
Designing Difficult Office Space Allocation

Problem Instances with Mathematical

Programming

Özgür Ülker and Dario Landa-Silva

Automated Scheduling, Optimisation and Planning (ASAP) Research Group
School of Computer Science, University of Nottingham,

Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
oxu@cs.nott.ac.uk dario.landasilva@nottingham.ac.uk

Abstract. Office space allocation (OSA) refers to the assignment of
room space to a set of entities (people, machines, roles, etc.), with the
goal of optimising the space utilisation while satisfying a set of addi-
tional constraints. In this paper, a mathematical programming approach
is developed to model and generate test instances for this difficult and
important combinatorial optimisation problem. Systematic experimen-
tation is then carried out to study the difficulty of the generated test
instances when the parameters for adjusting space misuse (overuse and
underuse) and constraint violations are subject to variation. The results
show that the difficulty of solving OSA problem instances can be greatly
affected by the value of these parameters.

Keywords: Office Space Allocation Problem, Integer Programming, Math-
ematical Modelling, Data Instance Generation, Proof of Optimality

1 Introduction

We develop a mathematical programming approach to design difficult test in-
stances for the Office Space Allocation (OSA) problem, which is commonly
encountered in universities, companies and government institutions. In simple
terms, the OSA problem is the task of allocating office spaces (rooms, hallways,
etc.) to entities (peoples, machines, roles, etc.) subject to additional constraints.
OSA is related to the multiple knapsack [?] and generalised assignment problems
[?]. In OSA, the primary goal is to maximise the space utilisation by reducing the
misuse of rooms. Misuse of rooms refers to underusing space (under-utilisation
of rooms) or overusing space (over-crowding of rooms). Usually, overuse is con-
sidered more undesirable than underuse of space. Additional constraints (e.g.
people grouping conditions) can arise in different organisations when allocating
office space. Any of such constraints can be hard (satisfied all the time) or soft
(desirable but not necessary).

Office space allocation is usually a continuous process due to the constant
changes in an organisational environment (departure/arrival of new personnel,

maintenance/renovation of existing office space, restructuring in organisations
etc). This process can involve many conflicting objectives and constraints diffi-
cult to tackle when using manual approaches. An automated allocation system
can deal with such conflicting objectives and constraints better than a human
decision expert especially if the size of the problem grows. An automated sys-
tem can also provide alternative solutions for different scenarios more quickly.
Then, instead of tackling the complex optimisation problem directly, the decision
maker can focus on fine tuning the automatically generated allocation based on
organisational preferences and requirements.

In this study, the office space allocation problem as described in Landa-
Silva [?] is investigated and extended. A 0/1 integer programming model is
developed and then Gurobi [?], a commercial integer linear programming (ILP)
solver, is applied to solve it. Based on this model, we develop a test instance
generator to further investigate the difficulty of the OSA problem through sys-
tematic experimentation. The paper is organised as follows: Section 2 outlines
previous research on office space allocation. Section 3 presents the mathematical
model proposed for OSA while Section 4 describes the test instance generator.
Section 5 presents and discusses the results from our experimental study. Finally,
Section 6 summarises our contributions and proposes future research directions.

2 Outline of Previous Related Work

One of the earliest works on the optimisation of office space utilisation is that of
Ritzman et al. [?], who developed a linear programming model for the distribu-
tion of academic offices at the Ohio State University. Benjamin et al. [?] used a
linear goal programming model for planning and improving the utilisation of the
layout of floor space in a manufacturing laboratory at the University of Missouri
Rolla. Giannikos et al. [?] developed a goal programming approach to automate
the distribution of offices among staff in an academic institution.

Burke and Varley [?] reported on a questionnaire on the space allocation
process in 38 British universities. The emphasis was on the scope of the problem,
computing tools to solve it and the constraints in each university. Burke et al.
[?] applied hill climbing, simulated annealing [?] and a genetic algorithm [?]
to solve the allocation (task of creating a complete solution from scratch) and
reorganisation (task of reallocating entities in a given solution) variants of the
problem. The authors used allocation, relocation, and swap operators for moving
entities between rooms. Burke et al. [?] later investigated a hybridisation of their
previous approaches under a population based framework. The initial solutions
were created using a hill climbing operator and then improved using simulated
annealing with adaptive cooling schedule. Burke et al. [?] applied multi-objective
optimisation [?] to the OSA problem comparing weighted aggregation to Pareto
dominance for tackling two objectives: the total space misuse (under/over usage
of rooms) and the sum of (soft) constraint violations. They found that these two
objectives were conflicting in nature. Later, Landa-Silva and Burke [?] developed
an asynchronous cooperative local search method in which local search threads

in a population co-operate with each other asynchronously to improve the overall
solution quality. Based on their experiments, the soft constraint ‘group by’ was
regarded as the most difficult one to satisfy (high number of violations).

Pereira et al. [?] applied a greedy local search and tabu search algorithm to
tackle an OSA problem where the goals are to minimise the distance between
employees in the same organisation, minimise the office space misallocation and
maximise the office space allocation. They reported that tabu search performed
better on their OSA problem instances. Lopes and Girimonte [?] analysed a vari-
ant of the OSA problem (similar to the one described in [?]) arising in the Euro-
pean Space Agency (ESA). They implemented four types of metaheuristics: hill
climbing, simulated annealing, tabu search and the hybrid metaheuristic in [?].
To improve the performance of these algorithms, variations to the local search,
and new constraints management algorithms were designed by the authors.

3 Mathematical Programming Model

An earlier version of the following model was presented in [?]. The set of rooms
is denoted by R and the set of entities is denoted by E. The size of entity e is
Se and the capacity of room r is Cr. There is a matrix X of |R| × |E| binary
decision variables where each xer = 1 if entity e is allocated to room r, otherwise
xer = 0. Let A be the adjacency list of |R| adjacency vectors each one denoted
by Ar and holding the list of rooms adjacent to room r. Similarly, let N be the
nearby list of |R| nearby vectors each one denoted by Nr and holding the list
of rooms near to room r. The adjacency vector Ar for a room r is usually quite
smaller compared to the nearby vector Nr, i.e. more rooms are considered to be
‘near’ to room r than considered to be ‘adjacent’ to the same room.

There are ten requirements or constraints handled here. Most of these con-
straints can be set as hard (must be satisfied) or soft (desirable to satisfy) in
our formulation. In other words, when a constraint is set as soft, minimising
its violation becomes an objective in the problem formulation. The exception
here is the ‘All allocated’ constraint (all entities must be allocated) which is
always enforced. The next subsections present these alternative formulations in
the constraint set and in the objective function. For each constraint type (de-
fined below), HCal, HCna, HCsr, HCnsr, HCnsh, HCad, HCgr, HCaw, HCcp

denote the corresponding constraint as hard while SCal, SCna, SCsr, SCnsr,
SCnsh, SCad, SCgr, SCaw, SCcp denote the corresponding constraint as soft.
Note that each soft constraint is associated with a binary indicator variable ycst

which is set to 1 if the respective soft constraint is violated. Some constraint
types require additional binary variables (ycstr) over r ∈ R.

3.1 Modeling Hard Constraints

All allocated: each entity e ∈ E must be allocated to exactly one room r ∈ R.
∑

r∈R

xer = 1 ∀e ∈ E (1)

Allocation: entity e to be placed into room r. ((e, r) ∈ HCal).

xer = 1 (2)

Non allocation: entity e not to be placed into room r. ((e, r) ∈ HCna).

xer = 0 (3)

Same room: entities e1 and e2 to be placed into same room. ((e1, e2) ∈ HCsr).

xe1r = 1↔ xe2r = 1 ∀r ∈ R i.e.

xe1r − xe2r = 0 ∀r ∈ R (4)

Not in same room: entities e1 and e2 to be placed into different rooms.
((e1, e2) ∈ HCnsr).

xe1r = 1← xe2r = 0 ∀r ∈ R i.e.

xe1r + xe2r ≤ 1 ∀r ∈ R (5)

Not sharing: entity e not to share a room with any other entity. ((e) ∈ HCnsh).

xer = 1→
∑

f∈E−e

xfr = 0 ∀r ∈ R i.e.

∑

f∈E−e

xfr ≤ (|E| − 1)− (|E| − 1)xer ∀r ∈ R (6)

Adjacency: entities e1 and e2 placed into adjacent rooms. ((e1, e2) ∈ HCad).

xe1r = 1→
∑

s∈Ar

xe2s = 1 ∀r ∈ R i.e.

xe1r ≤
∑

s∈Ar

xe2s ≤ 1 ∀r ∈ R (7)

Group by: entities in a group placed near to the group head f . ((e, f) ∈ HCgr).

xer = 1→
∑

s∈Nr

xfs = 1 ∀r ∈ R i.e.

xer ≤
∑

s∈Nr

xfs ≤ 1 ∀r ∈ R (8)

Away from: entities e1 and e2 to be placed in rooms away from each other.
((e1, e2) ∈ HCaw).

xe1r = 1→
∑

s∈Nr

xe2s = 0 ∀r ∈ R i.e

0 ≤
∑

s∈Nr

xe2s ≤ 1− xe1r ∀r ∈ R (9)

Capacity: Room r must not be overused. ((r) ∈ HCcp).
∑

e∈E

Sexer ≤ Cr (10)

3.2 Modeling Constraints as Objectives

Allocation: indicator variable yal(i) is set if SCal(i) is not satisfied.

yal(i) = 1− xer (11)

Non allocation: indicator variable yna(i) is set if SCna(i) is not satisfied.

yna(i) = xer (12)

Same room: indicator variable ysr(i) is set if SCsr(i) is not satisfied.

2ysrr (i)− 1 ≤ xe1r − xe2r ≤ 1− ǫ+ ǫysrr (i) ∀r ∈ R (13)

ysr(i) =
∑

r∈R

ysrr (i) (14)

Not in same room: indicator variable ynsr(i) is set if SCnsr(i) is not satisfied.

(1 + ǫ)− (1 + ǫ)ynsrr (i) ≤ xe1r + xe2r ≤ 2− ynsrr (i) ∀r ∈ R (15)

ynsr(i) =
∑

r∈R

(1− ynsrr (i)) (16)

Not sharing: indicator variable ynsh(i) is set if SCnsh(i) is not satisfied.

(|E| − 1)(2− xer − ynshr (i)) ≥
∑

f∈E−e

xfr ∀r ∈ R (17)

∑

f∈E−e

xfr ≥ (|E| − 1)(1− xer + ǫ− (|E| − 1 + ǫ)ynshr (i) ∀r ∈ R (18)

ynsh(i) =
∑

r∈R

(1− ynshr (i)) (19)

Adjacency: indicator variable yad(i) is set if SCad(i) is not satisfied.

yadr (i) + xe1r − 1 ≤
∑

s∈Ar

xe2s ≤ xe1r − ǫ+ (1 + ǫ)yadr (i) ∀r ∈ R (20)

yad(i) =
∑

r∈R

(1− yadr (i)) (21)

Group by: indicator variable ygr(i) is set if SCgr(i) is not satisfied.

ygrr (i) + xer − 1 ≤
∑

s∈Nr

xfs ≤ xer − ǫ+ (1 + ǫ)ygrr (i) ∀r ∈ R (22)

ygr(i) =
∑

r∈R

(1− ygrr (i)) (23)

Away from: indicator variable yaw(i) is set if SCaw(i) is not satisfied.

1− xe1r + ǫ− (1 + ǫ)yawr (i) ≤
∑

s∈Nr

xe2s ≤ 2− xe1r − yawr (i) ∀r ∈ R (24)

yaw(i) =
∑

r∈R

(1− yawr (i)) (25)

Capacity: indicator variable ycp(i) is set if SCcp(i) is not satisfied.
∑

e∈E

Sexer + (Cr + ǫ)(1− ycp(i) ≥ Cr + ǫ (26)

∑

e∈E

Sexer + (
∑

e∈E

Se − Cr)(1− ycp(i) ≤
∑

e∈E

Se (27)

3.3 Objective Function

The objective function is the weighted sum of the space misuse (underuse+ 2 ·
overuse) and the soft constraints violation penalty. The penalties associated to
each soft constraint type are: wal, wna, wsr, wnsr, wnsh, wad, wgr, waw, and wcp.
The objective function Z to minimise is given by:

Z =
∑

r∈R

max

(

Cr −
∑

e∈E

xerSe , 2
∑

e∈E

xerSe − Cr

)

+ wal

|SCal|
∑

i=1

yal(i) (28)

+ wna

|SCna|
∑

i=1

yna(i) + wsr

|SCsr|
∑

i=1

ysr(i) + wnsr

|SCnsr|
∑

i=1

ynsr(i) + wnsh

|SCnsh|
∑

i=1

ynsh(i)

+ wad

|SCad|
∑

i=1

yad(i) + wgr

|SCgr|
∑

i=1

ygr(i) + waw

|SCaw|
∑

i=1

yaw(i) + wcp

|SCcp|
∑

i=1

ycp(i)

4 Test Instance Generator for OSA

We have access to some real-world data for the OSA problem but in order to
systematically investigate this problem, we developed a test instance generator
based on the mathematical programming approach. The generator currently
supports the nine types of constraints described in the previous section, and
the generation of entities, rooms, and floor layout. An outline of the generator
is shown in Algorithm 1. The generator algorithm starts with the creation of
entities, groups (set of entities) and initial sets of hard and soft constraints.
Then it creates or modifies the floor layout and/or the room sizes by means of
a constructive heuristic. The generator tries to ‘plant’ a core solution into the
instance by allocating entities into rooms according to the initial constraint sets.
In order to experimentally investigate the difficulty of the created test instances,
four parameters directly related to space misuse (overuse/underuse) and to soft
constraint violations were devised. These parameters are:

Algorithm 1 OSA Test Instance Generator Algorithm

Input: input file of parameters.
Output: data instance.

— Create Groups, Entities, Floor Layout and Constraints.
— Placement of entities according to the hard constraints.
— Calculate space that is minimally required for each room.
— Placement of entities according to the soft constraints.
— Room size adjustments via (positive or negative) slack amounts.
— Post processing

1. Slack Space Rate: After all the entities are allocated to rooms, this parameter
determines whether the room size will be modified. This parameter adjusts
the amount of space misuse.

2. Negative Slack Amount: Is the amount by which room capacity is reduced
and is determined by a percentage of the total sizes of the entities already
allocated to rooms. This parameter adjusts the amount of space overuse.

3. Positive Slack Amount: Is the amount by which room capacity is increased
and is determined by a percentage of the total sizes of the entities already
allocated to rooms. This parameter adjusts the amount of space underuse.

4. Violation Rate: When allocating entities to rooms as indicated by the soft
constraints, there might be some violations of constraints, i.e. conflicts. A
soft constraint is removed from the constraint set with this rate if such a
conflict occurs. This parameter adjusts the violation of soft constraints.

5 Experiments and Results

Six real-world benchmark instances (called Nott) taken from [?] were used for
experimentation here. Additional experiments were carried using test instances
created with our generator as well.

To solve the 0/1 IP formulation, Gurobi 3.0.1 [?] was used on a PC with a
Core 2 Duo E8400 3Ghz processor and 2GB of RAM. Each problem instance was
given 30 minutes of solver runtime. The following penalties were used for each
soft constraint violation: wal = 20, wna = 10, wsr = 10, wnsr = 10, wnsh = 50,
wad=10, wgr = 11.18 for the Nott instances, wgr = 10 for the generated test
instances, waw = 10, and wcp = 10.

Table 1 summarises the best results obtained after a run of 30 minutes on
each problem instance (from Nott1 to Wolver). Note that these dataset instances
do not contain non-allocation, not in same room, or capacity constraints, the
other six constraint types are present in these real-world instances. The penalties
for each constraint violation are given in rows 2-7 of the table. Two different
experiments were run on the largest problem instance Nott1. It was observed
during experiments that minimising same room constraint violations is the most
difficult, especially for the Nott1b instance (value of 80.00). So, we conducted
an additional experiment for tackling the same room constraint in the Nott1
instance (largest one). In Nott1 column, same room constraints were all set

as soft, whereas in column Nott1*, same room constraints were all set as hard.
Notice that this latter setup achieved a lower usage penalty by roughly 35 square
meters. We can see that in all these instances, the constraint penalty turned out
to be significantly lower than the usage penalty. For all these real-world instances,
our model and solution approach produced the best results in the literature
so far [?,?]. Table 1 also shows that for instances Nott1c, Nott1d, Nott1e and
Wolver we obtained optimal results while instances Nott1 and Nott1b remain
very challenging.

Table 1. Constraint penalties for the best results obtained for each problem instance
of the Nott Dataset

Nott1 Nott1* Nott1b Nott1c Nott1d Nott1e Wolver

Allocation 40.00 20.00 0.00 40.00 0.00 0.00 0.00
Same Room 0.00 0.00 80.00 0.00 0.00 0.00 0.00
Not Sharing 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adjacency 10.00 10.00 0.00 10.00 0.00 0.00 0.00
Group by 11.18 22.36 11.18 11.18 11.18 0.00 0.00
Away From 20.00 30.00 0.00 20.00 0.00 40.00 0.00

Constraint Penalty 81.18 82.36 91.18 81.18 11.18 40.00 0.00

Overuse 130.80 106.40 64.20 182.90 164.70 13.80 486.04
Underuse 134.20 122.00 87.90 41.65 26.85 123.90 148.15

Usage Penalty 265.00 228.40 152.10 224.55 191.55 137.70 634.19

Total Penalty 346.18 310.76 243.28 305.73 202.73 177.70 634.19
Lower Bound 201.86 273.16 131.45 305.73 202.73 177.70 634.19

Percentage Gap %41.70 %12.10 %46.00 %0.00 %0.00 %0.00 %0.00

Our next experiments focused on studying the difficulty of the generated
test instances by changing the four generator parameters described in Section 4:
slack space rate (S), positive slack amount (P), negative slack amount (N) and
violation rate (V). The term ‘difficulty’ in this paper refers to the difficulty of
the optimality proof for the ILP solver (i.e. the gap or difference between the
best found solution and the best found lower-bound on the optimal solution).
The aim of this experimentation was to check if incrementing the above four
parameters had any effect on this gap and hence the optimality proof difficulty
of the test instances. In generating all our test instances, the generator used the
same entity set (with 150 entities), same initial hard constraint set, and same
initial soft constraint set (subject to modifications of the V parameter). The S,
P , and N parameters were varied to adjust the size of the rooms (92 rooms in
each instance) to obtain various amounts of space misuse (underuse/overuse).
We created two different datasets. In the SV e150 dataset, the slack space rate

(S) and violation rate (V) were varied between 0.0 to 1.0 with 0.2 increments (i.e.
36 test instances). In the PNe150 dataset, the positive slack amount (P) and

negative slack amount (N) were varied between 0.00 to 0.25 with 0.05 increments
(i.e. 36 more instances).

Table 2(a) shows results for the SV e150 dataset. Columns S and V repre-
sent the amount of slack space and violation rates respectively. Columns C, B
and % represent the objective value achieved, the lower bound on the objective
value and the percentage gap between the objective value and the lower bound
respectively. The positive slack (P) and negative slack (N) amounts were fixed
at 0.10 for this experiment. It was observed that although increasing S and V

individually increases the percentage gaps, this increase tends to stabilize (and
in fact decreases) after certain levels of S and V . It was observed that the per-
centage gaps tend to peak around S = 0.4 and V = 0.8. The absolute gaps (the
raw difference between the bound and obtained objective value) exhibit a some-
how expected smooth increase with larger S and V values. Table 2(b) shows
results for the PNe150 dataset. The effect of changing the positive slack (P)
and negative slack (N) amounts on the achieved objective values, lower bounds
and percentage gaps obtained is observed in this table. The slack rate (S) and
violation rate (V) were fixed at 0.5. Figures 1 and 2 illustrate graphically the
effect of S, V , P and N in our experimental results.

Fig. 1. The effect of changing S and V on the percentage and absolute gaps.

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.00

0.20

0.40

0.60

0.80

1.00

PG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(a) Percentage Gap (PG)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.0

50.0

100.0

150.0

200.0

250.0

AG

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

(b) Absolute Gap (AG)

The percentage gaps obtained in our experiments serve as an evidence that
our generator is able to create difficult test instances. i.e. with significant high
percentage gaps between the achieved objective values and the lower bounds
provided by the solver. One interesting observation is that the difficulty of the
test instances is not necessarily affected by increasing or decreasing P and N

independently. The percentage gaps were usually highest when P and N were
set equal or close to each other. Also, the percentage gaps were usually lower
when the absolute value gap between P and N was increased and the gaps
were minimal when N −P was the highest. The absolute value gap between the
objective value and the bounds exhibited a similar pattern to the percentage gap
case. This can be attributed to the fact that when N is increased, the resulting

Table 2. The objective values, the lower bounds and the percentage gaps obtained
when solving the SV e150 and PNe150 generated instances under different values for
parameters S, V, P and N .

(a) Changing Slack Space Rate (S) and
Violation Rate (V)

S V C B %

0.00 0.00 0.00 0.00 0.0%
0.00 0.20 32.00 21.10 34.0%
0.00 0.40 57.00 37.30 34.5%
0.00 0.60 95.50 46.20 51.6%
0.00 0.80 171.00 55.90 67.3%
0.00 1.00 193.00 67.40 65.1%

0.20 0.00 28.10 24.40 13.2%
0.20 0.20 52.90 43.20 18.3%
0.20 0.40 86.60 51.40 40.6%
0.20 0.60 122.80 62.20 49.3%
0.20 0.80 212.70 72.10 66.1%
0.20 1.00 210.30 86.20 59.0%

0.40 0.00 82.80 62.00 25.1%
0.40 0.20 116.30 63.70 45.2%
0.40 0.40 155.10 77.20 50.3%
0.40 0.60 188.80 84.70 55.1%
0.40 0.80 208.70 94.10 54.9%
0.40 1.00 271.50 107.80 60.3%

0.60 0.00 109.70 87.10 20.6%
0.60 0.20 129.70 107.00 17.5%
0.60 0.40 168.20 121.90 27.5%
0.60 0.60 205.20 129.50 36.9%
0.60 0.80 289.10 138.80 52.0%
0.60 1.00 278.70 147.60 47.1%

0.80 0.00 124.70 76.80 38.4%
0.80 0.20 160.30 89.20 44.4%
0.80 0.40 173.60 101.90 41.3%
0.80 0.60 195.90 114.70 41.5%
0.80 0.80 267.80 122.20 54.4%
0.80 1.00 276.10 134.80 51.2%

1.00 0.00 169.10 111.00 34.4%
1.00 0.20 194.20 124.10 36.1%
1.00 0.40 221.40 141.40 36.1%
1.00 0.60 243.40 149.90 38.4%
1.00 0.80 340.40 157.50 53.7%
1.00 1.00 345.30 165.90 51.9%

(b) Changing Positive Slack (P) and
Negative Slack (N) Amounts

P N C B %

0.00 0.00 73.00 38.59 47.13%
0.00 0.05 119.40 72.70 39.11%
0.00 0.10 145.20 114.29 21.28%
0.00 0.15 186.00 156.88 15.65%
0.00 0.20 210.20 209.90 0.14%
0.00 0.25 250.80 244.74 2.42%

0.05 0.00 119.90 44.90 62.55%
0.05 0.05 130.80 61.06 53.32%
0.05 0.10 141.40 95.47 32.48%
0.05 0.15 185.00 136.33 26.31%
0.05 0.20 202.40 202.40 0.00%
0.05 0.25 232.70 232.70 0.00%

0.10 0.00 130.40 57.67 55.78%
0.10 0.05 134.00 70.09 47.70%
0.10 0.10 162.60 78.64 51.64%
0.10 0.15 176.30 118.26 32.92%
0.10 0.20 205.00 146.51 28.53%
0.10 0.25 240.60 188.26 21.76%

0.15 0.00 96.00 81.50 15.10%
0.15 0.05 105.40 83.25 21.01%
0.15 0.10 124.50 79.35 36.27%
0.15 0.15 183.50 90.22 50.83%
0.15 0.20 192.90 126.09 34.63%
0.15 0.25 229.50 160.13 30.23%

0.20 0.00 108.60 108.60 0.00%
0.20 0.05 135.40 95.37 29.56%
0.20 0.10 129.90 95.47 26.51%
0.20 0.15 167.20 90.65 45.78%
0.20 0.20 177.20 102.75 42.02%
0.20 0.25 219.50 134.46 38.74%

0.25 0.00 126.00 116.21 7.77%
0.25 0.05 180.30 110.82 38.54%
0.25 0.10 132.90 113.27 14.77%
0.25 0.15 192.40 96.33 49.93%
0.25 0.20 195.30 100.71 48.43%
0.25 0.25 233.00 115.48 50.44%

Fig. 2. The effect of changing P and N on the percentage and absolute gaps.

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.00

0.20

0.40

0.60

0.80

1.00

PG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(a) Percentage Gap (PG)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.0

50.0

100.0

150.0

200.0

250.0

AG

 0

 20

 40

 60

 80

 100

 120

(b) Absolute Gap (AG)

test instance has a lot of rooms with less available space than required (high
overuse) but not enough rooms with extra capacity to compensate the lack of
space if P is kept low. At this setting, the solver is expected to immediately
allocate any extra space it can find and the remaining time when solving the
instance is concentrated on minimizing the overuse. However, when P and N are
kept close to each other, there are enough rooms with both overuse and underuse
to compensate for each other, hence the solver has to make choices to minimize
overuse, underuse and constraint violations, spending more computation time as
a result.

6 Conclusions

In this work, a 0/1 IP formulation was proposed to model various hard and
soft constraints in the office space allocation (OSA) problem. This model was
implemented in the Gurobi solver and we improved the best results obtained so
far for the existing Nott dataset. A test instance generator was also described
here and further experiments were carried out on new test instances generated.
Our experiments focused on studying the effect that four different parameters
of the generator, which affect the space misuse (underuse/overuse) and the soft
constraint violations, have on the percentage and absolute gaps between the
achieved objective value and the lower-bound on the optimal solution found by
the solver. It was observed that an important factor affecting the optimality proof
difficulty of the test instances, was the difference between negative slack (N) and
positive slack (P) amounts, which adjust the overuse and underuse of rooms
respectively in the generated test instances. Although raising the slack space

rate (S) and violation rate (V) increased the percentage gaps, their effect was
less prominent than the effect of N and P . Future research will concentrate on a
detailed study of the effect of these four parameters on the overuse, underuse and
constraint violation penalties. We also intend to develop more effective solution
techniques to tackle the most difficult instances like Nott1b and Nott1.

References

1. Benjamin, C., Ehie, I., Omurtag, Y.: Planning facilities at the university of
missouri-rolla. Interfaces 22(4) (1992)

2. Burke, E.K., Cowling, P., Landa Silva, J.D.: Hybrid population-based metaheuris-
tic approaches for the space allocation problem. In: Proceedings of the 2001
Congress on Evolutionary Computation (CEC 2001). pp. 232–239 (2001)

3. Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to
automate the space allocation process in UK universities. In: The practice and
theory of automated timetabling III (PATAT 2004), LNCS, Vol. 2079. pp. 254–
273. Springer (2001)

4. Burke, E.K., Cowling, P., Landa Silva, J.D., Petrovic, S.: Combining hybrid meta-
heuristics and populations for the multiobjective optimisation of space allocation
problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation
Conference (GECCO 2001). pp. 1252–1259 (2001)

5. Burke, E.K., Varley, D.B.: Space allocation: An analysis of higher education re-
quirements. In: The Practice and Theory of Automated Timetabling II (PATAT
1997), LNCS, Vol. 1408. pp. 20–33. Springer-Verlag (1998)

6. Cattrysse, D.G., Van Wassenhove, L.N.: A survey of algorithms for the generalized
assignment problem. European Journal of Operational Research 60(3), 260–272
(1992)

7. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer-Verlag, 2nd edn. (2006)

8. Giannikos, J., El-Darzi, E., Lees, P.: An integer goal programming model to allocate
offices to staff in an academic instituition. Journal of the Operational Research
Society 46(6), 713–720 (1995)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1st edn. (1989)

10. Gurobi Optimization: Gurobi (2010), http://www.gurobi.com
11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220, 671–680 (1983)
12. Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-

space-allocation problem. INFORMS J. on Computing 19(4), 575–587 (2007)
13. Landa-Silva, J.D.: Metaheuristics and Multiobjective Approaches for Space Al-

location. Ph.D. thesis, School of Computer Science and Information Technology,
University of Nottingham (2003)

14. Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierar-
chized organizations. In: Evolutionary Computation in Combinatorial Optimiza-
tion, LNCS, vol. 6022, pp. 143–153. Springer (2010)

15. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Inc., New York, USA (1990)

16. Pereira, R., Cummiskey, K., Kincaid, R.: Office space allocation optimization. In:
IEEE Systems and Information Engineering Design Symposium (SIEDS 2010). pp.
112–117 (2010)

17. Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space
planning for academic facilities. Managament Science 25(9), 895–906 (1980)

18. Ülker, O., Landa-Silva, D.: A 0/1 integer programming model for the office space
allocation problem. Electronic Notes in Discrete Mathematics 36, 575–582 (2010)

