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Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the
global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA
replication, which offers insight into the kinetics of replication in different types of organisms. Most biological
experiments involve average quantities over large cell populations (typically >107 cells) and therefore can mask
the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of
cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from
averaged quantities. This work generalizes the result by Retkute et al. [Phys. Rev. Lett. 107, 068103 (2011)] to a
broader set of parameter regimes.
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I. INTRODUCTION

DNA replication, the process during which cells’ genetic
information is duplicated, is one of the most fundamental
processes in biology. Eukaryotic cells regulate the replication
of their genomes in a highly complex manner: it is vital that
chromosomal replication be completed before cell division
takes place, in order to pass full and accurate genetic
information to the daughter cells.

Cell cycle progression in eukaryotic organisms consists of
four morphologically distinct phases: a gap phase (G1) during
which a cell grows, followed by the DNA synthesis (S) phase,
when the cell’s genome is duplicated, a second gap phase (G2),
and the mitosis (M) phase, when the cell divides into two [1].
The duration of each of these phases varies from organism
to organism, but in all eukaryotes chromosome replication
occurs during the S phase and is initiated at specific locations
on the chromosome called replication origins. When an origin
is activated, two replication forks are formed, which travel on
the chromosome in opposite directions. The number of origins
varies depending on species and cell type; for example, most
bacterial genomes are replicated from a single origin. The size
of eukaryotic genomes necessitates the use of multiple origins
to ensure timely and complete replication prior to cell division.
The use of multiple origins requires tight regulation of origin
activity to ensure that sufficiently many origins are activated,
but that no origin is activated more than once in a single round
of genome replication. This is achieved by the mechanism of
licensing of replication origins. This consists of binding of a
series of specific protein complexes at origin sites in the DNA,
followed by the loading of pairs of Mcm2-7 molecules. If in a
given cell licensing of a certain origin is not completed by the
time the S phase starts, that origin is unable to function [2].
Also regulated are the number of origins that are activated in a
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given S phase and timing of the replication of specific regions
on a chromosome [3].

There has been much interest recently in the mathematical
modeling of DNA replication [4–15]. Two different modeling
approaches have been used: simulations to capture the repli-
cation dynamics at a single cell level [8–12], and probabilistic
models that characterize the dynamics of replication at a
population level [5,7,13–15]. Although valuable insights have
been gained from previous works on mathematical modeling,
they ignore the possibility that origins can fail to license, and
we will show that this has a crucial effect on the system’s
dynamics [4,5]. In addition, most of the existing models are
numerical.

In this work, we analyze an analytical model of eukaryotic
DNA replication which fully takes into account the stochastic
nature of both the licensing process and origin activation
[5]. We start by formulating a general model for organisms
with multiple chromosomes and multiple origins; then we
analyze in detail the kinetics of replication for an idealized
chromosome with two origins, where the most important
features of the replication dynamics can be studied in its
simplest nontrivial case. We focus on quantities which are
of biological interest: replication profiles, average number of
active origins, replicon sizes, and others; and we derive explicit
analytical expressions for them.

Genome replication has been comprehensively studied
in the model organism Saccharomyces cerevisiae (brewer’s
yeast). High-throughput experiments have allowed the mea-
surement of replication times as a function of chromosomal
position for the whole genome [16]. These methods yield
average replication times at distinct chromosomal positions,
over large cell populations (typically >107 cells), and therefore
can mask the cell-to-cell variability present in the system [17].
To date single cell and single molecule studies are not able
to measure the kinetics of whole genome replication [17,18].
The low abundance of the molecules involved in triggering
origin activation strongly suggests that origins have stochastic
activation times [19], with origins having different relative
activation probabilities [20].
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Replication origins in eukaryotic organisms must suc-
cessfully complete the process of licensing in order to be
able to replicate during the S phase. Licensing involves a
number of orchestrated binding events between origin sites
and molecules, some of which are present in low numbers in
the cell. Once the S phase starts, no further licensing is allowed,
so each origin has a relatively short time window in which to
complete licensing. This suggests that a given origin will not
manage to complete licensing in every cell within a population
before the onset of the S phase, due to inhomogeneities in
the abundance of key molecules caused by stochasticity in
their expression. We anticipate that different origins will have
different licensing efficiencies, due to known differences in
affinities to the various species involved in licensing [21], as
well as stochasticity in the chemical dynamics of licensing.
This leads us to the concept of origin competence [4], which
is the probability that a given origin in a population will
finish the licensing process before the S phase, and is thus
eligible for originating replication forks. The competence
of an origin is hard to measure directly, although plasmid
replication efficiency experiments suggest that many origins
in yeast have low competence, making the concept relevant
to the study of the dynamics of replication. The concept
of competence introduces an additional parameter to each
origin in a chromosome, which has the technical disadvantage
that it makes parameter estimation from data somewhat
problematic, as discussed in [4]. Despite this, we feel there are
compelling biological reasons to take this effect into account
and investigate its consequence for DNA replication dynamics;
this is one of the main goals of this work.

We note that this idea of origins with less than 100%
competence is compatible with the hypothesis that origins
have a probability distribution of having different numbers of
Mcm2-7 molecules, which is proposed in [20] to determine
their activation times. But any mechanism generating a
stochastic distribution of Mcm2-7 numbers in an origin will
have a nonzero probability of not having a pair of Mcm2-7
molecules in any particular origin; this corresponds exactly
to the origin having failed to license, and therefore having a
competence below 100%.

We notice that the dynamics of DNA replication has many
similarities with the process of nucleation, and some models
of DNA replication [7,14] are closely related to Kolmogorov’s
classical model of nucleation [22]. The model we propose here
can be regarded as an inhomogeneous model of nucleation with
quenched disorder, where nucleation starts at specific sites.
Inhomogeneous models of nucleation have been studied in
the context of statistical physics and have relevance to surface
science and other areas [23,24].

II. THE MODEL

In our model we consider a chromosome with N origins,
where each origin i is defined by the following parameters: its
chromosomal position xi ; the probability qi that the origin
achieves licensing (in a given cell within a population),
and is thus capable of activating, i.e., competence; and
the activation time probability distribution pi(t), which is
the probability density of origin i activating and starting
bidirectional replication forks at time t [4]. Since an origin

may not be competent in every cell within the population, in
general qi < 1, and pi satisfies∫ +∞

−∞
pi(t)dt = qi.

The fundamental quantity from which all statistical prop-
erties of this system can be calculated is the probability
density P (x,t), defined such that P (x,t)dt is the probability
that chromosomal position x is replicated between times t

and t + dt . If only origin i were present, P would be given
by P (x,t) = pi(t − |x − xi |/v), where v is the fork velocity,
which we assume to be a constant.

In the presence of all N origins, the calculation of P (x,t)
is complicated by the fact that position x can be replicated by
forks originated from any of the origins [4,14]. Let us assume
that position x is replicated between times t and t + dt by
a fork from origin i. This requires that (i) origin i activated
at time t − |x − xi |/v, so that the fork arrives at x at time
t ; and (ii) all other origins j �= i either have not activated or
they have activated but their forks would arrive at x later than
t . This allows us to account for passive replication—i.e., an
origin is inactive due to replication by a fork that originated at
another origin The probability density for event (i) is

pi(x,t) = pi(t − |x − xi |/v), (1)

and the probability for event (ii) is

Qi(x,t) =
∏
j �=i

Mj (x,t), (2)

where Mi is the probability that a fork from origin i arrives
later than t , or fails to activate:

Mi(x,t) = si +
∫ +∞

t

pi(x,τ )dτ, (3)

where si = 1 − qi is the probability of origin i not being
competent. Therefore, the probability density Pi(x,t) that
position x is replicated by origin i at time t is

Pi(x,t) = pi(x,t)Qi(x,t). (4)

Finally, the probability density that position x is replicated at
time t , irrespective of which origin the fork started from, is [5]

P (x,t) =
N∑

i=1

Pi(x,t). (5)

Using Eq. (5), expressions for various quantities of biological
interest can be found. We notice here that similar expressions
have been derived before for the case where all the origins are
100% competent [14].

III. GENERAL RESULTS FOR THE MODEL

Now we will derive expressions for important quantities
characterizing the replication dynamics, which are of great
interest to biologists working in this area: the mean replication
time; the efficiency of origins, that is, in what fraction of
cells a given origin has activated in a round of replication;
the fraction f of total DNA replicated (or the relative DNA
content) at any given time in the S phase; the rate of origin
initiation in a population; the number of replication forks and
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active origins as a function of time; the probability of fork
termination and how it depends on the chromosomal position;
and the interorigin distance distribution between active origins.
All these quantities are derived below from the fundamental
expression Eq. (5).

A. Mean replication time

One of the most important quantities in the area of DNA
replication biology is the replication profile, which is the
mean replication time T (x) at the chromosomal position x;
here the average is over a large population of cells, which is
the typical situation in experiments. There are a number of
techniques for obtaining whole-genome replication profiles,
such as the density transfer method or by measuring relative
DNA copy number using microarray [16,25] or next generation
sequencing [26,27] techniques. In the biological literature, the
term “replication profile” has a number of different but related
meanings: mean replication time, mean percentage replicated,
mean copy number at a chromosomal position; or the so-called
S:G1 ratio, where cells in the G1 and S phases of the cell cycle
are sorted and numbers of cells in both phases are compared
for each sequence [27–33]. All of those quantities are closely
related to the mean replication time T (x), and they contain
essentially the same information. Therefore in this paper the
term “replication profile” will mean T (x).

From Eq. (5), we can write the mean replication time as

T (x) = 1

1 − ∏n
i=1 si

∫ +∞

−∞
tP (x,t)dt, (6)

where the normalization factor 1 − ∏n
i=1 si = ∫ +∞

−∞ P (x,t)dt

is the probability that at least one of the origins will activate.
In Eq. (6) we are thus excluding the situation where all origins
simultaneously fail from the definition of the average; the
probability of this happening is very remote in real cells. The
probabilities will be defined in this way in all the remaining
expressions in this paper.

The replication profile ([T (x) curves] has been measured
in a number of organisms. However, caution is required when
interpreting T (x) curves. In some of the biological literature
T (x) curves are used to directly infer origin parameters [16].
For example, it is widely accepted that the values of T at xi

are the average activation times of origins. However, Eq. (6)
shows that T (x) is determined collectively by all origins [4,5],
which suggests that simple interpretations of T (x) are likely
to be misleading. This issue will be discussed in more detail
in Sec. VII.

B. Fraction of DNA replicated

The fraction of cells in a population which have position x

on the chromosome replicated by time t can be calculated by
integrating the probability P (x,t) with respect to t [5]:

m(x,t) = 1

1 − ∏n
i=1 si

∫ t

−∞
P (x,τ )dτ. (7)

The higher the value of the fraction replicated, the earlier
the chromosome position replicates on average during the S
phase [16].

Replication dynamics has also been studied by measuring
the copy number change by differentiating between replicated
and nonreplicated stages of the cell cycle [25,27]. The copy
number C(x,t) of the position on the genome at a particular
time t is given by

C(x,t) = m(x,t) + 1. (8)

A twofold increase in copy number is required as the cell
progresses from the G1 to the G2 phase.

A relationship between mean copy number C̄(x) and mean
replication time T (x) for the S phase which starts at time T1

and finishes at time T2:

C̄(x) = T2 − T (x)

T2 − T1
+ 1; (9)

for details see Appendix A.
The replicated fraction f (t) of a genome of length L is

given by the average over the whole length of the chromosome
of the probability that a piece of DNA has replicated by
time t :

f (t) = 1

L

∫ L

0
m(x,t)dx. (10)

As the population of cells enters into the S phase and
replication starts, the chromosomal content is equal to one
copy of the genome, and the replicated fraction f (t) is 0.
As replication progresses, f (t) increases and towards the end
of the S phase the DNA content doubles, ensuring a full
complement of DNA for each daughter cell. By measuring
the fraction of replicated DNA as a function of time, it is
possible to determine the rate of total DNA synthesis during
the cell cycle [34].

Figure 1(a) shows the simulated replicated fraction for a
virtual chromosome with a length 100 kilobase pairs (kb) with
ten origins periodically positioned along a chromosome. In
this example, each origin has a Gaussian activation distribution
with a mean of 15 min and a standard deviation of 5 min. We
see that the fraction of DNA replicated as a function of time
has a sigmoidal shape.

C. Rate of origin initiation

The probability density of a single isolated origin i

activating and starting bidirectional replication forks at time
t is pi(t) (Sec. II). Any given origin i can activate only if
forks from neighbor origins j �= i arrive at position xi later
than time t , or fail to activate, and this probability is given by∏

j �=i Mj (xi,t), with Mj defined by Eq. (3). Then the rate of
origin initiation g(t) is defined as the sum over all origins of
the probability densities of the origins activating at a time t :

g(t) = 1

1 − ∏n
i=1 si

N∑
i=1

pi(t)
∏
j �=i

Mj (xi,t). (11)

The importance of this quantity lies in the fact that in a large
population of cells, the number of origins activating in a small
time window (t,t + dt) is proportional to g(t); hence the term
“rate” used above.

Population-averaged measurements of replication initia-
tions per time unit per unit length of unreplicated DNA
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FIG. 1. Results for a virtual chromosome of length 100 kb with
ten origins periodically positioned along the chromosome. Origin
activation follows a Gaussian distribution with a mean of 15 min,
a standard deviation of 5 min, and a fork velocity 1.5 kb/min.
(a) Fraction of replicated DNA f (t), (b) rate of origin initiation g(t),
and (c) initiation rate I (t) .

have been obtained for a number of organisms, includ-
ing S. cerevisiae, Schizosaccharomyces pombe, Drosophila
melanogaster, Xenopus laevis, and Homo sapiens [34,35]. All
profiles have been observed to possess a strikingly similar
shape: increasing during the first half of the S phase and then
decreasing before the end of the S phase.

The initiation rate, i.e., the rate of origin initiations per
time unit per unit length of unreplicated DNA, is obtained by
dividing Eq. (11) by the chromosome length L and by the
fraction of DNA still unreplicated at time t [obtained from
Eq. (10)]:

I (t) = g(t)

L[1 − f (t)]
. (12)

To test if the model reproduces the behavior of the initiation
rate observed in the experiments described in [35], we have
applied Eqs. (11) and (12) to the virtual chromosome described
in Sec. III B. We consider a virtual chromosome with a length
of 100 kb replicated from ten origins periodically positioned
along the chromosome; each origin has a Gaussian activation
distribution function with a mean of 15 min and a standard
deviation of 5 min. The general shape of the curve predicted
for the initiation rate per time unit per unreplicated unit of DNA
[I (t); Fig. 1(c)] is in good agreement with the experimental
results [35]. In the case we have analyzed, the initiation rate

I (t) increases during the first 4/5 of the S phase and then
declines for the last 1/5 of the S phase. This late decrease is
due to the rate of the origin initiation function g(t) reaching its
maximum just after mid-S-phase (at 14 min). The end of the
S phase is the time at which the fraction of DNA replicated,
f (t), reaches 1 (at 25 min).

D. Origin efficiency and average number of active origins

The efficiency of an origin i is the fraction of cells in a
population that actually activated that origin in any given S
phase [36]. In any given cell, not all origins will be activated
during the S phase; for example, in some mammalian cells
most origins are used in less than 10% of cell cycles [26].

The efficiency of origin i is the probability that origin i

activates at any time, and is therefore given by the integral
of the probability that the ith origin initiates between times t

and t + dt multiplied by the probability that none of the other
origins has replicated position xi before time t [4,14]:

ei = 1

1 − ∏N
i=1 si

∫ ∞

−∞
pi(t)

∏
j �=i

Mj (xi,t)dt. (13)

It has been observed in experiments that the efficiency
of origins depends heavily on the distance and timing of
activation of neighboring origins [37]. This is seen directly
from Eq. (13), where the term

∏
j �=i Mj (xi,t) encodes the

influence of other origins on the chromosome.
Another quantity describing the collective dynamics of

DNA replication is the average number nO of active origins,
that is, on average how many origins have activated in a cell
within a population. The presence of multiple origins creates
redundancy and the average number of activated origins will be
less than the total number of origins present on a chromosome.

The average number of active origins is readily obtained
from the origin initiation rate given by Eq. (11):

nO =
∫ ∞

−∞
g(t)dt. (14)

Applying Eq. (11) to Eq. (14) and using Eq. (13), we can relate
the average number of active origins to origin efficiencies:

nO =
n∑

i=1

ei (15)
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FIG. 2. Probability distribution for a number of activated origins
on S. cerevisae chromosome VI: experimental results from [19] (black
full circles) and calculations based on parameter values from [4] (gray
empty circles).
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Figure 2 shows the probability distribution for a number
of activated origins on S. cerevisae chromosome VI, based
on origin efficiencies determined experimentally [19] and
calculations based on normal activation distribution and
parameter values from [4]. The average number of active
origins nO on chromosome VI, calculated using Eq. (15) based
on experimental data and parameter estimation, gave 3.8 and
3.6 origins per cell cycle, respectively.

E. Describing the dynamics of replication forks

As replication progresses through the S phase, replication
forks originate at activated origins, and disappear when two
forks moving in opposite directions in the chromosome collide.
The average number of forks moving at some time t is a
quantity that can yield valuable insights into the replication
dynamics. If there were only a single fork moving in the
chromosome, the rate df (t)/dt of replication would be simply
v, the fork velocity; nf forks thus correspond to a replication
rate of nf v, which leads to the expression

nf (t) = 1

v

df (t)

dt
,

where f (t) is the fraction of replicated DNA at time t . This
expression was also derived for DNA replication in X. laevis
[38]. By applying Eqs. (7) and (10) in above equation we
have

nf (t) = 1

v
(
1 − ∏n

i=1 si

)
∫ L

0
P (x,t)dx, (16)

where L is the length of the chromosome.
The direction of replication fork movement can be analyzed

using a distribution for the proportion of left moving forks at
each position x:

nleft(x) = 1

1 − ∏n
i=1 si

∫ ∞

−∞

N∑
i=1

I(x < xi)pi(x,t)

×
∏
j �=i

Mj (x,t)dt, (17)

where I(X) is the indicator function, which takes a value equal
to 1 if the condition X is satisfied and 0 otherwise.

Figure 3(a) shows the probability distribution for the
proportion of leftward traveling forks at position x for S.
cerevisae (chromosome VI), computed using Eq. (17), with
origin parameters estimated in [4]. All regions except for the
start and the end of the chromosome are replicated by both
leftward and rightward moving forks.

The difference between the proportion of right and left
moving forks gives the average fork polarity fpl(x). The
average fork polarity is the product of the derivative of the
mean replication time and the replication fork velocity [15]:

fpl(x) = vT ′(x).

Taking into account that the sum of the proportion of left and
right moving forks is equal to 1, this gives the relationship
between the proportion of left moving forks and mean
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FIG. 3. Probability distribution for (a) the proportion of left
moving forks, (b) fork termination at position x on S. cerevisae
chromosome VI based on Eq. (16), and (c) histogram of fork
termination sites based on 106 Monte Carlo simulations. Parameter
values from [4].

replication time:

nleft(x) = 1 − vT ′(x)

2
.

When two forks collide, they both terminate and replisome
proteins are released from the DNA molecule. In Escherichia
coli termination sites are regulated and fixed, but in eukaryotes
termination is less well defined than in bacteria, and specific
sites are rare [39].

To find the probability density of termination events at
position x and at time t , we first consider any given pair of
origins i and j with i < j—so their positions satisfy xi < xj .
For the forks originating at i and j to terminate exactly at
position x at a time t , the following conditions must be met:
(a) x must lie between xi and xj ; (b) i and j must have
activated at times t − |x−xi |

v
and t − |x−xj |

v
, respectively; and

(c) the position x must not be replicated by any other origin
k, with k �= i,k �= j , at time t . The total probability density
of fork termination at position x and time t is the sum of the
termination probabilities for all possible pairs (i,j ) satisfying
xi � x � xj ; since i < j , it is enough to consider indices in
the sum given by i = 1, . . . ,N and j = i + 1, . . . ,N − 1.
Finally, the probability (density) that forks will terminate
at x is found by integrating over all times, yielding the
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expression

Pft(x) = 1

N

∫ ∞

−∞

N∑
i=1

N−1∑
j=i+1

I(xi � x � xj )

× pi(x,t)pj (x,t)
∏

k �=i,k �=j

Mk(x,t)dt, (18)

where N is a normalization constant.
Figure 3(b) shows the probability distribution of fork

termination at position x for S. cerevisae (chromosome VI),
computed using Eq. (18), with origins activating according to
a normal distribution with mean and variance values estimated
in [4]. For a comparison, we have plotted a histogram of
fork termination sites based on 106 Monte Carlo simulations
[Fig. 3(c)], the solution based on Eq. (18) agrees with the
simulation results within statistical limits.

F. Distribution of distances between active origins

The distribution of distances between active origins (be-
tween origins that have actually activated) in a population of
cells is an important quantity for biology. Its importance is
related to the fact that the stochastic nature of origin activation
can result in large distances between active origins, with the
consequence that sections of the genome would take too long to
replicate; this can result in portions of the genome remaining
unreplicated when cells enter the M phase [40] or causing
instability in fragile sites [41].

For organisms such as yeast where the replication origins
have fixed positions in any given chromosome, the inter-active-
origin distance can assume only a discrete set of values. For ex-
ample, about 120 early inter-active-origin distances in fission
yeast and between 250 and 300 in budding yeast [42] have been
observed to have a typical spacing of between 30 and 100 kb
[43]. In normal human primary keratinocyte cells, the mean
value for inter-active-origin distances is about 124 kb [44].

The distance yij between origins i and j is equal to
yij = |xi − xj |, where xi is the position of origin i and xj

is the position of origin j . Our goal is to obtain an expression
for the probability distribution of distances between active
origins P(y) for the interorigin distance y. Consider first a
given origin pair (i,j ), with i < j , then the probability density
that this particular pair activates in one replication round,
and no other origin activates in between them—this event
contributes to P with yij . The probability density that origin
i activated at time t and neighboring origins on the left either
have not activated or they have activated but their forks would
arrive at xi later than t , is given by pi(t)

∏i−1
k=1 Mk(xi,t). The

probability density that origin j has activated at time t and
neighboring origins on the right either have not activated or
they have activated but their forks would arrive at xj later
than t ; this is given by pj (t)

∏N
k=j+1 Mk(xj ,t). Since yij = yji

it is sufficient to consider origin pairs with indices i and j

with ranges given by i = 1, . . . ,N and j = i + 1, . . . ,N − 1.
Further, if i and j are such that j − i > 1, i.e., these origins
are not adjacent, we need to ensure that all origins k lying
between them (i < k < j ) will not activate at all (otherwise
there would be an origin activating between i and j , and this
would split the interval [xi,xj ] into two); this probability is

equal to
∏j−1

k=i+1 Mk(xk,t). The probability density function
for inter-active-origin distances is given by the integral over
all times of the product of these probabilities:

P(y) = 1

N

∫ ∞

−∞

N∑
i=1

N−1∑
j=i+1

I(y = |xi − xj |)

× pi(t)pj (t)
i−1∏
k=1

Mk(xi,t)
N∏

k=j+1

Mk(xj ,t)

×
j−1∏

k=i+1

Mk(xk,t)dt, (19)

where N is a normalization constant. The probability density
function P takes nonzero values for y equal to distances
separating any two origins on the chromosome.

Figures 4(a) and 4(b) show the probability distribution of
distances between active origins for S. cerevisae (chromosome
VI), computed using Eq. (19) and a histogram for 105 Monte
Carlo simulation, with normal activation distribution and pa-
rameter values estimated in [4]. Based on this distribution, we
calculate that the mean distance between active origins is 55 kb.
Whole-genome analysis has shown that the average distance
between active replication origins in the S. cerevisiae genome
is approximately 58 kb [45]. We note that the distribution of
inter-active-origin distances has a long tail; ∼4% of cells have
an inter-active-origin distance >130 kb. Similar large inter-
active-origin distances have been observed experimentally
[45,46]. To prevent under-replication (or delay to cell cycle
progression) these large inter-active-origin distances much
be replicated prior to cell division. S. cerevisiae cells have
about 60 min available to complete DNA replication before
cell division starts, i.e. two forks converging at 2 kb/min
can potentially replicate 240 kb during that time; therefore
under-replication is unlikely according to our model.
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FIG. 4. Probability distribution of distances between active ori-
gins on S. cerevisae chromosome VI: (a) as a solution of Eq. (19),
and (b) histogram for 105 Monte Carlo simulation. Parameter values
from [4].
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TimeA: ORI1 ORI2

TimeC: ORI1 ORI2

TimeB: ORI1 ORI2

TimeE: ORI1 ORI1

TimeF: ORI2 ORI2

TimeD: ORI2 ORI1

FIG. 5. A particular position along a chromosome in different
cells can be replicated by forks from origin 1 (light gray), origin 2
(dark gray), or either origin (black). The order in which this happens
(indicated in A–F above) as time progresses from left to right defines
the possible states of replication.

IV. PARAMETER REGIMES

We want to use the general theory presented above to study
replication dynamics in a simple setting. From now on we
focus on the case of a hypothetical linear chromosome with
just two origins. We define the chromosomal coordinates so
that one of the origins has position x1 = 0; the other origin
has position x2 = D. We assume that each origin can activate
within a time window �ti with uniform probability; we will
argue later that our conclusions are largely independent of the
precise shape of the probability distribution. We select the time
axis in such a way that the average activation time of the first
origin is 0. The other origin has an average activation time τ ,
and we assume without loss of generality that τ � 0. Thus the
activation time distributions are

pi(t) = qi

�ti
if t ∈

[
tav
i − �ti

2
,tav

i + �ti

2

]
, (20)

where i = 1,2, tav
1 = 0 and tav

2 = τ , and p1 and p2 are set to
zero outside the stated intervals.

Using Eqs. (6) and (20), we can write analytical expressions
for the probability density P (x,t) and other quantities of
interest. From Eqs. (20) and (5), P (x,t) vanishes outside the
intervals I1 = [I l

1,I
u
1 ] and I2 = [I l

2,I
u
2 ] given by

I l
i = |xi − x|

v
+ tav

i − �ti

2
;

Iu
i = |xi − x|

v
+ tav

i + �ti

2
.

A. States of replication

There are six possible states of the replication at each
position x on the chromosome, defined by the order in
which forks from the two origins can replicate x. These are
summarized in Fig. 5, where each position has a probability to
be replicated at any time t by origin 1, origin 2, or by either
origin depending on the distance from each origin and other
parameters. The different possibilities are denoted by “states”
A to F, as defined in Fig. 5.

State A corresponds to the situation where forks from origin
1 arrive at x before any fork coming from origin 2; if the
competence q1 of origin 1 is equal to 1, then this position
is completely replicated by the first origin. For q1 < 1, x is
replicated by origin 2 only when origin 1 fails to activate.

The replication probability density P (x,t) is given in this
case by

P (x,t) =

⎧⎪⎨
⎪⎩

q1

�t1
if t ∈ I1,

s1q2

�t2
if t ∈ I2,

0 otherwise.

(21)

In similar manner, state B corresponds to forks from origin 2
arriving at x before forks from origin 1:

P (x,t) =

⎧⎪⎨
⎪⎩

q2

�t2
if t ∈ I2,

s2q1

�t1
if t ∈ I1,

0 otherwise.

(22)

For the states C and D, there is an overlapping time window,
when forks originating at either of the origins can get to x first.
States E and F show that the time window where x is replicated
by forks originating at one of the origins is contained in the
time window of the other fork; this latter state is possible only
if �t1 �= �t2.

If we denote by [tl,tu] the overlapping time window in
cases C–F, then the replication probability densities for these
four cases are given by the expression below, with i and j

having different meanings for each state: C (i = 1,j = 2),
D (i = 2,j = 1), E (i = j = 1), and F (i = j = 2):

P (x,t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi if t ∈ [
I l
i ,tl

]
,

p1
( ∫ Iu

2
t

p2dt + s2
) + p2

( ∫ Iu
1

t
p1dt + s1

)
if t ∈ [tl,tu],

pj if t ∈ [
tu,I

u
j

]
,

0 otherwise.

(23)

Expressions for tl and tu for the different states are given in
the table below:

State tl tu

C |D−x|
v

+ τ − �t2
2

|x|
v

+ �t1
2

D |x|
v

− �t1
2

|D−x|
v

+ τ + �t2
2

E |D−x|
v

+ τ − �t2
2

|D−x|
v

+ τ + �t2
2

F |x|
v

− �t1
2

|x|
v

+ �t1
2

From the above table we can see that the state changes as
position is changed along the chromosome. Based on these
states it is possible to classify the replication dynamics into a
number of parameter regimes. Figure 6 shows such regimes for
�t1 = �t2 = �t and �t1 �= �t2. In the first case [Fig. 6(a)],
the number of parameters is reduced and we can look at the
full dependencies between τ , �t , D, and v. When �t1 �= �t2,
we will look at regimes for a few values of τ , �t1, and �t2
[Figs. 6(b)–6(d)].

B. Regimes for �t1 = �t2

In total there are five regimes (depending on the relative
values of τ , �t , D, and v) that differ in the dynamics of how
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FIG. 6. Plots showing parameter regime diagrams based on the
spatiotemporal dynamics of replication: gray areas indicate where
the activation time distribution of origin 1 or 2 has nonzero values,
and dark gray regions are where distributions for the two origins
overlap. (a) Regimes for �t1 = �t2. (b) Some of the regimes for
�t1 �= �t2. (c) Regimes for variable �t1 (fixed value of �t2 �
D/v) and �t2 (fixed value of �t1 � D/v) for τ < D/v. (d)
Regimes for variable �t1 (fixed value of �t2 � D/v) and �t2
(fixed value of �t1 � D/v) for τ > D/v. Parameter values for (c)
and (d) where replication dynamics undergoes changes are given in
Appendix C.

the chromosome is replicated [shown in Fig. 6(a)]. For regime
R1 only state A occurs for the whole chromosome.

Most relevant to biological systems is regime R2, since this
is the case for many pairs of origins in real chromosomes. In
this regime, the condition τ + �t < D/v is satisfied, meaning
that origins activate at a similar time and the variations in the
activation time �t are small enough that a fork from one
origin can replicate the other origin only if that origin is not
competent. Regime R2 is formed from states A, B, C, and D.
Changes occur at positions x = 1

2 [D + v(τ − �t)] (from A to
C), x = 1

2 (D + vτ ) (from C to D), and x = 1
2 [D + v(τ + �t)]

(from D to B).
Regime R2 describes the situation where two origins are

sufficiently apart that they are not passively replicated by each
other. It is quite common, however, to find two origins located
close to each other in a chromosome, such that the condition
τ + �t < D/v is violated. In this case, regimes other than R2

describe the replication dynamics of the system.
In regime R3, in some cells origin 2 actives just before

forks from origin 1 arrive at position x = x2 = D and in some
cells both origins compete to replicate positions on the right
of x = 1

2 [D + v(τ − �t)]. At this point the behavior changes
from state A to C.

For regime R4 state A occurs up to position x = 1
2 [D +

v(τ − �t)], then it changes to state C. In a similar way, regime
R5 changes from state C to state D at position x = 1

2 (D + vτ ).
More details on the dynamics of replication for different sets
of parameters are shown in Fig. 6(a).

For a fixed value of �t < D/v, as the difference in average
activation time between origins, τ , increases, the replication
dynamics undergoes the following changes:

Change τ Change τ Change τ

R2 → R3
D

v
− �t R3 → R4

D

v
R4 → R1

D

v
+ �t

For any fixed τ < D/v, increasing the width �t of the
activation time distribution leads to change of the regime from
R2 to R3 at D

v
− τ and from R3 to R5 at D

v
+ τ .

A discussion on regimes for �t1 �= �t2 is given in
Appendix C.

V. DYNAMICS OF REPLICATION FORKS

The proportion of left and right moving forks will depend
on the properties of the origins and fork velocity, as indicated
by Eq. (17). The analytical expression for the proportion of
left moving forks, nleft, for regime R2, is given by Eq. (C1)
in Appendix C. In regime R2 the proportion of left moving
forks takes a sigmoidal shape. Figures 7(a), 7(c), and 7(e)
show the effect of varying parameters on proportion of left
moving forks in regime R2: as a function of competence
q2 [Fig. 7(a)], as a function of time τ [Fig. 7(c)], and as
a function of the width of the activation time distribution
�t1 = �t2 = �t [Fig. 7(e)]. Parameter values are q1 = q2 =
1, τ = 0, �t1 = 5, �2 = 5, and v = 1, if not otherwise stated.
The consequences of differences in parameter values can be
clearly distinguished: with decreasing competence, the curve is
pushed down; increasing τ shifts the curve closer to the second
origin; decreasing �t increases the gradient of the sigmoidal
function.
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FIG. 7. The effect of varying parameters on the proportion of left moving forks and fork termination: (a),(b) as a function of
competence q2, (c),(d) as a function of time τ , (e),(f) as a function of width of activation �t1 = �t2 = �t , and (g),(h) as a function of
width of activation �t2. (i) Experimentally measured proportion of left moving forks (gray) [47] on the S. cerevisiae chromosome VII
(700–780 kb) with a curve based on Eq. (17) (black) and (j) prediction of the fork termination position probability distribution based
on Eq. (D1).

We have also looked at other regimes—in Fig. 7(g) the
parameter values �t2 = 10 and �t2 = 15 correspond to R7,
while �t2 = 20 and �t2 = 25 correspond to R9; here q1 =
q2 = 1, τ = 0 and �t1 = 5. Unlike regime R2, these regimes
permit passive replication of one (R7) or both (R9) origins. It
can be seen that for these regimes the proportion of left moving

forks between the two origins becomes linear with respect to
position on the chromosome.

Recently, high-resolution analysis of Okazaki fragment
synthesis was performed in S. cerevisiae [47]; this allows
determination of the lagging strand proportion and hence
the proportion of left moving forks. Figure 7(i) shows the
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experimentally determined proportion of left moving forks for
a part of chromosome VII from 700 to 780 kb (gray lines)
with a curve based on Eq. (17) (black) [48]. This demonstrates
the close agreement between our model prediction and an
independent experimental data set.

VI. RESULTS FOR THE FORK TERMINATION POSITION
PROBABILITY DISTRIBUTION

Although the forks all start at the same locations (the
origins), they meet each other and terminate at different
locations in each cell, because of the stochastic activation
times. Only forks traveling in opposite directions between the
two origins can collide. This condition limits positions of fork
termination to the interval [0; D] (excluding the two ends of the
chromosome). (If one of origins is activated much later in time,
i.e., the dynamics is in regime R1, only one origin activates
and therefore there are no termination events between the two
origins.) The fork termination position distribution will have
nonzero values in the areas of the space-time diagram where
the probability of that position being replicated by forks from
both origins is nonzero. An analytical expression for the fork
termination position probability distribution function (PDF) is
given in Appendix D.

Figures 7(b), 7(d), 7(f), and 7(h) illustrate the effect of
varying the parameters q2, τ , �t , and �t2. For τ = 0, the
maximum of the PDF is at position x = D

2 and takes the value
p∗ = q1q2(�t1+�t2)

2�t1�t2(1−s1s2) . If τ is increased, the maximum moves to

the right by vτ
2 . The area under the PDF is (�t1+�t2)2q1q2v

8�t1�t2(1−s1s2) for

values τ < D
v

− �t1+�t2
2 ; for increasing τ it starts decreasing

until zero is reached at τ = 2D+v(�t1+�t2)
2v

.
The biological literature commonly suggests that termina-

tion sites are disperse, but there is limited evidence for discrete
termination sites [39]. Our model indicates that termination
sites have a continuous distribution. Equation (D1) can help
identify the most probable positions of fork termination sites
on the chromosome. Figure 7(j) shows the prediction of the
fork termination position probability distribution for a part of
chromosome VII from 700 to 780 kb.

VII. SIGNATURES OF STOCHASTICITY
IN REPLICATION PROFILES

In this section we will discuss how information about the
stochasticity of the activation times of origins—the width
of the activation window—can be obtained from the mean
replication time as a function of chromosomal position, T (x).
Because the parameter space in the generic case is very big,
from now on we will consider only the case �t1 = �t2 = �t .

An analytical expression for T (x) for the case where the
condition τ + �t < D/v is satisfied has been derived [5]. This
corresponds to regime R2 and is the case for many pairs of
adjacent origins in real chromosomes. This is valid when the
variations in the activation time �t are small enough that a
fork from one origin can replicate the other origin only if that
origin is not competent.
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FIG. 8. Replication time curves for (a) differing values of
competence q1; (b) different widths of the activation time window;
(c) different values of τ , with position y = x + vτ/2.

A plot of T (x) for various sets of parameters is shown
in Fig. 8. We see that T (x) has discontinuous derivatives at
the origin locations. This is due to forks originating only at
the origin locations; there is a discontinuous change in the
proportion of left propagating compared to right propagating
forks as one crosses an origin site. At the origins, the mean
replication times are [5]

T (x1) = T (0) = q2s1(D/v + τ )/(1 − s1s2);
(24)

T (x2) = T (D) = (q1s2D/v + q2τ )/(1 − s1s2).

It is commonly assumed in the replication literature that
T (x) has a minimum at an origin, and that the value of
this minimum directly gives the average activation time for
the origin. However, Eq. (24) shows that this is not the
case and, in fact, T (xi) � tav

i : the mean replication time at
an origin location is equal to or greater than the origin’s
average activation time. Only when an origin has qi = 1 can
T (xi) = tav

i , because if an origin fails to activate in a given
cell, the DNA at the origin location will not be replicated
until a fork from another origin arrives. This means that Ti is
higher for origins that are more likely to fail, as seen directly
in Fig. 8(a). Another important conclusion is that even when
both origins have the same average activation time (τ = 0),
generally we have T (x1) �= T (x2), also shown in [5]. This is
again due to the possibility of origins not activating. Therefore,
the origin with the lower minimum of T (x) does not necessarily
activate earlier than the other origin: minima of T (x) cannot
be used to draw conclusions on the relative activation times
of the corresponding origins, as previously assumed [9,16].
The equation for mean replication time shows that in general
T (x) at any point depends collectively on the parameters of
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all origins. However, if an origin is highly competent, early
activating, and isolated from other origins, T (x) at that origin’s
position will be close to the origin’s average activation time.

The expression for mean replication time, Eq. (24), chal-
lenges the assumption that there is a one-to-one correspon-
dence between replication origins and minima of T (x): minima
correspond to origin locations, but there may be origins for
which there is no peak. The slope of T near the first origin (for
x > 0) is [5]

T ′(x) = q1 − q2s1

v(1 − s1s2)
. (25)

This expression shows that the slope is a function of the
competences qi of both origins as well as the fork velocity
v. For the origin at x = 0 to be a minimum of T (x), we must
have T ′ > 0 for x > 0, from which we get the condition

q1 >
q2

1 + q2
. (26)

In a similar way, the slope of T (x) near the second origin (for
x < D) is

T ′(x) = q1s2 − q2

v(1 − s1s2)
, (27)

which yields the condition

q2 >
q1

1 + q1
. (28)

This shows that if an origin has low competence compared
to its neighbor, it may not be a minimum of T (x), as
illustrated in Fig. 8(a). This phenomenon has been observed in
experimental data [16]. Note that if q1 > 1/2, this condition
is always satisfied and a minimum is guaranteed for this
two-origin system and this regime. Figure 9 shows values
for q1 and q2, for which Eqs. (26) and (28) are satisfied, i.e.,
both origins are local minima in the replication time curve. In
addition, Eqs. (25) and (27) show that the fork velocity is not
given by the slope of T (x), an assumption widely used in the
literature [16].

In contrast to the discontinuity of T ′(x) at the origin
locations, the plots of replication time curves show that the
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FIG. 9. Gray area indicates the sets of competencies q1 and q2 for
which both origins are local minima in the replication time curve.

local maximum of T (x) between two origins is a smooth curve.
The reason is that in different cells in a population forks meet
each other and terminate at different locations on the DNA,
as has been shown in Sec. VI. This suggests that the shape of
the maximum of T (x), when it exists, could be used to infer
information about the width of the activation window. We
expect that sharp maxima should correspond to forks meeting
within a narrow time window; conversely, a broad maximum
corresponds to a high time window. This can be seen in
Fig. 8(b), where T (x) is plotted for various values of �t .

In order to investigate this more quantitatively, we use the
modulus of the second derivative of T (x) at the maximum
to measure how broad the maximum is, because low values
of |T ′′(x)| correspond to broad peaks. At the maximum of
T (x) [5],

|T ′′(x∗)| =
4q1q2

√
1 − ∣∣ 1

q1
− 1

q2

∣∣
v2�t(1 − s1s2)

, (29)

where

x∗ =

⎧⎪⎪⎨
⎪⎪⎩

D+vτ
2 for q1 = q2;

D+vτ
2 + v�t

2

(
1 − ∣∣ 1

q1
− 1

q2

∣∣) for q1 > q2;
D+vτ

2 − v�t
2

(
1 − ∣∣ 1

q1
− 1

q2

∣∣) for q1 < q2.

Thus |T ′′(x∗)| is inversely proportional to �t . Notice also that
|T ′′(x∗)| does not depend on τ , which means it is independent
of the origins’ average activation times. Figure 8(c) shows
replication time curves for different values of τ , where the
position along the chromosome has been shifted by y = x +
vτ
2 and replication times are shifted downwards by τ

2 . This
figure clearly shows that the shape of T (x) near maximum is
independent of τ .

Expression (29) can be used to calculate �t from an
experimental replication time profile T (x), if the origin
competences and the fork velocity are known. This is a
very useful result because it allows the determination of a
quantity characterizing stochastic properties of the system,
�t , from T (x), which is defined by a population average. This
is valuable because experiments to directly measure �t are
technically difficult [17,18]. We note that this does not require
assuming that all cells in the population are synchronized,
since in each individual cell in an asynchronous population,
the statistics of the relative activation times of origins remains
unaltered [4].

VIII. GAUSSIAN AND SKEWED ORIGIN ACTIVATION
DISTRIBUTIONS

Although Eq. (29) was obtained using a simple uniform
distribution for pi(t), we expect it to be a good approximation
for any single-peaked distribution function pi(t), since Eq. (29)
involves only the second moment (the variance) of the distri-
bution, and the replication dynamics are mostly determined
by the average activation time and the width of the activation
distribution. So we expect two single-peaked distributions with
the same tav and �t to have very similar T ′′(x).

To test this assumption, we used Eq. (6) to numerically
compute T (x) for pairs of origins with Gaussian activation
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FIG. 10. Plots showing mean replication time (a) and proportion
of left moving forks (b) for three different distributions: Uniform
distribution (t av

i = 15,�ti = 8), Gaussian distribution (μi = 15,σi =
2.31), and skewed distribution given by Eq. (30) (t1/2i = 15.35,twi =
2.77), i = 1,2. For all three cases q1 = 0.9,q2 = 0.7,v = 1.

time distribution and with a skewed distribution leading to a
sigmoidal cumulative activation time distribution, described
by a Hill’s-type function

F (t) = q ln 3t1/2
( t1/2

t

)ln 3/κ−1

κt2
[
1 + ( t1/2

t

)ln 3/κ]2 , (30)

where

κ = ln

⎛
⎝ tw +

√
4t2

1/2 + t2
w

2t1/2

⎞
⎠ , (31)

as used in Ref. [14].
Figure 10 shows good agreement of the mean replication

time and proportion of left moving forks for the three
distributions mentioned above. Choosing parameters for which
all these distributions have the same mean and variance, we
find that in all cases T ′′(x) never differs between distributions
by more than 10%. This means that Eq. (29) is a very accurate
prediction of �t , regardless of the detailed shape of pi(t).

IX. APPLICATION TO EXPERIMENTAL DATA

We expect Eq. (29) to be a reliable prediction for isolated
pairs of origins whose competences are not too low, so that
there are well-defined peaks at the origin positions; this
ensures that most forks traveling in the region between the
two origins come from those origins, which is what is required
for Eq. (29) to hold. We also note that there are organisms with
far fewer replication origins than S. cerevisiae, for which the
two-origin assumption involves little or no approximation; in
particular, many archaea have only two or three origins, and
high-throughput methods to study their replication dynamics
are available [49–51].

We will apply the above model to data from S. cerevisiae
(brewer’s yeast), which has 16 chromosomes and about 300
origins [52]. A rough criterion for a pair of origins to be
considered “isolated” is if the distance between them is smaller

Fitted parabola

ARS420 ARS422

620 630 640 650 660 670 680 690 700 710
30

35

40

45

Chromosomal position, kb

T x , min

(kb)

(min)

FIG. 11. Replication time curves [16] for S. cerevisiae chromo-
some IV (620–715 kb) with a fitted parabola

than the distance between either origin and its immediate
neighbor. More precisely, let (xi,xi+1) be a pair of origins in a
chromosome, and di,i+1 be the distance between the origin at xi

and the origin at xi+1. Then our criterion for the pair (xi,xi+1) to
be isolated is that it satisfies both di,i+1 < di−1,i and di,i+1 <

di+1,i+2. We have used the DNA replication origin database
[52] to compute how many pairs of S. cerevisiae organism
satisfy this criterion, and we found that 35% do. Using
the stochastic simulation procedure described in Ref. [14],
we found that of the origin pairs which are isolated, in 40% of
those the �t’s of the two origins are within 2 min of each other
(meaning 14% of the origins overall). If we relax the definition
of “close” to a 3 min difference, this fraction increases to 60%
(or 21% overall).

We looked at experimental data [16] for S. cerevisiae
chromosome IV (the region containing origins ARS420 and
ARS422), shown in Fig. 11. The smoothness of the curve—
ignoring the fluctuations caused by experimental noise—is
direct evidence for stochastic origin activation, in agreement
with other results [17,18]. We fitted a parabola through the
data points and from this determined the value of |T ′′|. Using
Eq. (29) we estimate the values of �t as 15 min [53]. This
value is in agreement with the limited number of single cell
measurements that have been made at other S. cerevisiae
origins [18].

X. DISCUSSION AND CONCLUSIONS

In this paper we studied the properties of a mathematical
model of chromosome replication that describes genome
duplication dynamics in eukaryotic cells. In the first part of the
study, we formulated a general model for replication, which
takes into account the fact that origins activate stochastically,
and also accounts for the possibility that origins in individual
cells may not activate at all, because they may have failed
to license. We have derived a probability distribution of
replication as a function of position and time, and from this
we have found analytical expressions for many quantities of
interest such as mean replication time, the average number of
active origins, and others.

In the second part of the paper, the dynamics of replication
was investigated in detail in an idealized scenario for a
chromosome with two origins of replication and the activation
probability distribution given by a uniform distribution. De-
spite being idealized, this simple scenario encapsulates much
of the essential behavior found in more complex cases; and
although organisms vary enormously in the size, shape, and
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distribution of genomes, the case of the chromosome with
just two origins is of biological interest: recently an E. coli
mutant with two identical functional replication origins has
been constructed [54]. We were able to derive an analytical
expression for the mean replication time and to extract
hence many important properties of the dynamics of DNA
replication. Furthermore, we have proposed a method to deter-
mine the width of the activation time probability distribution
from experimentally measured population-averaged data. Our
results compare favorably with experimental measurements in
S. cerevisae.
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APPENDIX A: RELATIONSHIP BETWEEN MEAN
REPLICATION TIME AND MEAN COPY NUMBER

For a eukaryotic cell with a fixed S phase, the mean
replication time can be calculated:

T (x) = 1

N

∫ T2

T1

tP (x,t)dt, (A1)

whereN = 1 − ∏n
i=1 si , T1 is the time when replication starts,

and T2 is the time when replication finishes.
The relationship between copy number C(x,t) and fraction

replicated m(x,t) is given by Eq. (8). Now, the fraction
replicated before time t for cells where replication started at
T1 is given by

m(x,t) = 1

N

∫ t

T1

P (x,τ )dτ. (A2)

The time average of the function m(x,t) is

m̄(x) = 1

N
1

T2 − T1

∫ T2

T1

dt

∫ t

T1

P (x,τ )dτ

= 1

N
1

T2 − T1

∫ T2

T1

dτ

∫ T2

τ

P (x,τ )dt

= 1

N
1

T2 − T1

∫ T2

T1

P (x,τ )dτ

∫ T2

τ

dt

= 1

N
1

T2 − T1

∫ T2

T1

P (x,τ )(T2 − τ )dτ

= 1

N
1

T2 − T1

(∫ T2

T1

P (x,τ )T2dτ −
∫ T2

T1

τP (x,τ )dτ

)

= 1

N
1

T2 − T1

(
T2

∫ T2

T1

P (x,τ )dτ −
∫ T2

T1

tP (x,t)dt

)
.

Taking into account Eq. (A1) and the fact that the first integral
in the parentheses equals 1 − ∏n

i=1 si = N , we get

m̄(x) = T2 − T (x)

T2 − T1
(A3)

and

C̄(x) = T2 − T (x)

T2 − T1
+ 1. (A4)

APPENDIX B: REGIMES FOR �t1 �= �t2

Some of the regimes for the case �t1 �= �t2 are shown in
Fig. 6(b). Only in this case can the states E and F (Fig. 5) be
observed. Also, regimes R2, R3, and R5 have either state E oc-
curring between positions x = 1

4 [2D + v(2τ − �t1 + �t2)]
and x = 1

4 [2D + v(2τ + �t1 − �t2)] for �t1 > �t2, or state
F between positions x = 1

4 [2D + v(2τ + �t1 − �t2)] and
x = 1

4 [2D + v(2τ − �t1 + �t2)] for �t1 < �t2. If �t1 →
�t2, the length of this interval decreases until states E and
F disappear and position x = 1

2 (D + vτ ) then separates states
C and D.

For regime R6, state A occurs up to position x = 1
4 [2D +

v(2τ − �t1 − �t2)]; then it changes to state C. At position
x = 1

4 [2D + v(2τ − �t1 + �t2)], state C changes to the state
E. In a similar way, for regime R7 state A also occurs up to
position x = 1

4 [2D + v(2τ − �t1 − �t2)], and then it changes
to state C. At position x = 1

4 [2D + v(2τ + �t1 − �t2)], state
C changes to the state F.

Other types of regime characteristic for the case �t1 �= �t2
are regime R8 (�t1 
 �t2), where only state E is possible;
and regime R9 (�t2 
 �t1), where only state F occurs.

For a fixed value of �t1 � D
v

the regime dynamics as
�t2 changes are shown in the upper panels of Figs. 6(c) and
6(d). The transitions in the dynamics are given in the table
below:

τ < D

v
τ > D

v

Change �t1 Change �t1

R2 → R3 2
(

D

v
− τ − �t2

2

)
R1 → R4 2

(
τ − D

v
− �t2

2

)

R3 → R5 2
(

D

v
− τ + �t2

2

)
R4 → R6 2

(
τ − D

v
+ �t2

2

)

R5 → R8 2
(
τ + D

v
+ �t2

2

)
R6 → R8 2

(
D

v
+ τ + �t2

2

)

For a fixed value of �t2 � D
v

the regime dynamics for
variable �t1 is shown in the lower panels of Figs. 6(c) and
6(d). The transitions are

τ < D

v
τ > D

v

Change �t2 Change �t2

R2 → R3 2
(

D

v
− τ − �t1

2

)
R1 → R4 2

(
τ − D

v
− �t1

2

)

R3 → R5 2
(

D

v
− τ + �t1

2

)
R4 → R7 2

(
τ − D

v
+ �t1

2

)

R5 → R9 2
(

D

v
+ τ + �t1

2

)
R7 → R9 2

(
D

v
+ τ + �t1

2

)

In the extreme case where τ > D
v

+ �t1
2 + �t2

2 the only
possible regime is R1.
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APPENDIX C: PROPORTION OF LEFT MOVING FORKS IN REGIME R2

This is given by

nleft(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x < 0;

q2−q1q2

q1+q2−q1q2
if x ∈ [

0; D+v(τ−�t)
2

)
;

− q2{D2q1−�t2(−2+q1)v2−2Dq1(�tv+2x−vτ )−2�tq1v(−2x+vτ )+q1(−2x+vτ )2}
2�t2{q1(q2−1)−q2}v2 if x ∈ [

D+v(τ−�t)
2 ; D+vτ

2

)
;

q2{D2q1+�t2(−2+q1)v2+2�tq1v(−2x+vτ )+q1(−2x+vτ )2+2Dq1(−2x+vτ+v�t)}
2�t2{q1(q2−1)−q2}v2 if x ∈ [

D+vτ
2 ; D+v(τ+�t)

2

)
;

q2

q1+q2−q1q2
if x ∈ [

D+v(τ+�t)
2 ; D

)
;

0 if x � D.

(C1)

APPENDIX D: PROBABILITY OF THE FORK TERMINATION POSITION DISTRIBUTION

This is given by

Pft(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ > 2D+v(�t1+�t2)
2v

;

0 if x < 0;

0 if x > D;

q1q2[4x−2D+v(−2τ+�t1+�t2)]
2�t1�t2v(1−s1s2) if x ∈ [ 2D+v(2τ−�t1−�t2)

4 ; D+vτ
2

]
;

q1q2[4x+2D+v(−2τ+�t1+�t2)]
2�t1�t2v(1−s1s2) if x ∈ [

D+vτ
2 ; 2D+v(2τ+�t1+�t2)

4

]
.

0 otherwise.

(D1)

APPENDIX E: SENSITIVITY ANALYSIS OF AN
EXPRESSION FOR THE SECOND DERIVATIVE OF THE

MEAN REPLICATION TIME

We rewrite Eq. (29) as G = A
g

, where A =
4q1q2

√
1−|1/q1−1/q2|

v2(1−s1s2) , and g = �t .Then the change in the
value of G with respect to differences in the parameter g is

|�G| = A

(
1

g
− 1

g + �g

)
= A

�g

g(g + �g)

For the parameter g in the range (7,18) min [14], a difference
of 2 min results in a difference of up to 2.5% in �G

A
.

Normalization errors and noisy data result in errors in
the calculated mean replication time [T (x)]. We have used a
simple Monte Carlo simulation technique to roughly estimate
how the �t predicted from formula (29) is affected by errors in
the replication time profile T (x). For this simulation we added
Gaussian-distributed noise of mean 0 and standard deviation

5 min to each simulated replication profile of a two-origin
chromosome, thus mimicking the effects of experimental error
(we expect 5 min to be a reasonable estimate of the error for
the experiments we use). We then numerically calculate the
second derivative of a fitted parabola through the resulting
mean replication time curve, and use formula (29) to calculate
the “predicted” �t∗, which we can compare with the actual
value �t used to generate T (x) in the first place. We then
repeat this procedure 100 times, generating a distribution of
�t∗’s, and we do this for a few values of �t to see how the
error affects origins with different variabilities in activation
time.

Errors in the estimation of �t are greatest for origins with
low variation in the activation time, as is to be expected. For
origins with �t ≈ 10 min, which is the value we estimated in
the example discussed in the paper, the error is around 10%,
which shows that formula (29) is quite robust to experimental
errors.
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