate for many years to come [2]. His first discovery,
b-blockers, was stimulated by the sudden death of his
father from a myocardial infarction when Sir James was
at medical school. He wanted to ‘stop the effects of adrena-
line on the heart’ and therefore improve the chest pain of
ischaemic heart disease caused by a lack of oxygen in the
heart. Propranolol, which he developed while at ICI phar-
maceuticals and still in widespread clinical use today, went
on to change medical practice worldwide [3]. In this review
we examine how b-blockers have evolved from their origin
as treatments for angina and cardiac arrhythmias to be
effective therapeutics for hypertension, cardiac failure,
glaucoma, migraine and anxiety, and discuss the potential
for their future development for the treatment of a variety
of conditions.
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Early development and clinical uses of b-blockers
In angina, the coronary arteries are partially blocked
(usually by atherosclerosis), which reduces blood flow to
the heart muscle. Exercise, stress and emotion increase
sympathetic drive (which increases the rate and force of
contraction), thus requiring increased coronary artery
blood flow. If this is not achieved, myocardial ischaemia
occurs, resulting in crushing central chest pain typical of
angina pectoris. Sir James surmised that blocking the
effects of catecholamines would prevent angina by decreas-
ing the workload. Although Ahlquist had proposed in 1948
that widespread adrenaline effects were mediated through
two groups of adrenoceptors, a and b [4], the idea of
developing a selective b-adrenoceptor antagonist was still
quite radical. After joining ICI Pharmaceuticals in 1958,
Sir James used the b-adrenoceptor-selective agonist iso-
prenaline as a template, but became intrigued that a
derivative, dichloroisoprenaline, lowered heart rate [5].
The application of some clever medicinal chemistry by
John Stephenson resulted in practolol and pronethanol,
the first b-blockers (later withdrawn because of oculomu-
cucutaneous syndrome/sclerosing serositis and carcinoge-
nicity). A safer, more potent derivative soon followed,
propranolol, which is still considered the prototypical b-
adrenoceptor antagonist (Table 1) [6].

The rationale that Sir James used for the development
of b-blockers was that by reducing catecholamine-induced
effects of myocardial b-adrenoceptor activation, the pain
due to anginawould be improved. b-Adrenoceptor blockade
leads to an increase in work capacity before pain or ischae-
mia occurs by reducing oxygen consumption by the heart
[7]. Another early clinical observation was that pronethalol
and propranolol produced hypotension [8,9]. It was also
shown that propranolol has anti-arrhythmic properties.
Subsequent work established that the anti-hypertensive
and anti-arrhythmic properties, together with the reduc-
tion in heart rate and cardiac output, are important class
actions of b-adrenoceptor antagonists (Table 1) [10].

Current cardiovascular uses of b-blockers
The number of b-blockers available rapidly increased and
became the major first-line therapy for hypertension (aten-
olol is historically one of the most frequently prescribed
of all medicines). Improvements in the symptomatic man-
agement of angina were followed by improvements in
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Table 1. Current indications for b-blockers from the British
National Formulary September 2010 (www.bnf.org)

Propranolol Hypertension, ischaemic heart disease (IHD),

arrhythmias, portal hypertension, anxiety,

essential tremor, migraine, thyrotoxicosis

Acebutolol Hypertension, IHD, arrhythmias

Atenolol Hypertension, IHD, arrhythmias, migraine

Bisoprolol Hypertension, IHD, heart failure

Carvedilol Hypertension, IHD, heart failure

Celiprolol Hypertension

Esmolol Arrhythmias (short-term)

Labetolol Hypertension

Metoprolol Hypertension, IHD, arrhythmias, migraine

Nadolol Hypertension, IHD, arrhythmias, migraine,

thyrotoxicosis

Nebivolol Hypertension, heart failure

Oxprenolol Hypertension, IHD, arrhythmias, anxiety

Pindolol Hypertension, IHD

Sotalol Arrhythmias

Timolol Glaucoma, hypertension, IHD, migraine

Betaxolol Glaucoma

Carteolol Glaucoma

Levobunolol Glaucoma

Metipranolol Glaucoma
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mortality in acutemyocardial infarction (MI) [11] and long-
term when given post-MI [12–16]. b-Blockers also reduce
arrhythmias after both cardiac and non-cardiac surgery
[17–21]. Thus, b-blockers now have important role in
improving both mortality and symptom control in ischae-
mic heart disease, arrhythmias and hypertension (Table 1)
[22].

Recent studies suggest that the reduction in hyperten-
sion following b-blockade has not resulted in as great a
reduction in stroke as other (newer) treatments, but other
evidence contests this and b-blockers remain an important
treatment for hypertension [16,23–25].

Heart failure and b-blockers: paradoxical
pharmacology?
Initially b-blockers were contraindicated in heart failure.
In 1978, Prichard observed: ‘Two important untoward
effects from b-adrenergic receptor blocking drugs that
should be avoided with foresight in patient selection: heart
failure and asthma. Patients in heart failure, or patients
with incipient left ventricular insufficiency . . . are critically
dependent on sympathetic activity to the heart tomaintain
their cardiac output.’ [10]. Indeed, heart failure occurs
when the cardiac output is not sufficient to meet the
demands of the body so reducing output further with a
b-blocker would appear illogical.

However, the healthy human heart also contains func-
tionally well-coupled b2-adrenoceptors [26], with 80% of
cardiac b-adrenoceptors of the b1 and 20% of the b2-sub-
type [27,28]. In heart failure, the number of b1-adrenocep-
tors decreases such that only 60% are b1 (and 40% b2) [27].
The role of b3-adrenoceptors in human myocardium is still
not clear [29]. There is also evidence that long-term acti-
vation of b1-adrenoceptors in animals hasmore deleterious
effects than activation of b2-adrenoceptors. Transgenic
mice with modest overexpression of b1-adrenoceptors
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rapidly develop cardiac failure and die, whereas b2-adre-
noceptor overexpression is better tolerated [30]. In
humans, use of b1-adrenoceptor-selective agonists was
associated with an increase in mortality [31] and they
are now restricted to short-term maintenance of cardiac
output in intensive and coronary care units.

The initial suggestion that b-blockers were beneficial in
heart failure was treated with scepticism [32,33], but
subsequent large-scale clinical trials confirmed that they
prolong longevity. Bisoprolol [34], metoprolol [35], carve-
dilol [36] and nebivolol [37] (Table 1) are all effective in
reducing mortality in patients (see also Kubon et al., this
issue). As Prichard noted, heart failure is a state with high
catecholamine levels. This is useful in the short term
because it increases cardiac drive, but is detrimental in
the long term and results in myocardial apoptosis, fibrosis
and remodelling. The pharmacological basis for the bene-
ficial effects of b-blockers in heart failure seems to be this
reduction in catecholamine-driven detrimental changes
[22,38,39]. Furthermore, two b-blockers tested in heart
failure patients that were not beneficial, bucindolol [40]
and xamoterol [41], both have significant intrinsic sympa-
thomimetic activity (ISA) [39,42,43].

Other clinical uses of b-blockers
b-Blockers (e.g. timolol and betaxolol) are also widely used
in glaucoma (raised intraocular pressure) (Table 1) [44].
Propranolol is used for prophylactic treatment of migraine
and is as effective as many other treatments available [45].
Interestingly, ISA also seems to make b-blockers less
effective in the management of migraine [46]. b-Blockers
are also used as anxiolytics in both acute and generalised
anxiety disorders, for which their likely mode of action is
blockage of the peripheral effects of high circulating levels
of catecholamines [47]. Short-acting drugs such as pro-
pranolol are also popular among performers to reduce
catecholamine-induced tremor during performances. b-
Blockers are also used in portal hypertension [48] and
benign essential tremor [49] and propranolol is used for
symptomatic management in hyperthyroidism (Table 1)
[50].

Future potential clinical uses of b-adrenoceptor
antagonists
Osteoporosis is characterised by a decrease in bone mass
due to an imbalance between osteoclast bone reabsorption
and osteoblast bone formation. This results in bones that
are more fragile and easily fractured. Several cross-sec-
tional clinical studies revealed an association between b-
adrenoceptor antagonist treatment and reduced risk of
bone fracture [51–57]. Some longitudinal studies also sug-
gest that b-adrenoceptor antagonist treatment can have a
protective effect [53,58–60]. In rats [61] and mice [62],
propranolol treatment increases bone mass, and b-adre-
noceptor agonists such as isoprenaline, clenbuterol and
salbutamol have the opposite effect [63,64]. The sympa-
thetic nervous system (SNS) is important in the control of
bone formation. In conditions associated with reduced SNS
activity (e.g. leptin-deficient ob/ob mice or dopamine b-
hydroxylase-deficient mice) there is high bone density [62].
Removal of the adrenal medulla does not affect bone mass,
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which suggests that the effect is neuronally regulated. The
effects of b-adrenoceptor ligands on bone density are prob-
ably mediated by actions on b2-adrenoceptors present on
osteoblasts [62,65]. However, the role of b-adrenoceptors in
bone remodelling is complex and further work is required
to reach consensus on the utility of b-adrenoceptor agonists
and antagonists for the treatment of osteoporosis [66].

b-Adrenoceptors might also be important in cancer me-
tastasis, because metastatic spread can be inhibited by b-
adrenoceptor antagonists. Epidemiological studies have
revealed a link between the use of b-adrenoceptor antago-
nists and reduced cancer risk [67,68]. In a mouse model of
breast cancer, activation of the SNS by stress causes a 30-
fold increase in metastasis mimicked by subcutaneous ad-
ministration of isoprenaline and blocked by propranolol
[69]. In a model of human ovarian cancer, detachment of
cells from the extracellular matrix or from neighbouring
cells is associated with apoptosis, a process known as anoi-
kis. Treatment of human ovarian cancer cells with catecho-
lamines reduces anoikis, probably by activating protective
focal adhesion kinases (FAKs). Noradrenaline treatment
causes increased pFAKY397 phosphorylation and decreased
anoikis,whichcanbeblockedbycell pretreatmentwithFAK
siRNA [70]. Similar blocking effects were produced with
propranolol or butoxamine or by pretreating cells with b2-
adrenoceptor siRNA but not with atenolol [70]. The Y397
phosphorylation site on FAK is a high-affinity binding site
for the SH2 domain of Src, and phosphorylation of this site
following cell exposure to noradrenaline is prevented by the
Src inhibitor PP2, but not by the inactive congener PP3 [70].
It will be interesting to determine whether the coupling of
b2-adrenoceptors to Src involves b-arrestin and internalisa-
tion, because it is now possible to identify ligands with a
ligand-directed signalling biasy for the b-arrestin and G-
protein-coupled pathways (see below) [71].

b-Adrenoceptors also seem to play a role in regulating
infection. Merozoite invasion of erythrocytes by the human
malaria parasite Plasmodium falciparum is enhanced by
treatment with b-adrenoceptor agonists and blocked by the
antagonist propranolol and inverse agonist ICI118551
(which also reduces the baseline response). The inactive
(+)-isomer of propranolol was ineffective against both in
vitro and in vivo infection [72]. In addition to invasion,
erythrocyte Gs signalling is also required for growth and
proliferation of malaria parasites [73]. Interestingly, pro-
pranolol was more potent in inhibiting growth than in
preventing invasion. Used in combination with existing
anti-malarial compounds, propranolol reduced the inhibito-
ry concentrations by five- to ten-fold [73]. In studies exam-
ining the inhibitory effects of several b-adrenoceptor
antagonists (10 mM) on maturation of P. falciparum in in
vitro cultures, propranolol, alprenolol and ICI118551 were
very effective in reducing viability, whereas other antago-
nists (e.g. nadolol, butoxamine, acebutalol, atenolol and
metoprolol) were less effective [73]. The actions of b-adre-
noceptor antagonists on various aspects of the life cycle ofP.
falciparum suggest that theremight be potential to develop
combination therapies with existing anti-malarial drugs.
y Ligand-directed signalling bias is a process whereby different intracellular sig-
nalling cascades are differentially stimulated by different ligands via a single receptor
subtype.
b-Blockers and airway disease
There are major concerns about the use of b-blockers in
patients with respiratory disease, particularly asthma.
Blockade of b2-adrenoceptors in the airways (by b-blockers
including atenolol, metoprolol, acebutolol, bevantolol,
xamoterol, bisoprolol and betaxolol [74–83]) causes bronch-
oconstriction and reduces the effectiveness of the main
rescue treatment for asthma. Even though some blockers
are more b1-adrenoceptor-selective, this selectivity is poor
andescalationof theb-adrenoceptoragonistdose is required
to restore lung function. Most studies show a significant
decrease in basal lung function in approximately half of
patients, with half of patients tolerating a single-dose b-
blocker [84]. Similar results were found in studies with
concomitant illnesses (e.g. carvedilol in patients with heart
failure and asthma) [85]. Several studies reported a rapid
decrease in lung function or severe breathlessness following
a single dose of b-blocker in some individuals [79,84–86].
Thus, although long-term studies of the effects of b-blockers
in asthma patients are lacking, b-blockers are currently
absolutely contraindicated in patients with asthma, even
for themostb1-selectiveantagonists currently availableand
despite their life-prolonging effects in cardiovascular dis-
ease [87]. Studies of long-termadministration of low-doseb-
blockers (see also Page, this issue) are in progress [88] to
determine if the paradoxical pharmacology observed in
congestive heart failure is also evident in asthma [89].

Pharmacological basis for the clinical actions of b-
adrenoceptor antagonists
Many b-blockers now exist and these differ in physico-
chemical, pharmacokinetic and pharmacodynamic proper-
ties. Current drugs vary in their selectivity for b1-, b2- and
b3-adrenoceptors, and some, such as carvedilol and labe-
talol, are also a1-adrenoceptor antagonists. Some have
partial agonist activity (ISA), local anaesthetic properties
(membrane-stabilising activity), K+ channel blocking ac-
tivity or anti-oxidant properties.

Properties of b-adrenoceptor antagonists
Subtype selectivity

One of the earliest developments of b-adrenoceptor antag-
onist drugs was subtype selectivity. The prototypical b-
blocker propranolol has similar affinity for b1- and b2-
adrenoceptors and lower affinity for b3-adrenoceptors
[90,91]. However, even the ‘cardioselective’ b-blockers, a
nomenclature based on their selectivity for b1-adrenocep-
tors, are not, because none in clinical use are that selective
(13-fold at most) [90,92–94]. Given this fact, there might
well be a good case for developing a highly selective b1-
adrenoceptor antagonist. Such a compound would be po-
tentially useful in patients with asthma and other respi-
ratory disorders who require inhaled b2-adrenoceptor
agonists to produce life-saving bronchodilatation. Of the
six drugs that have been investigated in substantial heart
failure trials to date (bisoprolol and nebivolol being the
most b1-selective, carvedilol having slight b2-selectivity), it
is not possible to predict what level of selectivity, if at all, is
required formaximumbeneficial outcomes in heart failure.

Most currently available b-blockers (including propran-
olol) have low affinity for the b3-adrenoceptor. There are,
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Figure 1. Biased signalling from the b2-adrenoceptor in response to propranolol in
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however, a subset of drugs comprising oxprenolol, carazo-
lol, pindolol, nadolol, tertatolol, carteolol, arotinolol and
nebivolol that have agonist effects at the b3-adrenoceptor
that could be responsible for the nitric oxide (NO)-mediat-
ed vasodilator properties observed with nebivolol [92,95].
Even SR59230A, claimed to be selective for b3-adrenocep-
tors, has a similar potency at all 3 subtypes [95,96]. Other
more recent human selective b3-adrenoceptor ligands
(such as L748337) do display greater subtype selectivity
[95].

Intrinsic sympathomimetic activity and partial agonism

Some b-blockers are traditionally described as having ISA.
These drugs block the stimulatory effects of high-efficacy
agonists, such as catecholamines, but stimulate agonist
responses of their own. This is evident at both the cellular
[95,97–101] and tissue level [42,43,99,102] with acebutolol,
carteolol, penbutolol, pindolol, bucindolol and xamoterol,
for which it is claimed that bradycardia and bronchocon-
striction are less than for other b-adrenoceptor antago-
nists. However, drugs with ISA are less advantageous in
the management of heart failure and migraine.

Low-affinity state of the b1-adrenoceptor

Some b-adrenoceptor antagonists stimulate b1-adrenocep-
tor function by interacting with a low-affinity state of the
b1-adrenoceptor [103–106] and the b3-adrenoceptor [100].
Following initial observations [107,108], most detailed
observations have been for CGP12177A [109], but b-adre-
noceptor antagonists with similar properties include
oxprenolol, alprenolol, carazolol, pindolol and carvedilol.
These ligands either stimulate agonist responses at con-
centrations much higher than those required to fully occu-
py and block the conventional catecholamine b1-
adrenoceptor site, or have biphasic concentration–re-
sponse curves [92,95,100,105,110,111]. Activation of this
low-affinity state of the b1-adrenoceptor has been demon-
strated in model cell systems [99,101,112], cardiomyocytes
[113,114], tissues [115], whole animals [116,117] and
humans [118]. However, there is currently no therapeutic
use for this property of b-adrenoceptor antagonists.

Inverse agonism

Many b-adrenoceptor antagonists, at least at the b2-adre-
noceptor, are in fact inverse agonists [119–121] (i.e. rather
than just occupying the binding site and thus blocking the
actions of agonists, they are associated with conformations
of the receptor that turn off signalling [122]).

Other properties of b-blockers

Local anaesthetic or membrane-stabilising activity is
shown by some b-adrenoceptor antagonists, notably pro-
pranolol and acebutolol and to a lesser extent pindolol and
labetalol. Although this is observed in model systems, it is
unlikely to be important in the therapeutic effects of b-
blockers because it occurs at much higher concentrations
than those normally encountered clinically.

Individual (rather than class effect) properties of certain
b-blockers include lipophilicity, K+ channel blockade and
anti-oxidant properties. Propranolol, timolol and metopro-
lol are somewhat lipophilic. Sotalol can block K+ channels
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independently of its b-blocking properties. Carvedilol
blocks a1- and b-adrenoceptors, inhibits apoptosis and
possesses antioxidant and free-radical-scavenging actions.
Nebivolol causes NO-dependent vasodilation. These prop-
erties might contribute to their efficacy in cardiac failure.

Emerging properties of b-adrenoceptor antagonists:
ligand-directed signalling bias
When Sir James developed b-blockers, the idea of a- and b-
adrenoceptor subtypes was quite radical. Three major
groups of adrenoceptors are now identified that signal in
characteristic patterns. a1-Adrenoceptors stimulate phos-
pholipase C, whereas a2-adrenoceptors inhibit adenylyl
cyclase and b-adrenoceptors activate it. However, in addi-
tion to the canonical signalling pathway, the nine adreno-
ceptor subtypes are now known to couple to other cell
signalling mechanisms. It is also clear that linear efficacy
(all agonists acting on the receptor in the same manner,
with the only variables being affinity and efficacy) is an
over-simplification [123]. Abundant evidence has now
emerged indicating ligand-directed signalling bias, partic-
ularly among b-adrenoceptor antagonists, with the actions
of propranolol at the b2-adrenoceptor being one of the best
examples (Figure 1) [120,121].

Many b-blockers are actually weak partial agonists, and
others are inverse agonists, at the b2-adrenoceptor in a
variety of functional assays. Propranolol is an inverse ago-
nist at theb2-adrenoceptor on the canonical cAMPpathway,
but in the same cells it also produces a stimulatory Erk1/2
response (Figure 1) [120,121]. This is explained by the
existence of several agonist–receptor conformations stabi-
lised by an interaction with a specific signalling protein.

For example, a ligand binds to a transmembrane orthos-
teric site, which allosterically alters the receptor confor-
mation that then determines the specificity of binding for
the intracellular signalling protein (e.g. G protein or b-
arrestin). This will occur in a ligand-dependent manner
[124], and whether a ligand is considered an agonist,[()TD$FIG]
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inverse agonist or neutral antagonist (rare) depends on the
signalling pathways being examined. After cAMP, the
most studied signalling pathways examined for b-adreno-
ceptor ligands are b-arrestin recruitment [125] and Erk1/2
signalling [120,121], but there is also evidence of tyrosine
kinase receptor transactivation and p38MAPK, PI3 kinase
and NO activation, depending on the b-adrenoceptor sub-
type, level of receptor expression and cell type [123].

Several b-adrenoceptor ligands have complex efficacy
profiles for cAMP generation and Erk1/2 activation at both
b1- and b2-adrenoceptors, which is termed pluridimen-
sional efficacy [110,120,121,126]. For mouse [127] and
human [128] b3-adrenoceptors, SR59230A and L748337
are classical competitive antagonists for cAMP accumula-
tion but agonists for Erk1/2 and p38 MAPK activation.
This suggests that compounds selectively activate discrete
pathways by interacting with particular receptor confor-
mations. Although many b-blockers express their own
spectrum of pharmacological properties, currently there
is little to relate clinical efficacy with their ability to
activate MAPK or other signalling pathways. Suggestions
that the therapeutic benefit of carvedilol in heart failure
patients relates to its capacity to activate Erk1/2 signalling
by G-protein-independent mechanisms seems premature
given that other b-blockers without these properties have
similar clinical efficacy [125].

More extensive evaluations of b-blockers have exam-
ined their ability to stimulate cAMP production (using
Exchange Protein Activated by Cyclic AMP (EPAC)-based
biosensors) or Erk1/2 activation in cells expressing the b2-
adrenoceptor [125]. A mutant b2-adrenoceptor with poor G
protein coupling demonstrated that carvedilol remained a
partial agonist for Erk1/2 activation, whereas propranolol
produced no response [125]. The carvedilol Erk1/2 re-
sponse was sensitive to siRNA depletion of arrestin-3,
but insensitive to pertussis toxin (PTX). Thus, carvedilol
(but not propranolol) causes receptor phosphorylation,
recruitment of arrestin3-GFP, and receptor internalisation
without changes in cAMP [125].

Theb1-adrenoceptor also displays ligand-directed signal-
ling bias. Treatment with isoprenaline caused both Gi-de-
pendent and G-protein-independent Erk1/2 activation
[129]. Bucindolol was a partial agonist and propranolol
was an inverse agonist for cAMP, but both caused Erk1/2
activation. The isoprenaline-induced Erk1/2 response was
partially blocked by PTX or overexpression of beta Adren-
ergic Receptor Kinase-carboxy terminus (bARK-ct) (which
sequesters Gbg subunits), but responses to bucindolol and
propranolol were unaffected [129]. Only receptors treated
with isoprenaline produced a Bioluminescence Resonance
Energy Transfer (BRET) signal, which suggests that iso-
prenaline, bucindolol and propranolol promote distinct con-
formations of the b1-adrenoceptor [129]. Although these
findings suggest that Erk1/2 activation by b1-adrenoceptor
ligands does not involve arrestins [129], it has been shown
that carvedilol and alprenolol interact with the b1-adreno-
ceptor to promote arrestin-2/3 recruitment, transactivation
of the EGF receptor and Erk1/2 activation [130], whereas
propranolol does not stimulate arrestin recruitment (bucin-
dolol was not tested) [129]. Thus, different drugs could have
distinct modes of action, not only with respect to cAMP and
Erk1/2 signalling, but also in terms of upstream signalling
effectors. However, the carvedilol and alprenolol study used
the mouse b1-adrenoceptor [130], whereas the propranolol
andbucindolol studyused thehumanb1-adrenoceptor [129],
that have amino-acid differences that could differentially
affect phosphorylation or arrestin recruitment.

At the mouse and human b3-adrenoceptors, drugs that
act as antagonists of cAMP responses strongly activate
Erk1/2 [127,128]. However, and in contrast to b1- and b2-
adrenoceptors, the Erk1/2 responses at b3-adrenoceptors do
not involve receptorphosphorylation, arrestin interactionor
internalisation because theb3-adrenoceptor doesnot under-
goany of theseprocesses. In cells expressingmodest levels of
human b3-adrenoceptors, L748337 was a competitive an-
tagonist for cAMP accumulation, but had high agonist
potency and efficacy for Erk1/2 phosphorylation [128]. Zin-
terol, by contrast [131], had high efficacy for cAMP accumu-
lation but lower efficacy than L748337 for both Erk1/2 and
p38MAPKphosphorylation [128]. Efficacy reversal was also
demonstrated for CL316243 and SR59230A at mouse b3-
adrenoceptors [127]. For cAMP accumulation, CL316243
was a full agonist and SR59230A either a partial agonist
or antagonist, depending on receptor expression levels. In
identical cells but using the extracellular acidification rate
as the functional readout, both CL316243 and SR59230A
are full agonists at all levels of receptor expression. Analysis
of responses using selective MAPK inhibitors and Western
blotting showed that p38 MAPK and Erk1/2 signalling are
involved and confirmed that SR59230A has much higher
efficacy than CL316243 for MAPK signalling. Such exam-
ples of reversal of efficacy provide strong support for ligand-
directed signalling bias.

At b3-adrenoceptors, MAPK responses induced by ago-
nist ligands occur via different G proteins from those in-
duced by antagonist ligands. Thus, Erk1/2 activation by
L748337 is blocked by PTX, which indicates that Gi/o but
not Gs is involved, whereas activation in response to
L755507 ismuch lessaffectedbyPTX, suggestiveof coupling
predominantly toGs [128]. This again highlights differences
between the three human b-adrenoceptors because antago-
nist-stimulated Erk1/2 phosphorylation at the b1- and b2-
adrenoceptors is not PTX-sensitive [125,129].

Important factors to consider in studying pathway-spe-
cific pharmacology include the level of receptor expression
and the conditions under which each signalling pathway is
measured. Signalling assays used to demonstrate ligand-
directed signalling bias are often conducted under different
conditions and rarely at equilibrium. cAMP accumulation
assays are often conducted with phosphodiesterase inhi-
bitors present. Erk1/2 assays involving Gbg or receptor
interaction with cSrc tend to peak at 5–8 min, whereas
those involving b-arrestin interactions have longer time
courses. Concentration–response relationships usually in-
volve picking the response peak for a range of concentra-
tions. Likewise, Ca2+ assays often follow a peak then
plateau phase. By contrast, b-arrestin responses and re-
porter gene assays are followed over minutes/hours. The
widely varying conditions under which assays are con-
ducted could play a role in the effects observed. However,
comparisons are generally made with a reference agonist,
generally the physiological ligand.
231



Review Trends in Pharmacological Sciences April 2011, Vol. 32, No. 4
Quantitation of ligand-directed signalling bias
For ligand-directed signalling bias to be useful in drug
development, methods for quantitation are required.
These have recently become available and, together with
the identification of drug profiles associated with thera-
peutic efficacy, provide a way forward for the development
of new classes of selective drugs. Interestingly, the starting
point for quantitation of bias is the Black–Leff operational
model [2,132]. Bias must encompass both affinity (KA) and
efficacy (t) and the ratio t/KA is referred to as the trans-
duction ratio [133]. For each bioassay, transduction ratios
can be determined and compared to those obtained for a
reference, usually an endogenous, agonist. By setting the t/
KA value for the reference agonist to 1, comparisons can be
made of the bias factors for other agonists across bioassay
systems. This facilitates systematic comparison of ligands
acting at target GPCR systems. One advantage of bias
factormeasurement is that rather than examining systems
for extreme behaviour (e.g. b-adrenoceptor antagonists
that are Erk1/2 activators), it is possible to examine many
of compounds that display a range of different efficacies for
different signalling pathways [134].

Concluding remarks
The development of b-blockers by Sir James Black made a
much greater contribution to pharmacology than originally
imagined. They have proved much more useful than their
original role of improving symptoms and outcome in
ischaemic heart disease, a development that both interest-
ed and amused him in later years. Not only did he produce
a new class of drugs, he also made a major contribution to
analytical pharmacology by developing approaches that
are now providing the foundations for the analysis of
ligand-directed signalling bias. It is possible that the ther-
apeutic applications of b-blockers in cardiac arrhythmias,
hypertension and cardiac failure can be further enhanced
by improvements in selectivity and exploitation of new
properties. Novel applications for b-blockers in the treat-
ment of cancer, osteoporosis, infectious disease and asthma
will need further experimental support.
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