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Abstract—The Vehicle Routing Problem with Time Windows
(VRPTW) is an important logistics problem which in the real-
world appears to be multi-objective. Most research in this area
has been carried out using classic datasets designed for the
single-objective case, like the well-known Solomon’s problem
instances. Some unrealistic assumptions are usually made when
using these datasets in the multi-objective case (e.g. assuming
that one unit of travel time corresponds to one unit of travel
distance). Additionally, there is no common VRPTW multi-
objective oriented framework to compare the performance of
algorithms because different implementations in the literature
tackle different sets of objectives. In this work, we investigate the
conflicting (or not) nature of various objectives in the VRPTW
and show that some of the classic test instances are not suitable
for conducting a proper multi-objective study. The insights of
this study have led us to generate some problem instances
using data from a real-world distribution company. Experiments
in these new dataset using a standard evolutionary algorithm
(NSGA-II) show stronger evidence of multi-objective features.
Our contribution focuses on achieving a better understanding
about the multi-objective nature of the VRPTW, in particular the
conflicting relationships between 5 objectives: number of vehicles,
total travel distance, makespan, total waiting time, and total delay
time.

Index Terms—Multi-Objective Optimisation, Vehicle Rout-
ing Problem with Time Windows, Combinatorial Optimisation,
Benchmark Datasets

I. INTRODUCTION

The VRPTW consists of creating the set of routes to
serve a number of customers with a fleet of vehicles that
depart from a central depot (with unlimited capacity). Each
vehicle within the fleet has a maximum capacity that must
not be exceeded. Customers have a time window in which
they must be served. Also, each customer has an associated
service time, which is the actual time taken for serving the
customer once the vehicle arrives at the customer’s location.
Classic objectives when solving the (single-objective) VRPTW
include: minimising the number of vehicles (fleet size), min-
imising the total travel time, minimising the total waiting time,
etc. In recent years there has been much interest in tackling
this problem in a multi-objective fashion. To the best of our
knowledge, there are no public problem instances for the multi-
objective version of the problem (MOVRPTW). Most related
work in the literature uses either non-public scenario-specific
small instances or problem instances artificially extended from
classic single-objective datasets. Usually, such classic problem

instances do not provide the travel times between each pair of
customers. Therefore, it is commonly assumed that one unit
of travel distance corresponds exactly to one unit of travel
time, which might not be realistic, particularly when Euclidean
distance is given instead of on-the-road distance. As a result
of this type of assumptions, the assessment of multi-objective
algorithms applied to tackle the MOVRPTW might not be
entirely accurate.

The Solomon’s dataset [11] is perhaps the most widely
used VRPTW dataset in the literature. It consists of 56
instances with 100 customers. According to their geographical
distribution, the dataset is divided into three subsets: CXXX
(clustered) 17 instances, RXXX (uniformly distributed) 23
instances and RCXXX (mixed) 16 instances. Each of these
three subsets consists of two subsets. The clustered instances
are in subsets: C1XXX and C2XXX . The subset C1XXX
has a different layout for customer locations and narrower
time windows than subset C2XX . For both RXXX and
RCXXX , their two subsets share the same layout, but cus-
tomers in the first subset have narrower time windows like in
CXXX . The service time for customers is 90 time units for
subsets CXXX and RCXXX , and 10 time units for subset
RXXX . The demand varies depending on the customer and
instance, but they take discrete values in {10, 20, 30, 40}. More
information about other datasets and their characteristics can
be found in [4].

Most published research on the multi-objective VRPTW
uses the Solomon’s dataset. An issue with this dataset is that it
relies on Euclidean distance for both travel distance and travel
time. This is hardly a realistic scenario because it is often
the case that travel time is not directly proportional to travel
distance. In this work, we conduct experiments to show that the
Solomon’s problem instances are perhaps not entirely adequate
to investigate the multi-objective VRPTW. This is because the
correlation between different objectives is weak which means
that there is little interaction (conflict and harmony) between
objectives when searching for solutions.

We have been working with a set of multi-objective
VRPTW problem instances based on data from a distribu-
tion company in Tenerife, Spain. The company delivers food
products and serves more than 1000 customers overall, with
around 150 customers being served each day. Realistic data
for the travel distance and travel time between each pair



of customers was obtained using Google maps. Moreover,
time windows specifications were generated according to some
information provided by the company. Demand specifications
were established using a number of parameters in order to
present different scenarios. Contrary to most of the benchmark
datasets listed above, the distance and time matrices are distinct
and non-symmetric, hence representing a realistic trade-off
between travel distance and travel time. For example, for
pairs of customers located within an urban area, travel time
is high compared to the corresponding distance, reflecting the
fact that travelling in urban areas is more time consuming
than travelling in rural areas. Contrary to what happens with
Solomon’s datasets, our experiments show that there is a much
clearer interaction between different objectives in our problem
instances. This is potentially a very good thing because the
multi-objective nature of this important logistic problem can
be better investigated using these realistic datasets. Also, multi-
objective algorithms could be tested in a more accurate manner
if truly multi-objective test instances are available. As an
additional contribution of this paper, we make our problem
instances available to the research community as a contribution
towards a common framework that allows more research on
the multi-objective VRPTW. An open source generator to
create different problem instances and more information is
available at [2]. We incorporate 5 minimisation objectives in
the proposed benchmark datasets in order to assess the quality
of a route-plan: number of vehicles (denoted as Z1) needed
to serve all customers, total travel distance (Z2), makespan
(Z3) or travel time of the longest route (from/to depot), total
waiting time (Z4), and total delay time (Z5).

The analysis conducted in this paper to compare the multi-
objective nature of Solomon’s and our dataset is based on
the work by Purshouse and Fleming [10]. They indicate that
three main relationships may occur between pairs of objectives:
conflict, harmony or independence. If there is a dependence
between the objectives, they can be conflicting (if it is not
possible to improve one without worsening the other) or har-
monious (the improvement in one witnesses an enhancement
in the other). Conversely, if the optimisation of one objective
does not affect the other, the relationship is of independence.
When conducting multi-objective optimisation benchmarking,
the most important relationships are that of dependence. Multi-
objective problems with independent relationships among their
objectives can be addressed by decomposing the problem into
sub-problems [10]. However, dependent relationships present
a real challenge to multi-objective algorithms. In general, the
more conflicting objectives exist in a given problem, the more
suitable this problem is for benchmarking. Purshouse and
Fleming [10] also state the importance of keeping harmonious
objectives in the optimisation process because, for example,
this might provide additional knowledge to the decision maker.
We conducted our study using a well known multi-objective
genetic algorithm (NSGA-II) in order to make pair-wise com-
parison between all combinations of objectives.

The rest of this paper is organised as follows. Section II
gives essential concepts related to this work. In Section III, the

main characteristics of the dataset are presented. In Section IV,
we describe our experiments and discuss the results in section
V. Conclusions and further work is stated in Section VI.

II. BACKGROUND

A. Multi-objective Optimisation (MOO)

MOO is the process of simultaneously optimising two or
more conflicting objectives subject to a number of constraints.
In mathematical terms, a multi-objective optimisation problem
(MOP) can be written, without loss of generality, as min
f(x) = (f1(x), f2(x), ..., fp(x)) subject to x ∈ X ⊆ <n,
where X is a constraint set in the multi-dimensional space of
the problem specified by X = {x ∈ <n : g

(x)
i ≤ 0, i =

1, ...,m; h
(x)
j = 0, j = 1, ..., l}.

Given two feasible solutions x and y, we say that x
dominates y, if ∀i : fi(x) ≤ fi(y) and ∃j : fj(x) < fj(y).
Moreover, x is said to be Pareto Optimal if it is not dominated
by any other feasible solution. Then, the aim is to find the set
of Pareto Optimal solutions usually called Pareto Set. This set
contains a number of non-dominated points in the objective
space creating the so-called Pareto Frontier.

B. Vehicle Routing Problem with Time Windows (VRPTW)

The VRPTW is defined on a graph G(N,A) where N
is the set of nodes representing a set of customers, denoted
by C, enumerated 1 to n, and 0 representing the depot. All
routes must start and end at node 0. Each customer has a
demand pi, i ∈ C. The customers must be served just once
using a set of m identical vehicles, denoted by V , with each
vehicle having maximum capacity Q. The arc set A denotes
all possible connections among the nodes. Each arc has a
cost which usually represents the distance or travel time from
customer i to customer j and it is denoted by dij or tij ,
respectively. Each customer has a time window [ai, bi] during
which service at this costumer may start. In case of the vehicle
arriving earlier, it must wait until the time window opens.
On the other hand, arriving after the time window is usually
not allowed. However, in this implementation, we consider
the violation of the upper limit of time windows as a soft
constraint. Once a vehicle has arrived at the customer’s site,
the delivery incurs in a delay known as service time

A large number of objectives have been used in the VRPTW
literature over the years. Some of the most common objectives
used are the minimisation of: the number of vehicles, the total
travel distance, the total travel time, and the maximisation of:
the quality of service (which might be interpreted as reducing
delay times), the drivers satisfaction (minimise waiting times
and makespan), etc. We have chosen to minimise five objec-
tives commonly used across different datasets in the literature:
number of vehicles (Z1), total travel distance (Z2), makespan
(Z3), total waiting time (in case of early arrival) (Z4), and
total delay time (Z5). For an overview on the most commonly
used objectives for multi-objective vehicle routing problems in
the literature, see [7].



C. Non-dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II [3] has been used before to deal with the VRP.
For example, Murata and Itai [9] applied this algorithm on a
VRP with two different types of demands. They focused the
study on the optimisation of number of vehicles and makespan
considering the similarity of sets of non-dominated solutions.
Jozefowiez et al. [6] presented an improved NSGA-II with
two enhancements: (1) parallelisation using an island model
and (2) an elitist diversification technique. In this approach,
the objectives tackled were to minimise travel distance and
the difference of length between the longest and shortest
route. Wei et al. [13] carried out research on a real-world
test case in Michigan (USA) using NSGA-II. In this study,
the authors considered the minimisation of three objectives:
travel distance, distribution time and number of vehicles.
Garcia-Najera and Bullinaria [5] used NSGA-II to compare
the performance of their algorithm, a MOEA that incorporates
two similarity measures: Jaccard similarity coefficient and
Edit distance. The performance was assessed using the travel
distance and number of vehicles.

III. MOVRPTW DATASET

In this Section, we describe the characteristics of our
benchmark dataset. We consider the characterisation of the
time windows and the customers’ demands. Finally, we specify
which parameters were used to generate the proposed dataset.

A. Characterisation of Time Windows

The time window specifications for each customer have
been designed to imitate what the delivery company faces
everyday. The opening time of the depot is 8 hours. In the
first time windows profile (Profile 1 - Fig. 1), all customers
are available all day (8 hours = 480 minutes). In the following
three profiles, we distinguish three types of customers, early
customers (those who want to be served in the morning),
midday customers (those who want to be served at midday) and
late customers (those who want to be served the latest). In order
to cover the whole day with these three types of customers, we
create time windows with a length of 480 minutes / 3 types of
customers = 160 minutes/type of customer, as seen in Profile
2 - Fig. 1. In this profile, early customers will be served in
the time window [0, 160] minutes. Midday customers will be
served in the time window [160, 320] minutes. Late customers
will be served in the time window [320, 480] minutes. For
the third and fourth profiles, we follow a similar approach.
However, we decrease the length of each time window by
30 and 60 minutes respectively. Thus, in the third profile
(Profile 3 - Fig. 1), a time window of 160 minutes length
is decreased to 130 minutes. So, the opening hours will be:
early customers [0, 130], midday customers [175, 305] and late
customers [350, 480]. Time windows of midday customers are
symmetric with respect to the midday. For example, if the
length of a time window is 100, it will grow 50 to the left
and 50 to the right respect to the central point 240 (4th hour).
Similarly, in the fourth profile (Profile 4 - Fig. 1), we consider
time windows of 100 minutes. Therefore, the time windows

will be: early customers [0, 100], midday customers [190, 290],
and late customers [380, 480]. In a fifth time windows profile
(Profile 5), customers are associated with one of the 10 time
windows types contained in the previous profiles (see Fig. 1).
That is, Profile 5 will contain the only time window type of
the Profile 1, three time window types of Profiles 2, 3 and 4;
which in total sums up 10.

That is, we suggest 5 time windows profiles for the dataset.
Each profile, except the first one, has three time windows.
Given a time window profile, a customer has the same proba-
bility of having any of the time windows within that profile.

B. Characterisation of Demands

Let pi be the demand of customer i and Q the maximum
capacity for each vehicle. This capacity cannot be less than the
maximum demand among the customers D, otherwise some
customers might not be served. Moreover, the natural upper
bound on the capacity of vehicles is the sum of all customers’
demands. But in this case a single vehicle could serve all
customers (if we do not take into account the time windows)
and this is also not quite adequate. Therefore, the capacity of
each vehicle Q is bounded by D = maxi{pi} ≤ Q ≤ D =∑n

i=1 pi, where n is the number of customers. The closer Q
is to its lower bound, the more constraint each vehicle will be
with respect to the total demand. Conversely, the larger is Q,
the more spare capacity the fleet will have.

Parameter δ (delta) is used to modulate the slack margin of
an instance, Q = D + δ/100(D −D), where δ ∈ [0, 100]. If
δ takes values close to 0, the capacity of the vehicle Q will
be very limited. On the other hand, for large values of δ, the
vehicles will have a capacity Q close to the total demand.

Regarding the fleet size, since we work with soft time
windows, the maximum number of vehicles needed is equal to
the total customers’ demand divided by the vehicle capacity.
However, since Q ≥ D , an upper bound for the size of the
fleet would be: m ≤ D/D.

C. Dataset Settings

Based on the guidelines mentioned in this section, we
have created our benchmark dataset using the following com-
binations: (1) Number of Customers: {50, 150, 250}, (2)
Time Windows: Profiles {1, 2, 3, 4, 5}, within each profile, the
same probability was assigned to each time window type.
For example, a probability of 1/3 was assigned to each time
window type in Profiles {2, 3, 4}. While a probability of 0.10
was used in Profile 5 for each type, since it has 10 time window
types. (3) Customer Demand: three types {10, 20, 30}, each
with probability 1/3 and three types of δ = {60, 20, 5}. (4)
Service Times were set to 10, 20 and 30 minutes, each with
probability 1/3. (5) Seeds were all fixed to 0.

Summing up, a total of 45 MOVRPTW instances were
generated (3 sizes * 5 time windows profiles * 3 deltas). This
dataset and the configuration files can be download from [2].

IV. EXPERIMENTAL DESIGN

In order to study the pair-wise relationships among the
objectives stated in Sect. II-B for both datasets, we conducted
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Fig. 1. Four of the time windows profiles. This figure shows the opening times and closing times for each profile.

a number of experiments using NSGA-II (Sect. II-C). This
development was not carried out from scratch, we used the
implementation of an Evolutionary Algorithm (EA) for the
VRPTW [8] as a starting point. This implementation is based
on the optimisation framework ParadisEO-MOEO [1]. We
extended this implementation to support multiple objectives
(Sect. II), process our dataset and use the NSGA-II.

In this implementation, the encoding of an individual is
a list of routes (a list of lists). Each element in these lists
represent a customer and their positions within each list specify
the turn in which they will be served.

The population is initialised using a constructive method
that aims at satisfying first the customers farthest from the
depot. After the initialisation process, all individuals are eval-
uated. The fitness assignment procedure of NSGA-II is called
non-dominated sorting criterion [3]. It consists of dividing the
population into non-dominated fronts. This way, the fitness of
an individual depends on the depth of its front.

Once the individuals are evaluated, a sub-group is selected
for crossover. This process recombines two parents (solutions)
with certain probabiliy γ, creating one or two offsprings
(new solutions). In this implementation, NSGA-II has 3 stan-
dard crossover operators: (1) One-point crossover, (2) Edge
crossover and (3) Generic crossover.

In the One-point crossover, a random number of consecutive
customers are copied from one parent to another, removing
duplicates. The Edge crossover consists of (1) constructing new
intermediate solutions by joining edges from both route-plans
(parents) and (2) merging sub-tours creating feasible solutions.
In the Generic crossover, an entire route is copied from one
route-plan to another, removing duplicates.

In order to promote diversity within the population, the
offspring solutions go trough a mutation operation with certain
probability ν. NSGA-II was run using four basic mutation
operators (Swap, Insertion, Inversion and Displacement).

The Swap mutation interchanges the position of two cus-
tomers within a route-plan. The Insertion mutation consists
of moving a random customer to a new position within the
route-plan. In the Inversion mutation, customers in a portion
of the route-plan are reversed. The Displacement mutation is
a generalisation of the insertion mutation in which a number
of consecutive customers are moved.

In order to re-use the genetic operators of the previous
implementation, route-plans were forced to be feasible in
terms of capacity constraints. This process was carried out by
splitting routes in which the vehicle capacity was exceeded. In
terms of time windows, a maximum delay of 30 minutes was
allowed per customer (if this limit is violated, routes are also
split). This is the maximum delay the company is willing to
assume per costumer to provide a good quality of service.

In the experiments, NSGA-II evolved a population of 50
individuals for 10000 generations. We compared Solomon’s
100 customer dataset against our dataset with 150 customers.
The algorithm is applied to each dataset 10 times (repetitions)
with the same parameters and seeds. This new implementation
is open source and is available at [2].

V. DISCUSSION OF RESULTS

A. Correlation Between Objectives
Following the platform for the treatment of large number

of criteria by Purshouse and Fleming [10], we treated the
results using scatterplot matrices. An example of this matrix
is shown in Fig. 2. The objectives Z1 ∼ 5 are shown in the
main diagonal of the matrix ( where Z1 is the number of
vehicles, Z2 is the travel distance, Z3 is the makespan, Z4 is
the waiting time and Z5 is the delay time). Each element in the
matrix below the main diagonal shows a pair-wise comparison
of objectives. Above the main diagonal, a correlation value
is associated to each comparison. The closer this value is
to 1 or −1, the larger is the font type, and the stronger
is the dependence relationship between the corresponding
two objectives. Since all objectives are to be minimised, a
positive correlation value indicates a harmonious relationship.
The opposite occurs when the correlation values are negative.
Figure 2 shows the scatterplot matrices of the Solomon’s
instance R101 (on the left) and our instance d2.tw2 for 150
customers (on the right). At first sight, the correlation values
seem much larger for d2.tw2. An example of harmonious
behaviour is seen in the instance d2.tw2 when comparing
Z1 vs. Z4. Its correlation value of 0.98 indicates that, as
we decrease the number of vehicles (Z1), the waiting time
(Z4) for each of them gets shorter, which is logical. In the
same instance, an example of conflict arises comparing Z1
vs. Z5. Here, the correlation value of −0.96 means that by



decreasing the number of vehicles Z1, the delay time Z5
gets longer and vice-versa. In the Solomon’s R101, the pair-
wise dependence relationships between objectives appears to
be weak. For example, Z1 seems not to be related to any of
the other objective under study. The bi-criterion shape sections
of the trade-off surface are plotted below the main diagonal
for both instances. It is clearly seen that d2.tw2 presents
more uniform shapes than Solomon’s R101. It is also worth
noting that d2.tw2 has a much larger number of non-dominate
solutions than R101. In this particular case, d2.tw2 has 3784
non-dominated solutions against the 394 of R101.

In the rest of this section, we will discuss the rest of our
experiment results based on average correlation values. We first
present a subsection with results for the Solomon’s instances
and then another with results for the MOVRPTW instances
with 150 customers.

B. Solomon’s Dataset

We present three tables corresponding to each type
of Solomon’s 100 customers dataset {CXXX , RXXX ,
RCXXX} (Tables I, II and III). Each table shows in its first
column the name of the instance. Each column represents a
pair-wise comparison. For example, Z1-Z2 compares the num-
ber of vehicles against the travel distance. Correlation values
vary from −1 (conflict) to 1 (harmony). Those correlations
values equal to NA indicate that one or both objectives have
the same value across all the non-dominated solutions found.
All values are averaged over the 10 runs.

Table I shows the average correlation values for all instances
with customers in clusters. This subset of instances can be
divided into two new subsets: C1XX and C2XX . The former
of these subsets presents the customers in well defined clusters
and their time windows are narrow. On the other hand, the
latter has a more relaxed geographical distribution of the cus-
tomers and the time windows are wider. This explains why in
the case of the C1XX subset, the correlation values are so low.
The first block of the table shows, as Tan et al. [12] and Garcia-
Najera and Bullinaria [5] previously stated, that no conflict
exists between number of vehicles (Z1) and travel distance
(Z2). However, our results indicate that no dependency holds
for any objective against Z1 in almost all the instances in
C1XX . The largest values for this subset seem to appear in
the comparison of travel time (Z2) against makespan (Z3).
Conversely, in the second block of the table, the results for
the subset C2XX seem to indicate clear pair-wise dependency
relationships. In this subset, the most conflicting objectives are
number of vehicles (Z1) against delay time (Z5). And it is
worth noting that in this set, the improvement of makespan
(Z3) is in harmony with the reduction of delay time (Z5).

In Table II, we show the average correlation results for
the randomly spread customers. This subset is also divided
into two subsets: R1XX and R2XX . In this case, both
share the same geographical distribution of their customers.
However, R1XX has narrower time windows than R2XX .
In the first block of the table corresponding to R1XX subset,
we appreciate a similar behaviour as in C1XX . That is, the

number of vehicles seems not to have a pair-wise dependence
relationship to any other objective under this study. The only
considerable conflict relationship arises in R103, R107 and
R110 comparing travel distance (Z2) against waiting time
(Z4). In the second block of the table, we find the results for the
R2XX subset. In a similar fashion to the CXXX instances,
the subset R2XX presents better values than R1XX . How-
ever, the average correlation values for R2XX does not seem
to be as good as for C2XX . According to the results, the most
conflicting relationship is makespan (Z3) versus waiting time
(Z4). Additionally, it is important to highlight that in the pair-
wise comparison of makespan (Z3) versus waiting time (Z4),
we have a conflicting relationship in the subset R1XX and
a harmonious one in R2XX . It is also interesting to see that
the instances R204 and R208 do not hold the same pair-wise
relationship than the rest in comparisons involving delay time.

The average correlation values for the random-cluster
Solomon’s instances appear in Table III. As the other subsets,
RCXXX possesses two subsets: RC1XX and RC2XX .
The difference lies in that RC1XX has narrower time win-
dows than RC2XX . In the first subset, there seems to be
very little interaction between the number of vehicles (Z1) and
the other objectives. However, unlike the subsets C1XX and
R1XX , in this subset the number of vehicles (Z1) presents
a conflict relationship with the delay time (Z5). We find a
similar situation as in R2XX with comparing makespan (Z3)
versus waiting time (Z4). The subset RC1XX shows a conflict
relationship, while for the RC2XX is harmonious.

C. Proposed MOVRPTW Dataset

Table IV presents the average correlation values for our
dataset with 150 customers. This table has three main blocks
according to δ denoted by d, where d takes values d0 = 60,
d1 = 20 and d2 = 5 (Sect. III). The time windows profiles
denoted by tw, where tw = 0 contains only one time windows
[0, 480]; tw = 1, tw = 2 and tw = 3 contain three time
windows of length 160, 130 and 100 minutes respectively.
Finally, tw = 4 contains 10 time windows as a combination
of all the above (Sect. III). In general, the correlation values
across all instances are close to 1 or −1. This indicates strong
dependency relationships. At first sight, it can be seen some
null values in all instance whose time windows profile is 0
(d0.tw0, d1.tw0 and d2.tw0). This is because this profile
considers wide open time windows, thus the waiting time (Z4)
is always 0. The most important conflicting relationships in
these instances are number of vehicles (Z1) versus delay time
(Z5) and makespan (Z3) versus waiting time (Z4).

Summarising, the proposed MOVRPTW dataset, which is
designed based on real-world data and with a multi-objective
mindset, presents better dependency relationships using pair-
wise comparisons of the objectives under consideration. We
have seen that the subset of Solomon’s instances containing
narrow time windows (C1XX , R1XX and RC1XX) are
not suitable to be addressed as real multi-objective instances.
Moreover, Solomon’s instances with wide time windows and
our dataset follow the same pattern with regards to dependency



TABLE I
AVERAGE CORRELATION VALUE FOR ALL INSTANCES IN SUBSET CXXX . [SOLOMON’S DATASET] (10 RUNS).

Instance Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

C101 0.22 -0.13 0.29 -0.16 -0.60 0.31 -0.30 -0.77 -0.21 0.27
C102 NA NA NA NA -0.68 0.29 -0.32 -0.51 0.18 0.31
C103 NA NA NA NA -0.61 0.12 -0.17 -0.43 -0.06 0.48
C104 NA NA NA NA -0.48 -0.27 0.29 -0.22 -0.04 0.06
C105 0.16 -0.06 0.19 -0.20 -0.59 0.37 -0.33 -0.68 -0.14 0.11
C106 NA NA NA NA -0.41 -0.14 -0.42 -0.63 0.08 0.11
C107 0.09 -0.04 0.07 -0.09 -0.69 0.52 -0.25 -0.65 -0.15 0.00
C108 NA NA NA NA -0.74 0.45 -0.09 -0.73 -0.32 0.56
C109 NA NA NA NA -0.79 0.27 -0.20 -0.59 -0.19 0.68

C201 0.70 -0.82 0.99 -0.87 -0.81 0.69 -0.80 -0.83 0.96 -0.87
C202 0.82 -0.85 0.99 -0.88 -0.86 0.81 -0.88 -0.86 0.95 -0.88
C203 0.60 -0.80 0.98 -0.88 -0.70 0.57 -0.75 -0.82 0.86 -0.86
C204 0.60 -0.80 0.97 -0.85 -0.60 0.49 -0.63 -0.80 0.76 -0.76
C205 0.75 -0.84 0.99 -0.89 -0.85 0.73 -0.85 -0.84 0.96 -0.88
C206 0.76 -0.84 0.99 -0.90 -0.83 0.74 -0.84 -0.85 0.96 -0.90
C207 0.63 -0.82 0.99 -0.90 -0.79 0.61 -0.76 -0.83 0.95 -0.89
C208 0.74 -0.85 0.99 -0.91 -0.84 0.71 -0.83 -0.85 0.95 -0.90

TABLE II
AVERAGE CORRELATION VALUE FOR ALL INSTANCES IN SUBSET RXXX . [SOLOMON’S DATASET] (10 RUNS).

Instance Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

R101 0.10 -0.06 0.03 -0.05 -0.34 -0.40 -0.50 -0.39 0.09 0.35
R102 NA NA NA NA -0.25 -0.57 -0.15 -0.33 -0.06 0.15
R103 NA NA NA NA -0.18 -0.70 0.03 -0.22 0.06 -0.12
R104 NA NA NA NA -0.67 -0.52 -0.09 0.21 -0.04 0.25
R105 0.17 0.02 0.15 -0.16 0.33 -0.50 0.17 -0.58 0.44 -0.22
R106 NA NA NA NA -0.36 -0.48 -0.19 -0.37 -0.02 0.12
R107 NA NA NA NA -0.16 -0.64 -0.07 -0.22 -0.07 -0.01
R108 NA NA NA NA -0.35 -0.38 0.18 -0.33 -0.30 0.25
R109 NA NA NA NA -0.54 -0.16 0.05 -0.36 -0.16 0.36
R110 NA NA NA NA -0.31 -0.70 -0.23 -0.20 0.34 0.08
R111 0.06 -0.09 0.19 -0.02 -0.39 -0.35 0.31 -0.47 -0.39 0.20
R112 NA NA NA NA -0.15 -0.44 0.03 -0.53 -0.29 0.21

R201 0.61 -0.66 0.79 -0.67 -0.66 0.33 -0.70 -0.73 0.84 -0.67
R202 0.53 -0.63 0.65 -0.52 -0.62 0.16 -0.70 -0.74 0.71 -0.48
R203 0.70 -0.60 0.64 -0.24 -0.42 0.12 -0.32 -0.75 0.37 -0.33
R204 0.87 -0.78 0.90 0.43 -0.71 0.63 0.20 -0.81 -0.27 0.42
R205 0.59 -0.60 0.61 -0.63 -0.64 0.14 -0.69 -0.69 0.78 -0.57
R206 0.83 -0.58 0.54 -0.40 -0.58 0.21 -0.57 -0.70 0.61 -0.32
R207 0.89 -0.61 0.62 -0.30 -0.65 0.33 -0.46 -0.59 0.37 -0.22
R208 0.88 -0.62 0.90 0.43 -0.62 0.67 0.24 -0.65 -0.49 0.52
R209 0.84 -0.62 0.75 -0.32 -0.74 0.53 -0.52 -0.74 0.69 -0.45
R210 0.62 -0.67 0.68 -0.63 -0.62 0.19 -0.60 -0.73 0.76 -0.62
R211 0.94 -0.60 0.89 -0.12 -0.65 0.79 -0.23 -0.61 0.39 -0.09
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Fig. 2. Scatterplot matrix for Solomon’s R101 (on the left) and our d2.tw2 for 150 customers (on the right). In the main diagonal the objectives Z1 ∼ 5 are
shown (where Z1 is the number of vehicles, Z2 is the travel distance, Z3 is the makespan, Z4 is the waiting time and Z5 is the delay time).

TABLE III
AVERAGE CORRELATION VALUE FOR ALL INSTANCES IN SUBSET RCXXX . [SOLOMON’S DATASET] (10 RUNS).

Instance Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

RC101 0.11 0.03 0.17 -0.64 -0.52 -0.33 -0.54 -0.25 0.19 0.13
RC102 0.11 -0.03 0.12 -0.53 -0.17 -0.48 -0.16 -0.33 -0.29 0.08
RC103 -0.06 -0.14 0.17 -0.41 -0.02 -0.74 0.48 -0.29 0.04 -0.38
RC104 0.20 0.16 0.12 -0.50 -0.42 -0.36 -0.15 -0.12 -0.27 -0.18
RC105 0.13 -0.22 0.23 -0.66 -0.47 -0.46 -0.36 -0.27 0.23 0.08
RC106 0.00 -0.08 0.14 -0.60 -0.55 -0.37 -0.30 -0.20 0.05 0.26
RC107 -0.04 -0.35 0.23 -0.67 -0.02 -0.42 0.31 -0.59 0.17 -0.26
RC108 0.11 -0.19 0.17 -0.66 -0.19 -0.57 0.08 -0.20 0.23 -0.28

RC201 0.69 -0.77 0.82 -0.82 -0.79 0.42 -0.83 -0.76 0.89 -0.74
RC202 0.69 -0.77 0.84 -0.76 -0.71 0.36 -0.80 -0.76 0.79 -0.61
RC203 0.66 -0.70 0.81 -0.55 -0.57 0.27 -0.63 -0.72 0.60 -0.43
RC204 0.85 -0.76 0.68 0.21 -0.73 0.30 -0.04 -0.62 -0.09 0.36
RC205 0.69 -0.73 0.83 -0.78 -0.73 0.39 -0.84 -0.73 0.85 -0.67
RC206 0.78 -0.69 0.79 -0.73 -0.76 0.43 -0.85 -0.69 0.83 -0.59
RC207 0.69 -0.54 0.56 -0.56 -0.67 0.09 -0.76 -0.55 0.77 -0.35
RC208 0.86 -0.49 0.46 -0.49 -0.68 0.24 -0.70 -0.52 0.74 -0.33

relationships. Table V shows the conflicting and harmonious
relationships for each pair-wise comparison.

VI. CONCLUSIONS

In this work, we present a study on the suitability
of Solomon’s dataset for invesigating the multi-objective
VRPTW. Our experiments are based on the platform proposed
by Purshouse and Fleming [10]. Therefore, we study the
dependence (conflict and harmony) and independence of five
objectives commonly used in the literature. Using a well-
known high performing EMOA (NSGA-II), we conducted a

series of experiments to make pair-wise comparisons among
all five objectives using correlation. Results indicate that
Solomon’s instances with narrow time windows are not suit-
able to test multi-objective algorithms. Moreover, this study
also revealed that those instances in the Solomon’s dataset
that have wider time windows present a sound but still not
ideal benchmark scenario for multi-objective VRPTW. This
study led us to design a new benchmark dataset for the
Multi-objective Vehicle Routing Problem with Time Windows
(MOVRPTW). This dataset consists of 45 instances with three
different number of customers {50, 150, 250}. These instances



TABLE IV
AVERAGE CORRELATION VALUE FOR ALL INSTANCES IN SUBSET 150 CUSTOMERS. (10 RUNS).

Instance Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

d0.tw0 0.95 -0.58 NA -0.64 -0.62 NA -0.62 NA 0.71 NA
d0.tw1 0.80 -0.86 0.98 -0.92 -0.82 0.72 -0.85 -0.84 0.95 -0.90
d0.tw2 0.81 -0.87 0.99 -0.94 -0.84 0.73 -0.85 -0.85 0.93 -0.93
d0.tw3 0.71 -0.82 0.97 -0.90 -0.74 0.67 -0.76 -0.85 0.90 -0.95
d0.tw4 0.71 -0.71 0.97 -0.90 -0.63 0.64 -0.71 -0.75 0.88 -0.93

d1.tw0 0.97 -0.50 NA -0.60 -0.38 NA -0.47 NA 0.77 NA
d1.tw1 0.80 -0.86 0.98 -0.92 -0.82 0.72 -0.85 -0.84 0.95 -0.90
d1.tw2 0.81 -0.87 0.99 -0.94 -0.84 0.73 -0.85 -0.85 0.93 -0.93
d1.tw3 0.71 -0.82 0.97 -0.90 -0.74 0.67 -0.76 -0.85 0.90 -0.95
d1.tw4 0.59 -0.74 0.97 -0.90 -0.60 0.53 -0.61 -0.76 0.88 -0.93

d2.tw0 NA NA NA NA -0.87 NA NA NA NA NA
d2.tw1 0.57 -0.81 0.98 -0.93 -0.52 0.47 -0.60 -0.83 0.89 -0.94
d2.tw2 0.75 -0.83 0.98 -0.96 -0.78 0.66 -0.81 -0.81 0.88 -0.94
d2.tw3 0.57 -0.70 0.97 -0.91 -0.57 0.49 -0.62 -0.74 0.83 -0.95
d2.tw4 0.57 -0.73 0.97 -0.93 -0.44 0.49 -0.54 -0.76 0.84 -0.96

TABLE V
GENERAL DEPENDENCY RELATIONSHIPS ACROSS THE SOLOMON’S INSTANCES SUBSETS: C2XX , R2XX , RC2XX AND MOVRPTW DATASET.

CONFLICT RELATIONSHIP IS DENOTED WITH 	, WHILE HARMONY USES ⊕.

Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

Relationship ⊕ 	 ⊕ 	 	 ⊕ 	 	 ⊕ 	

have different profiles to characterise customer demand and
also the width of time windows. Our results show that our test
instances represent more realistic and challenging MOVRPTW
cases. This is because in our instances, the average correlation
values between objectives are close to −1 or 1, which indicates
a more truly multi-objective nature, better for assessing the
performance of multi-objective optimisation algorithms.

The main contribution of this paper is a better understanding
of the multi-objective nature of the VRPTW. As an additional
contribution, an open source generator of MOVRPTW problem
instances is made available to the research community. The
instances generator includes raw data corresponding to the
position of customers (latitude, longitude) and distinct and
non-symmetric travel time and travel distance matrices, all this
based on data obtained from a real-world distribution company.

As future work, we will extend this study to understand
which elements intervene in the creation of conflicting or
harmonious relationships, as well as, to determine which
components make instances more difficult to solve.
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