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ROOTS OF EHRHART POLYNOMIALS OF SMOOTH FANO POLYTOPES

GÁBOR HEGEDÜS AND ALEXANDER M. KASPRZYK

Abstract. V. Golyshev conjectured that for any smooth polytope P with dim(P ) ≤ 5 the

roots z ∈ C of the Ehrhart polynomial for P have real part equal to −1/2. An elementary proof

is given, and in each dimension the roots are described explicitly. We also present examples

which demonstrate that this result cannot be extended to dimension six.

1. Introduction

Let P be a d-dimensional convex lattice polytope in R
d. Let LP (m) :=

∣

∣mP ∩ Z
d
∣

∣ denote the

number of lattice points in P dilated by a factor of m ∈ Z≥0. In general the function LP is a

polynomial of degree d, called the Ehrhart polynomial [Ehr67].

The roots of Ehrhart polynomials have recently been the subject of much study (for exam-

ple [BHW07, BD08, HHO10, Pfe07]), with a significant portion of this work being based on

exhaustive computer calculations using the known classifications of polytopes. It has been con-

jectured in [BDLD+05] that if z ∈ C is a root of LP , then the real part Re(z) is bounded by

−d ≤ Re(z) ≤ d − 1; Braun has shown [Bra08] that z lies inside the disc centred at −1/2 of

radius d(d − 1/2).

Definition 1.1. A convex lattice polytope P is called reflexive if the dual polytope

P∨ := {u ∈ R
d | 〈u, v〉 ≤ 1 for all v ∈ P}

is also a lattice polytope.

There are many interesting and well-known characterisations of reflexive polytopes (for ex-

ample [HK10, Theorem 3.5]). They are of particular relevance to toric geometry: reflexive

polytopes correspond to Gorenstein toric Fano varieties (see [Bat94]) and have been classified

up to dimension four.

Any reflexive polytope P satisfies

(1.1) LP (m) = L∂P (m) + LP (m− 1) for all m ∈ Z>0,

where ∂P denotes the boundary of P . As a consequence, Macdonald’s Reciprocity Theo-

rem [Mac71] tells us that LP (−m − 1) = (−1)dLP (m). In particular we observe that the

roots of LP are symmetrically distributed with respect to the line Re(z) = −1/2.
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Theorem 1.2 ([BHW07, Proposition 1.8]). Let P be a d-dimensional convex lattice polytope

such that for all roots z of LP , Re(z) = −1/2. Then, up to unimodular translation, P is a

reflexive polytope with vol(P ) ≤ 2d.

Theorem 1.3 ([HHO10, Theorem 0.1]). In each dimension d there exists a reflexive polytope

P such that if z ∈ C \R is a root of LP then Re(z) = −1/2.

Definition 1.4. A d-dimensional convex lattice polytope P is called smooth if the vertices of

any facet of P form a Z-basis of the ambient lattice Z
d.

Clear any smooth polytope is simplicial and reflexive. Smooth polytopes are in bijective

correspondence with non-singular toric Fano varieties, and have been classified up to dimension

eight [Øbr07].

V. Golyshev conjectured in [Gol09, §5] that, for any smooth polytope P of dimension d ≤ 5,

the roots z ∈ C of LP satisfy Re(z) = −1/2 (the “canonical line hypothesis”). Notice that it

is not required that z /∈ R. We prove Golyshev’s conjecture without resorting to the known

classifications – see Sections 2 and 3 below.

Theorem 1.5 (Golyshev). Let P be a smooth polytope of dimension d ≤ 5. If z ∈ C is a root

of LP (m) then Re(z) = −1/2.

Explicit descriptions of the roots are given in Corollaries 2.6 and 3.8. We summarise them in

the following theorem.

Theorem 1.6. Let P be a smooth d-dimensional polytope, and suppose that z = −1/2+βi ∈ C

is a root of LP . If d = 2 then

β2 = −
1

4
+

2

f0
.

If d = 3 then β = 0 or

β2 = −
1

4
+

6

f0 − 2
.

If d = 4 then

β2 = −
17

4
+

3b2
b2 − 2f0

±

√

1−
12(f0 + 2)

b2 − 2f0
+

36f2
0

(b2 − 2f0)2
.

If d = 5 then β = 0 or

β2 = −
5

4
+

10(f0 − 2)

6 + b2 − 4f0
±

√

1−
20(f0 + 4)

6 + b2 − 4f0
+

100(f0 − 2)2

(6 + b2 − 4f0)2
.

The following example demonstrates that we cannot extend Theorem 1.5 to dimension 6.

Example 1.7. There exist exactly four smooth polytopes in dimension six having roots z of the

Ehrhart polynomial such that Re(z) 6= −1/2; in each case z /∈ R. The polytopes have IDs 1895,

1930, 4853, and 5817 in the Graded Ring Database1. The corresponding Ehrhart polynomials

1http://grdb.lboro.ac.uk/search/toricsmooth?id cmp=in&id=1895,1930,4853,5817

http://grdb.lboro.ac.uk/search/toricsmooth?id_cmp=in&id=1895,1930,4853,5817
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are:

1 +
31

10
m+

257

60
m2 +

5

2
m3 +

19

12
m4 +

2

5
m5 +

2

15
m6,

1 +
7

2
m+

175

36
m2 +

35

12
m3 +

35

18
m4 +

7

12
m5 +

7

36
m6,

1 +
7

2
m+

21

4
m2 +

15

4
m3 +

5

2
m4 +

3

4
m5 +

1

4
m6,

1 +
31

10
m+

257

60
m2 +

5

2
m3 +

19

12
m4 +

2

5
m5 +

2

15
m6.

The second polytope has roots where Re(z) > 0, and where Re(z) < −1. This demonstrates

that the more general “canonical strip hypothesis” does not hold in dimension six.

2. Dimensions Two and Three

One of the fundamental pieces of numerical data associated with a polytope is the f -vector,

which enumerates the number of faces of P . We begin by deriving an expression for the Ehrhart

polynomial of a smooth polytope in terms of its f -vector.

Definition 2.1. Let P be a d-dimensional convex polytope. Define f−1 := 1, fd := 1, and fi

equal to the number of i-dimensional faces of P , for any 0 ≤ i ≤ d− 1. The f -vector of P is the

sequence (f−1, f0, . . . , fd).

Lemma 2.2. Let P be a d-dimensional smooth polytope. Then

LP (m) =

d−1
∑

i=−1

fi

(

m

i+ 1

)

and L∂P (m) =

d−1
∑

i=0

fi

(

m− 1

i

)

.

Proof. Clearly

L∂P (m) = f0 +
∑

F

∣

∣

∣
(mF )◦ ∩ Z

d

∣

∣

∣
,

where the sum is taken over all i-dimensional faces F of P , i > 0, and Q◦ denotes the (relative)

interior of Q. Since P is smooth, F ∩ Z
d forms part of a basis for the underlying lattice Z

d for

any face F . Hence

L∂P (m) =

d−1
∑

i=0

fi

(

m− 1

i

)

.
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To calculate LP (m) we make use of (1.1):

LP (m) = 1 +
m
∑

k=1

L∂P (k) = 1 +
m
∑

k=1

d−1
∑

i=0

fi

(

k − 1

i

)

= 1 +
d−1
∑

i=0

fi

m
∑

k=1

(

k − 1

i

)

= 1 +
d−1
∑

i=0

fi

(

m

i+ 1

)

=

d−1
∑

i=−1

fi

(

m

i+ 1

)

.

�

The f -vectors of low-dimensional smooth polytopes were calculated in [HK10, Theorem 4.2].

As a consequence we obtain the following formulae for the Ehrhart polynomial:

Corollary 2.3. Let P be a d-dimensional smooth polytope. Define b2 :=
∣

∣∂(2P ) ∩ Z
d
∣

∣.

If d = 2 then

LP (m) = 1 +
1

2
f0m+

1

2
f0m

2.

If d = 3 then

LP (m) = 1 +
1

6
(f0 + 10)m+

1

2
(f0 − 2)m2 +

1

3
(f0 − 2)m3

If d = 4 then

LP (m) = 1 +
1

12
(8f0 − b2)m+

1

24
(14f0 − b2)m

2 −
1

12
(2f0 − b2)m

3 −
1

24
(2f0 − b2)m

4.

If d = 5 then

LP (m) = 1 +
1

60
(14f0 − b2 + 94)m+

1

24
(16f0 − b2 − 30)m2 +

1

3
(f0 − 2)m3

−
1

24
(4f0 − b2 − 6)m4 −

1

60
(4f0 − b2 − 6)m5.

Casagrande provides sharp bounds on the number of vertices f0 of a smooth polytope in terms

of the dimension:

Theorem 2.4 ([Cas06]). Let P be a d-dimensional smooth polytope. Then

f0 ≤

{

3d, if d is even;

3d− 1, if d is odd.

We now prove Theorem 1.5 without resorting to the classifications in dimensions 2 and 3.

Proposition 2.5. Let P be a smooth polytope of dimension two or three. If z ∈ C is a root of

LP (m) then Re(z) = −1/2.
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Proof. d = 2: By Corollary 2.3 we know that

LP (m) = 1 +
1

2
f0m+

1

2
f0m

2.

Let α + βi ∈ C be a root of LP , where α, β ∈ R. Assume that β 6= 0. By considering the

imaginary part we obtain

β(1 + 2α) = 0,

hence α = −1/2 as required. The real part simplifies to

β2 =
2

f0
−

1

4
.

Theorem 2.4 tells us that this is always positive, thus we obtain both roots of LP .

d = 3: In this case Corollary 2.3 tells us that

LP (m) = 1 +
1

6
(f0 + 10)m +

1

2
(f0 − 2)m2 +

1

3
(f0 − 2)m3,

giving real and imaginary parts:

(2.1) 1 +
1

6
(f0 + 10)α+

1

2
(f0 − 2)(α2 − β2) +

1

3
(f0 − 2)(α2 − 3β2)α = 0,

(2.2)
1

6
(f0 + 10)β + (f0 − 2)αβ +

1

3
(f0 − 2)(3α2 − β2)β = 0.

Assume that β 6= 0. Equation (2.2) gives us

(2.3) (f0 − 2)β2 =
1

2
f0 + 5 + 3(f0 − 2)α + 3(f0 − 2)α2.

Substituting (2.3) into (2.1) gives

1

12
(2α+ 1)

(

4(f0 − 2)(2α + 1)2 + 26 − f0
)

.

Clearly α = −1/2 is one possible solution. The discriminant of 4(f0 − 2)(2α + 1)2 + 26 − f0,

regarded as a quadratic in 2α + 1, is 16(f0 − 2)(f0 − 26). This is negative when 2 ≤ f0 ≤ 26,

and by Theorem 2.4 this covers all possible values of f0. Hence α = −1/2 is the only solution.

The values for β are determined by (2.3):

β2 =
26− f0
4f0 − 8

.

If we allow β = 0 then (2.1) becomes

1

24
(2α+ 1)

(

(f0 − 2)(2α + 1)2 + 26− f0
)

.

Once more the discriminant of the quadratic component tells us that the only solution is when

α = −1/2. �

The proof of Proposition 2.5 gives us explicit equations for the roots of LP .
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Corollary 2.6. Let P be a smooth d-dimensional polytope, and suppose that z = −1/2+βi ∈ C

is a root of LP . If d = 2 then

β2 = −
1

4
+

2

f0
.

If d = 3 then β = 0 or

β2 = −
1

4
+

6

f0 − 2
.

3. Dimensions Four and Five

In order to prove Theorem 1.5 in dimension 4 we require a some additional results. Throughout

we write b2 :=
∣

∣∂(2P ) ∩ Z
d
∣

∣, where d is the dimension of P .

Lemma 3.1 ([HK10, Corollary 4.4]). Let P be a four-dimensional smooth polytope. Then

5f0 − 10 ≤ b2 ≤ 5f0.

Lemma 3.2. Let P be a four-dimensional smooth polytope. Then

(b2 − 8f0)
2 > 24(b2 − 2f0).

Proof. From Lemma 3.1 we have that

(b2 − 8f0)
2 = (b2 − 16f0)b2 + 64f2

0

≥ (10 − 5f0)(10 + 11f0) + 64f2
0

= 9f2
0 + 60f0 + 100

= (3f0 + 10)2

Clearly 72f0 < (3f0 + 10)2, and since 24(b2 − 2f0) ≤ 72f0 (by Lemma 3.1) we obtain the

result. �

We shall also make use of the following trivial observation:

Lemma 3.3. Let g(x) := ax4 + bx2 + c ∈ R[x] be a polynomial such that a > 0, b < 0, c > 0

and b2 − 4ac > 0. Then g has four distinct real roots.

Proposition 3.4. Let P be a four-dimensional smooth polytope. If z ∈ C is a root of LP (m)

then Re(z) = −1/2.

Proof. In four dimensions the Ehrhart polynomial simplifies to

LP (m) = 1 +
1

12
(8f0 − b2)m(m+ 1)−

1

24
(2f0 − b2)m

2(m+ 1)2.

If z = α+ iβ is a root of LP then, by considering the real and imaginary parts, we obtain

(3.1) 24+12f0((α+1)α−β2)−(2f0−b2)α(α+1)(α(α+1)−2−6β2)−(2f0−b2)β
2(β2+1) = 0,

(3.2)
(

6f0 − (2f0 − b2)
(

(α+ 1)α− β2 − 1
))

(2α + 1)β = 0.

Clearly α = −1/2 is a possible solution to equation (3.2), in which case β satisfies (by (3.1))

(3.3) 16(b2 − 2f0)β
4 + 8(5b2 − 34f0)β

2 + 3(128 + 3b2 − 22f0) = 0.
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This quadratic in β2 has distinct real solutions if and only if

(b2 − 8f0)
2 − 24(b2 − 2f0) > 0.

By Lemma 3.2 we know that this is always true.

Now we consider the signs of the coefficients of (3.3). The leading coefficient is equal to

1/2f2, and so is positive. The coefficient of β2 is always negative by Lemma 3.1, and the

constant term is positive by Lemma 3.2. Hence, by Lemma 3.3, there are four distinct real

solutions to equation (3.1).

We have found four distinct roots when Re(z) = −1/2. Since LP is of degree four, we are

done. �

Finally we consider dimension five.

Lemma 3.5 ([HK10, Corollary 4.4]). Let P be a five-dimensional smooth polytope. Then

42f0 − 105 ≤ 7b2 ≤ 52f0 − 90.

Lemma 3.6. Let P be a five-dimensional smooth polytope. Then

100(f0 − 2)2 + (6 + b2 − 4f0)
2 > 20(6 + b2 − 4f0)(f0 + 4).

Proof. We begin by observing that the statement is equivalent to
(

10(f0 − 2)− (6 + b2 − 4f0)
)2

> 120(6 + b2 − 4f0),

which in turn is equivalent to
(

13(f0 − 2)− (b2 − f0)
)(

13(f0 − 2)− (b2 − f0) + 120
)

> 1200(f0 − 2).

From Lemma 3.5 we have that

13(f0 − 2)− (b2 − f0) ≥
46

7
f0 −

92

7
,

which is always positive since f0 ≥ 6. Hence
(

13(f0 − 2)− (b2 − f0)
)(

13(f0 − 2)− (b2 − f0) + 120
)

− 1200(f0 − 2)

≥
(46

7
f0 −

92

7

)(46

7
f0 −

92

7
+ 120

)

− 1200(f0 − 2)

=
4

49
(f0 − 2)(529f0 − 6098).

This is positive for all f0 ≥ 12.

To prove the inequality when f0 ≤ 11 we consider
(

13(f0 − 2)− (b2 − f0)
)(

13(f0 − 2)− (b2 − f0) + 120
)

− 1200(f0 − 2)

≥
(

13(f0 − 2)− (b2 − f0)
)(46

7
f0 −

92

7
+ 120

)

− 1200(f0 − 2)

= −
2

7
(23f0 + 374)b2 +

4

7
(161f2

0 + 219f0 − 662).

We wish to show that

−
2

7
(23f0 + 374)b2 +

4

7
(161f2

0 + 219f0 − 662) > 0
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whenever 6 ≤ f0 ≤ 11. It is enough to prove that, in the given range,

(3.4) b2 <
2(161f2

0 + 219f0 − 662)

23f0 + 374
.

Now

b2 − f0 = f1 ≤

(

f0
2

)

,

and so

b2 ≤
f0(f0 + 1)

2
.

We shall show that
f0(f0 + 1)

2
<

2(161f2
0 + 219f0 − 662)

23f0 + 374
.

But this is trivial; the cubic

f0(f0 + 1)(23f0 + 374) − 4(161f2
0 + 219f0 − 662)

= 23f3
0 − 247f2

0 − 502f0 + 2648

is negative when 6 ≤ f0 ≤ 11, hence equation (3.4) holds. �

Proposition 3.7. Let P be a five-dimensional smooth polytope. If z ∈ C is a root of LP (m)

then Re(z) = −1/2.

Proof. Let z = α+ iβ ∈ C be a root of LP , where P is a five-dimensional smooth polytope. By

Corollary 2.3 we see that α and β must satisfy

(2α+ 1)
(

(6 + b2 − 4f0)
(

(α− 1)α(α + 1)(α+2)− 10(α + 1)αβ2 + 5(β2 + 1)β2
)

+

20(f0 − 2)
(

(α+ 1)α− 3β2
)

+ 120
)

= 0,
(3.5)

(14f0 − b2 + 94)β + 5(16f0 − b2 − 30)αβ + 20(f0 − 2)(3α2 − β2)β−

10(4f0 − b2 − 6)(α2 − β2)αβ − (4f0 − b2 − 6)(5α4 − 10α2β2 + β4)β = 0.
(3.6)

Clearly α = −1/2, β = 0 is always a solution. Suppose that α = −1/2 and β 6= 0. Equa-

tion (3.5) holds, and from (3.6) we obtain

(3.7) 16(6 + b2 − 4f0)β
4 + 40(22 + b2 − 12f0)β

2 + 2134 + 9b2 − 116f0 = 0.

This quadratic in β2 has distinct real solutions if and only if

100(f0 − 2)2 + (6 + b2 − 4f0)
2 > 20(6 + b2 − 4f0)(f0 + 4),

which holds by Lemma 3.6.

As in the four-dimensional case we consider the signs of the coefficients of (3.7). The leading

coefficient equals 1/2f4 and so is positive. The coefficient of β2 is negative by Lemma 3.5 and the

fact that f0 ≥ 6, and the constant term is positive (again by Lemma 3.5). Thus, by Lemma 3.3,

equation (3.7) has four distinct real solutions.

Hence we have found all five roots of LP , and in each case Re(z) = −1/2 as required. �

From equations (3.3) and (3.7) we have
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f0 5 6 6 7 7 7 8 8 8 8 9 9 9 9 9 10 10 10 11 12

b2 15 20 21 25 26 27 31 32 33 34 36 38 39 41 42 44 45 50 52 60

Table 1. The possible pairs (f0, b2) for the 124 four-dimensional smooth polytopes.

Corollary 3.8. Let P be a smooth d-dimensional polytope, and suppose that z = −1/2+βi ∈ C

is a root of LP . If d = 4 then

β2 = −
17

4
+

3b2
b2 − 2f0

±

√

1−
12(f0 + 2)

b2 − 2f0
+

36f2
0

(b2 − 2f0)2
.

If d = 5 then β = 0 or

β2 = −
5

4
+

10(f0 − 2)

6 + b2 − 4f0
±

√

1−
20(f0 + 4)

6 + b2 − 4f0
+

100(f0 − 2)2

(6 + b2 − 4f0)2
.

4. Concluding Remarks

In four dimensions one can prove Theorem 1.5 without knowing the explicit equation for the

Ehrhart polynomial. We require the following result.

Proposition 4.1 ([BHW07, Proposition 1.9]). Let P be a four-dimensional reflexive polytope.

Every root z ∈ C of LP (m) has Re(z) = −1/2 if and only if

(i) 2
∣

∣∂P ∩ Z
4
∣

∣ ≤ 9 vol(P ) + 16, and

(ii)
(∣

∣∂P ∩ Z
4
∣

∣− 4 vol(P )
)2

≥ 16 vol(P ).

Alternative proof in dimension four. First we show that condition (i) of Proposition 4.1 is sat-

isfied. Since P is smooth, f0 =
∣

∣∂P ∩ Z
4
∣

∣. It follows from Lemma 3.1 that 15f0 ≤ 3b2 + 30.

Hence 9f0 ≤ 3(b2 − 2f0) + 30. By Theorem 2.4 we have that f0 ≤ 12, giving us the (very crude)

inequality

(4.1) 16f0 < 3(b2 − 2f0) + 128.

In four dimensions we have that f3 = b2 − 2f0 ([HK10, Theorem 4.2]) and, since P is smooth,

f3 = 24vol(P ). Substituting into equation (4.1) gives condition (i).

That Proposition 4.1 (ii) holds is immediate from Lemma 3.2 and the fact that b2 − 2f0 =

24vol(P ). �

Theorem 1.6 tells us that in order to compute the roots of the Ehrhart polynomial we need

only know f0 and, in dimensions four and five, b2 :=
∣

∣∂(2P ) ∩ Z
d
∣

∣. Clearly f0 ≥ d + 1, and

Theorem 2.4 provides a sharp upper bound. The values of b2 can be calculated from Øbro’s

classification [Øbr07]. The possible pairs (f0, b2) are reproduced in Tables 1 and 2.

Acknowledgments. The authors wish to express their gratitude to Alessio Corti for alerting

them to [Gol09].
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f0 6 7 7 8 8 8 8 9 9 9 9 9 10 10 10

b2 21 27 28 33 34 35 36 40 41 42 43 44 46 49 50

f0 10 10 10 11 11 11 11 11 11 12 12 12 13 14

b2 51 52 53 56 58 59 60 61 62 66 67 72 76 86

Table 2. The possible pairs (f0, b2) for the 866 five-dimensional smooth polytopes.
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