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Introduction

May and Zhaoping (this issue) make the case that
neurons must be performing multiplication in order to
generate the AND gates needed to detect conjunctions and
that the method of simply summing nonlinear inputs
suggested by Peirce (2007) would not suffice. Their
conclusions are based on three main premises: that non-
linear summation1 only applies to conjunctions in which
the components have lower contrast than the compound
(plaids, for example, but not contours), that it cannot
explain data collected in cases where the components have
the same contrast when presented alone or as a compound;
and that it cannot operate for stimuli with very low
contrast. Each of those claims is examined in turn below.
The first two turn out to be false when one considers the
effect of a threshold applied either at the output of the
summing mechanism or, equivalently, on the input of any
subsequent readout mechanism. The third assertion is true
and in full agreement with the findings of psychophysical
experiments that indicate a lack of conjunction detection
at low contrasts. Rather than showing that nonlinear
summation could not support conjunction detection, May
and Zhaoping have actually highlighted a piece of indirect
evidence that it is indeed the mechanism being used.
It should be noted that the arguments below do not

suggest that nonlinear contrast response functions are
solely used for conjunction detection. Possibly, these
nonlinearities exist solely to optimize the dynamic range
of neurons and reduce redundancy in signals, they support
multiple functions, or they are merely an epiphenomenon
with no function at all. The argument made here is simply
that they could be used to support neural AND gates, as
proposed in Peirce (2007).

Is nonlinear summation useful
in detecting conjunctions?

May and Li claim that the use of nonlinear summation
is not useful in detecting signals that are not limited by a

fixed net contrast, and that even if it were a useful
mechanism to detect plaids, it would not be useful for, say,
contour integration. Actually, the original article already
noted that in those cases where components do not overlap
spatially nonlinear summation was not strictly necessary.
However, it certainly could facilitate conjunction detection
even in those cases.
The point is illustrated in Figure 1. The center panel

shows the response of the nonlinear summation mecha-
nism described in Peirce (2007), as a function of contrast
in two input channels. A decision boundary has been added
to the plot indicating all points where the response to the
compound is greater than the maximal response to any
single component presented alone (by at least 5% of the
total dynamic range of the cell). This decision boundary
might represent the threshold required to trigger a response,
either at the spike-generating stage or in some later readout
mechanism. It is hopefully very clear that the mechanism
would be useful in detecting the conjunction in nearly all
cases, excluding only those where one or both components
has a low contrast, as discussed below. The only difference
between spatially overlapping and spatially separated
components is that spatially overlapping components are
limited to the lower left portion of the graph. That portion,
for the linear summation model (left panel), does not
include any correctly detected conjunctions, hence, the
necessity for an AND gate (either multiplicative or with
nonlinear summation) for these types of compounds.
The principal reason that May and Zhaoping claim that

nonlinear summation cannot support AND operations is
that, with strong stimulation in one channel alone, there
is always some degree of response; the sigmoidal non-
linearities described cannot force the summed signals back
to zero. May and Zhaoping implicitly assume that the
decision about whether the conjunction is present or absent
is based on whether the mechanism responds at all; there is
an implicit boundary set at zero impulses per second. This
is natural enough in mathematics but is not the only
option, and for neurons, it seems an unrealistic decision
boundary. Neuronal responses are noisy, and to allow
tolerance to the noise, a readout/decision mechanism
should surely set its decision boundary at some reasonable
level above zero. The natural choice would be to set it at
some level just above the maximum response that can
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be generated from either component alone. When that
is done, the “decision” to be made from the multi-
plicative AND gate (Figure 1, right panel) and one using
nonlinear summation is actually very similar. Further-
more, it takes very little extension (e.g., the addition of a
spike-generating mechanism with an appropriate response
threshold) to convert this into a “genuine” AND gate, for
which there is no response at all when one of the com-
ponents is not present. The sources that May and
Zhaoping cite as existing evidence for multiplication
(e.g., binocular obligate cells of Hubel & Wiesel, 1962)
could equally be modeled by nonlinear summation of two
signals, as in the middle panel of Figure 1, with no need
for multiplication.
The second criticism of the proposed mechanism was

that, for the stimuli we used in our plaid (e.g., McGovern
& Peirce, 2010; Peirce & Taylor, 2006) and curvature
(e.g., Hancock & Peirce, 2008) adaptation experiments,
the contrast of components was constant in the compound
and component conditions and, therefore, that the sum
of responses to the components would exactly equal the
whole. This was obviously necessary in those studies, in
order to show that adaptation to the “whole” is greater than
to the “sum of the parts”. Again, the authors fail to consider
the response (or readout) threshold. With this small
addition, which I clearly should have made more explicit
in the original description of the mechanism, it quickly
becomes clear that either high-contrast component alone
would fall outside the decision boundary and result in no
response, whereas the compound stimulus would cross the
boundary and a response would result.

May and Zhaoping’s third assertion is, however, quite
correct. The nonlinear summation mechanism will fail to
detect conjunctions when the components are presented
with very low contrast. As a result, if the visual system did
use nonlinear summation in the detection of conjunctions
then it might fail, or might have to resort to a different
mechanism, when conjunctions are presented at low
contrast.
In fact, that prediction appears to hold true. Certainly,

selective adaptation to plaids, the phenomenon that caused
me to think about the mechanism in the first place, falls
off dramatically with probe contrast; by a Michelson
contrast of 0.1, it is swamped by adaptation to the
component gratings (McGovern & Peirce, 2010). Sim-
ilarly, Meese and Freeman (1995) show that plaid patterns
tend to be perceived as two overlapping gratings at low
contrast rather than as a single coherent pattern. Sarah
Hancock has now attempted to collect similar data for the
curvature aftereffect (the CAE, as described by Hancock
& Peirce, 2008) but found the task of identifying
magnitude of curvature too difficult to be able to measure
an aftereffect when probes had a Michelson contrast
below 0.1 (Hancock, unpublished observation). For radial
frequency patterns, sensitivity is relatively constant for
probe contrasts between 1.0 and 0.125 but then drops
substantially when contrast is reduced further (Wilkinson,
Wilson, & Habak, 1998). Similarly, sensitivity to contours
in a field of Gabor patches plummets when contrast falls
below 0.1 but is roughly constant above that (McIlhagga
& Mullen, 1996). May and Zhaoping are correct to point
out that for low contrasts the mechanism would predict a

Figure 1. The outputs of three mechanisms combining two input signals, as a function of the input contrasts. The greyscale indicates a
notional response rate ranging 0–100 ips for all three model cells. The solid line indicates a decision boundary for the presence of the
conjunction; the set of contrast combinations that are 5 ips greater than the maximum response generated from stimulating either channel
alone. For both the nonlinear summation model and the multiplicative combination this decision boundary includes most cases where a
conjunction might be thought to exist. Model details: The linear and multiplication models have linear inputs. The nonlinear summation
model has sigmoidal (Naka<Rushton) inputs with C50=0.1, exponent=2.0, in keeping with single<unit recordings. In all cases the inputs are
scaled to a notional maximum response of 100 ips. Models A and B then sum the inputs, while C multiplies them. The outputs of all three
are also passed through a moderate output nonlinearity (C50=100 ips, exponent=2.0). This step does not affect the current discussion but
serves to constrain the maximal responses of the mechanisms. Complete Python source code for the figure can be found in the
Supplementary materials.
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failure to detect or accurately discriminate conjunctions.
What they fail to point out is that this fits very well indeed
with data from numerous psychophysical studies into a
wide range of “mid-level” visual tasks.
The fact that the visual system might perform con-

junction detection simply by summing the nonlinear
responses that we already know to exist does not mean
that we would necessarily want to do that in computa-
tional modeling projects. Whereas nonlinear summation
would seem easier to implement in neural circuits than
multiplication (not requiring the three layers of neurons
to perform the Babylonian trick that May and Zhaoping
suggest) in mathematics, simply multiplying signals is
often the more straightforward option and can result in
very similar results, as shown in Figure 1.

Summary

We may never know which of these methods the visual
system actually uses to detect conjunctions of signals. On
the other hand, if simply adding the nonlinear signals that
we already know to be present results in a physiological
approximation of the AND operation, then it seems hard
to imagine that the brain does not occasionally make use
of such a computation. In a domain where mathematical
models are often described as “physiologically plausible,”
this particular mechanism would seem “physiologically
almost certain” to exist.
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Footnote

1
Some authors have used the term “nonlinear sum-

mation” to refer to models that contain multiplicative

terms in the combination step. Here, it is used to refer
specifically to a model in which a nonlinearity is applied to
input channels that are then combined in a simple (linear)
summation step. For present purposes the nonlinearity on
these channels is conceived as a simple sigmoidal Naka-
Rushton function [R = Cn / (Cn + C50

n ), where C is input
contrast and C50 and n are parameters determining the
shape of the nonlinearity]. In Peirce (2007), this equa-
tion was extended with an additional exponent to allow
nonmonotonic response functions to be included, but that
is not critical for the discussion here.

References

Hancock, S., & Peirce, J. W. (2008). Selective mecha-
nisms for simple contours revealed by compound
adaptation. Journal of Vision, 8(7):11, 1–10, http://
www.journalofvision.org/content/8/7/11, doi:10.1167/
8.7.11. [PubMed] [Article]

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields,
binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of Physiology,
160, 106–154.2.

McGovern, D. P., & Peirce, J. W. (2010). The spatial
characteristics of plaid-form-selective mechanisms.
Vision Research, 50, 796–804.

McIlhagga, W. H., & Mullen, K. T. (1996). Contour
integration with colour and luminance contrast.
Vision Research, 36, 1265–1279.

Meese, T. S., & Freeman, T. C. (1995). Edge computation
in human vision: Anisotropy in the combining of
oriented filters. Perception, 24, 603–622.

Peirce, J. W. (2007). The potential importance of saturat-
ing and supersaturating contrast response functions in
visual cortex. Journal of Vision, 7(6):13, 1–10, http://
www.journalofvision.org/content/7/6/13, doi:10.1167/
7.6.13. [PubMed] [Article]

Peirce, J. W., & Taylor, L. J. (2006). Selective mecha-
nisms for complex visual patterns revealed by adapta-
tion. Neuroscience, 141, 15–18.

Wilkinson, F., Wilson, H. R., & Habak, C. (1998).
Detection and recognition of radial frequency pat-
terns. Vision Research, 38, 3555–3568.

Journal of Vision (2011) 11(9):18, 1–3 Peirce 3

http://www.ncbi.nlm.nih.gov/pubmed/19146244
http://www.journalofvision.org/content/8/7/11
http://www.ncbi.nlm.nih.gov/pubmed/17685796
http://www.journalofvision.org/content/7/6/13

