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ABSTRACT

This extended abstract outlines four hybrid heuristics to gener-
ate initial solutions to the University course timetabling problem.
These hybrid approaches combine graph colouring heuristics and
local search in different ways. Results of experiments using two
benchmark datasets from the literature are presented. All the four
hybrid initialisation heuristics described here are capable of gener-
ating feasible initial timetables for all the test problems considered
in these experiments.
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1. INTRODUCTION

We refer to the University course timetabling problem as described
by Socha et al. [1] with: n events E = {e1,e2, . . . ,en}, k timeslots
T = {t1, t2, . . . , tk}, m rooms R = {r1,r2, . . . ,rm} and a set S of
students. Each room has a limited capacity and some additional
features. Each event requires a room with certain features. Each
student attends a number of events which is a subset of E. The
problem is to assign the n events to the k timeslots and m rooms in
such a way that all hard constraints are satisfied and the violation
of soft constraints is minimised.

The hard constraints that must be satisfied for a timetable to be
feasible are as follows. HC1: a student cannot attend two events si-
multaneously, i.e. events with students in common must be
timetabled in different timeslots. HC2: only one event may be as-
signed per timeslot in each room. HC3: the room capacity must be
equal to or greater than the number of students attending the event
in each timeslot. HC4: the room assigned to an event must satisfy
the features required by the event. The soft constraints that are de-
sirable to satisfy in order to assess the quality of a timetable are as
follows. SC1: students should not have only one event timetabled
on a day. SC2: students should not attend more that two consecu-
tive events on a day. SC3: students should not attend an event in
the last timeslot of a day.

It has been shown in the literature that a sequential heuristic method
can be very efficient for generating initial solutions [2, 3]. A
sequential heuristic assigns events one by one, starting from the
event which is considered the most difficult to timetable in some
sense. The ‘difficulty’ of scheduling an event can be measured by
different criteria (i.e. the number of other conflicting events or the
number of students attending the event). However, a sequential
heuristic alone does not guarantee that feasible solutions will be
found even with the combination of more than one heuristic. For

example, Abdullah et al. [4] proposed a method, based on a se-
quential heuristic, to construct initial timetables. However, their
method failed to generate a feasible solution for the large instance
of the Socha et al. problem instances [1].

We propose hybrid heuristics to create initial feasible timetables
for the University course timetabling problem described above.
We combine traditional graph colouring heuristics with various lo-
cal search methods including a simple tabu search. In the exper-
iments of this work we use the 11 benchmark data sets proposed
by Socha et al. [1] and also the set of problem instances from the
International Timetabling Competition (ITC) 2002 [5]. The pro-
posed heuristics generate feasible timetables for all the instances
in our experiments. However, these methods do not tackle the sat-
isfaction of soft constraints. Then, we obtain feasible solutions
that might still have relatively high number of soft constraint vi-
olations. The rationale for this is to allow flexibility for another
algorithm, that seeks to improve the satisfaction of constraints, to
start the search from the feasible timetables. This has proven to be
beneficial in our related work helping the improving algorithm to
achieve extremely good results [6, 7]. It is difficult to compare the
results in this paper with the literature because most other works
(e.g. [3]) incorporate the construction of initial timetables within
the overall method to solve the problem, i.e. constructing initial so-
lutions and improving them are combined into a single approach.
The next section describes the proposed hybrid heuristics.

2. GENERATING INITIAL TIMETABLES

In order to develop effective algorithms for tackling hard con-
straints in the subject problem, we combine techniques such as
graph colouring, local search and tabu search. We found that the
search components incorporated in the hybrid methods are inter-
dependent on their ability to produce a feasible timetable. In other
words, when one of these components is disabled or removed, the
remaining components are not able to produce feasible solutions
in particular for medium and large instances. Therefore, the hy-
brids described next are effective tailored mechanisms to generate
feasible timetables for the subject problem.

2.1. Largest Degree, Local Search and Tabu Search (IH1)

We adopted the heuristic proposed by Chiarandini et al. [8] and
added the Largest Degree heuristic to Step one as described next.
Largest Degree refers to the event with the largest number of con-
flicting events (events that have at least one student in common).

Step one - Largest Degree Heuristic. In each iteration, the un-
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scheduled event with the Largest Degree is assigned to a timeslot
selected at random without respecting conflicts between events.
Once all events have been assigned into a timeslot, the maximum
matching algorithm for bipartite graph is used to assign each event
to a room. At the end of this step, there is no guarantee for the
timetable to be feasible. Then, steps one and two below are exe-
cuted iteratively until a feasible solution is constructed.

Step two - Local Search. We employ two neighbourhood moves
in this step. Move one (M1) selects one event at random and as-
signs it to a feasible pair timeslot-room also chosen at random.
Move two (M2) selects two events at random and swaps their
timeslots and rooms while ensuring feasibility is maintained. That
is, neighbourhood moves M1 and M2 seek to improve the timetable
generated in Step one. A move is only accepted if it improves the
satisfaction of hard constraints (because the moves seek feasibil-
ity). This step terminates if no move produces a better (closer to
feasibility) solution for 10 iterations.

Step three - Tabu Search. We apply a simple tabu search using a
slight variation of move M1 above. Here, M1 only selects an event
that violates hard constraints. The motivation is that the algorithm
should now only target events that violate hard constraints instead
of randomly rescheduling other events like in Step two. The tabu
list contains events that were assigned less than tl iterations before
calculated as tl = rand(10)+ δ × nc, where 0 ≤ rand(10) ≤ 10,
nc is the number of events involved in hard constraint violations in
the current timetable, and δ = 0.6. The usual aspiration criterion
is applied to override tabu status, i.e. accept the move when a best
known solution is found. This step terminates if no move produces
a better (closer to feasibility) solution for ts iterations.

2.2. Saturation Degree, Local Search and Tabu Search (IH2)

This heuristic uses Saturation Degree, which refers to the number
of resources (timeslots and rooms) still available to timetable a
given event without conflicts in the current partial solution. In
the previous heuristic IH1 the assignment of events in Step one is
done without checking conflicts. The difference in heuristic IH2
is that we first check conflicts between the unassigned event and
those events already assigned to the selected timeslot. If there are
timeslots with no-conflicting events already assigned (saturation
degree of the event to assign is greater than zero), the event is
assigned to a feasible timeslot selected at random. If there are no
such timeslots (saturation degree of the event to assign is zero),
the events already assigned to the timeslot are ejected and put in
a list of events to re-schedule. The heuristic then attempts to re-
assign these ejected events into conflict free timeslots if possible.
Otherwise, these ejected events are put into random timeslot-room,
even if conflicts arise, then later the local and tabu search of Step
two and Step three as described above, will deal with these ejected
events and the remaining conflicting assignments. In essence, in
addition to using Saturation Degree instead of Largest Degree, this
second heuristic IH2 tries to fix some conflicts in the timetable
before starting Steps two and three.

2.3. Largest Degree, Saturation Degree, Local Search and Tabu
Search (IH3)

This heuristic incorporates both Largest Degree and Saturation De-
gree. The difference with heuristic IH2 is that in Step one, events
are first sorted based on Largest Degree. After that, we choose the
unassigned event with the Largest Degree and calculate its Satura-
tion Degree. Then, Step one of this heuristic IH3 proceeds as in
heuristic IH2, but when attempting to re-assign the ejected events,
only those ejected events with Saturation Degree greater than zero
(still available timeslots and room) are assigned to any feasible
timeslot-room. All ejected events with Saturation Degree zero are

moved from the re-schedule list to the list of unscheduled events.
After each re-assigning, we re-calculate the Saturation Degree for
all ejected events in the re-schedule list. This process in Step one
continues and if after some given computation time there are still
events in the unscheduled list, these events are then assigned to
random timeslot-room without respecting conflicts. Steps one and
two as described above follow implementing the local and tabu
search respectively. In essence, compared to heuristic IH2, this
heuristic IH3 combines Saturation Degree and Largest Degree in
Step one trying to re-scheduled ejected events with less resources
first. Algorithm 1 shows the pseudo-code for the hybrid heuristic
IH3, which in a sense, is the most elaborate one among methods
IH1, IH2 and IH3.

2.4. Constraint Relaxation Approach (IH4)

In this fourth heuristic approach, we introduce extra dummy times-
lots to place events with zero Saturation Degree and in this way
enforce the no-conflicts constraint by relaxing the availability of
timeslots. The number of extra dummy timeslots needed is deter-
mined by the size of the problem instance. This heuristic works as
follows. First, we sort the events using Largest Degree. The event
with the Largest Degree is chosen to be scheduled first. If the
event has zero Saturation Degree, the event is assigned randomly
to one of the extra dummy timeslots. Once the algorithm assigns
all events in the valid timeslots plus the extra dummy timeslots
without conflicts, we then perform great deluge search [6] using
moves M1 and M2 to reduce the number of timeslots down to 45
valid timeslots if necessary. In this local search, only the 45 valid
timeslots are considered, so no events are allowed to move into
any of the extra dummy timeslots. This hybrid heuristic is much
slower that the other three methods above, mainly due to the great
deluge search. Algorithm 2 shows the pseudo-code for the hybrid
heuristic IH4, which in a sense, is the most different among all
methods described here.

3. RESULTS AND DISCUSSION

The proposed hybrid heuristic initialisation methods were applied
to the Socha et al. [1] instances and also to the ITC 2002 in-
stances [5]. We did not impose time limit as a stopping condition,
each algorithm stops when it finds a feasible solution.

All methods successfully generate initial solution for small in-
stances in just few seconds. The medium and large Socha et al. in-
stances are more difficult as well as all ITC 2002 instances. How-
ever, the proposed methods generated feasible solutions for all in-
stances demonstrating that the hybridisation compensates weak-
ness in one component with strengths in another one in order to
produce feasible solutions in reasonable computation times.

Table 1 and Table 2 compare the performance of each method on
the Socha et al. and the ITC 2002 instances respectively. The first
column in each table indicates the problem instance. The next four
columns give the best objective function value (soft constraints vi-
olation) obtained by each heuristic. The last column in each table
indicates the best computation time in seconds and the correspond-
ing heuristic.

The results show that none of the heuristics clearly outperforms
the others in terms of the objective function value (soft constraints
violation) obtained. Each of the four heuristics outperforms the
other three in some of the problem instances. With respect to com-
putation time we can see in Table 1 that for the Socha et al. prob-
lems, the heuristic that achieved the best objective value was al-
most never the fastest one (except in problem instance M2). How-
ever, for the ITC 2002 problems, we see in Table 2 that in several
cases the heuristic producing the best objective value was also the
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Algorithm 1: Initialisation Heuristic 3 (IH3)

1 Input: List of Unscheduled events E;
2 Sort E by non-increasing Largest Degree (LD);
3 while (E is not empty) do
4 Choose event e from E with LD (random tie-break);
5 Calculate SD for event e;
6 if (SD = 0) then
7 Select a timeslot t at random;
8 Move events scheduled (if any) in timeslot t that

conflict with event e (if any) to the Reschedule list;
9 Assign event e to timeslot t;

10 for (each event in Reschedule list with SD > 0) do
11 Select feasible timeslot t for event e at

random;
12 Re-calculate SD for all events in Reschedule

list;
13 end
14 Move all events with SD = 0 that remain in

Re-schedule list to the Unscheduled list E;
15 end
16 else
17 Select a feasible timeslot t at random for event e;
18 end
19 if (Unscheduled list E is not empty and time has

elapsed) then
20 One by one, place events from the Unscheduled

list into any random selected timeslot without
respecting the conflict between the events;

21 end
22 end
23 S = current solution;
24 loop = 0;
25 while (S not feasible ) do
26 if (loop < 10) then
27 if ( coin f lip()) then
28 S∗ = M1(S); // apply M1 to S
29 end
30 else
31 S∗ = M2(S); // apply M2 to S
32 end
33 if ( f (S∗)≤ f (s)) then
34 S← S∗ // accept new solution;
35 end
36 end
37 else
38 EHC = set of events that violate hard constraints;
39 e = randomly selected from EHC;
40 S∗ = M1(S, e); // perform one Tabu Search

iteration with move M1 using event e;
41 if ( f (S∗)< f (S) then
42 S← S∗; // accept new solution
43 end
44 if (loop >= ts ) then
45 loop = 0;
46 end
47 end
48 loop++;
49 end
50 Output: S feasible solution (timetable);

Algorithm 2: Initialisation Heuristic 4 (IH4)

1 Input: List of Unscheduled events E;
2 Generate dummy timeslots according to problem instance;

Sort events in E by non-increasing Largest Degree (LD);
3 while (Unscheduled list E is not empty) do
4 Choose event e from E with the LD (random tie-break);
5 Calculate SD for event e;
6 if (SD = 0) then
7 Select dummy timeslot at random for event e;
8 end
9 else

10 Chose any feasible timeslot for event e;
11 Update the new solution;
12 end
13 end
14 S = current solution;
15 Calculate initial cost function f (S);
16 Initial water level B = f (S);
17 ∆B = 0.01;
18 while (dummy timeslots are not empty) do
19 if ( coin f lip()) then
20 S∗ = M1(S); // apply M1 to S
21 end
22 else
23 S∗ = M2(S); // apply M2 to S
24 end
25 if ( f (s∗)≤ f (s)) or ( f (s∗)(≤ B)) then
26 S← S∗; // accept new solution
27 end
28 B = B−∆B; // lower the water level
29 if (B - f(S) ≤ 1) then
30 B = B+5; // increase the water level
31 end
32 end
33 Output: S feasible solution (timetable);

fastest. As indicated above, the hybrid initialisation heuristic (IH4)
that uses dummy timeslots to deal with conflicts and then great del-
uge as the local search to bring the solution to feasibility, is never
the fastest approach. However, this heuristic IH4 was capable of
producing the best solutions for two of the Socha et al. instances
and six of the ITC 2002 instances.

In our preliminary experiments, we implemented a sequential heuris-
tic (see [2, 3]) but were able to generate feasible timetables only
for the small instances of the Socha et al. dataset (in fact, these
small instances are considered to be easy). Even after consider-
ably extending the computation time, the sequential heuristic was
not able to generate feasible solutions for the medium and large
Socha et al. instances or the ITC 2002 datasets.

4. CONCLUSIONS

Many approaches have been proposed in the literature to tackle
the University course timetabling problem. In this extended ab-
stract we have outlined four variants of hybrid heuristics designed
to generate initial feasible solutions to this problem. These hy-
brid approaches combine traditional graph colouring heuristics,
like Largest Degree and Saturation Degree, with different types
of local search. The four hybrid variants were tested using two
sets of benchmark problem instances, the Socha et al. [1] and the
International Timetabling Competition 2002 [5] datasets.

All the hybrid initialisation heuristics described here were capa-
ble of producing feasible timetables for all the problem instances.
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Problem IH1 IH2 IH3 IH4 Min Time
S1 173 198 207 200 0.077 (IH2)
S2 211 217 189 208 0.078 (IH2)
S3 176 190 188 209 0.062 (IH2)
S4 250 174 203 192 0.047 (IH1)
S5 229 238 226 217 0.078 (IH2)
M1 817 772 802 774 5.531 (IH3)
M2 793 782 784 802 6.342 (IH2)
M3 795 867 828 817 6.64 (IH3)
M4 735 785 811 795 5.828 (IH2)
M5 773 771 784 769 16.670 (IH1)
L 1340 1345 1686 1670 300.0 (IH1)

Table 1: Results obtained with each hybrid initialisation heuristic
(IH1 to IH4) on the 11 Socha et al. problem instances, best results
indicated in bold.

Problem IH1 IH2 IH3 IH4 Min Time
Com01 805 786 805 805 1.93 (IH3)
Com02 731 776 731 778 1.36 (IH3)
Com03 760 812 760 777 1.14 (IH2)
Com04 1201 1178 1201 1236 4.46 (IH2)
Com05 1246 1243 1246 1135 2.11 (IH3)
Com06 1206 1219 1206 1133 1.33 (IH3)
Com07 1391 1388 1391 1265 2.10 (IH3)
Com08 1001 968 1001 1006 1.81 (IH2)
Com09 841 859 841 843 1.46 (IH1)
Com10 786 816 786 799 4.64 (IH3)
Com11 852 877 852 839 1.05 (IH1)
Com12 814 831 814 788 2.21 (IH2)
Com13 1008 1010 1008 1009 2.26 (IH1)
Com14 1040 1032 1040 1355 3.71 (IH2)
Com15 1165 1162 1165 1161 1.56 (IH3)
Com16 887 911 887 888 1.09 (IH3)
Com17 1227 1032 1227 1199 1.13 (IH2)
Com18 793 724 793 763 1.29 (IH3)
Com19 1184 1212 1184 1209 3.22 (IH3)
Com20 1137 1161 1137 1205 0.08 (IH3)

Table 2: Results obtained with each hybrid initialisation heuristic
(IH1 to IH4) on the 20 ITC 2002 problem instances, best results
indicated in bold.

None of the approaches showed to be clearly better that the others.
For a given instance, the heuristic producing the best quality ini-
tial timetable is often not the fastest among the four approaches.
However, for all the problem instances there is at least one hybrid
heuristic capable of generating a feasible timetable in very short
time, from less than a second to few seconds depending of the
problem instance. The exception is the largest Socha et al. in-

stance which is still regarded in the literature as a very challenging
problem. Having some methods capable of generating feasible so-
lutions for the University course timetabling problem is important
because the effort of more elaborate methods can then be focused
on tackling the violation of soft constraints in order to improve the
timetable quality.

In a following more detailed description on this research, we in-
tend to present a statistical comparison between the proposed ini-
tialisation heuristics, compare these approaches against other pro-
cedures to generate feasible solutions to the University course
timetabling problem and analyse the effect of each component in
the four hybrid heuristics.
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