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Abstract We consider the symmetry of discrete and continuous crystal structures

which are compatible with a given choice of dislocation density tensor. By introducing

the notion of a ‘defective point group’ (determined by the dislocation density tensor),

we generalize the notion of Ericksen–Pitteri neighbourhoods to this context.

Keywords Crystals · Defects · Lie groups

Mathematics Subject Classification (2000) MSC 74A20 · MSC 74E25

1 Introduction

The purpose of this paper is to generalize, to the case of crystals with certain uni-

form distributions of defects, symmetry considerations which are well known in the

case of perfect crystals. In a perfect crystal, geometrical considerations begin with the

specification of basis vectors e1, e2, e3 ∈ R3 of a perfect lattice

L = {x : x = niei, ni ∈ Z, i = 1, 2, 3} ,

– in a defective crystal, if one is given a set of three linearly independent vectors

e1, e2, e3 ∈ R3 and a dislocation density tensor S (and this is what we shall be

given), the first question is what set of points should be taken in generalization of

the perfect lattice L.

Then, it is well known that the geometrical ‘symmetries’ of a perfect crystal structure

relate to the various changes of basis that preserve the lattice L, and this leads to

the requirement that, if w(·) is the continuum strain energy density function per unit

current volume, then w ({ei}) = w
({
e′i
})

if e1, e2, e3 and e′1, e
′
2, e
′
3 are different bases

of the lattice L,
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– we discuss this type of issue for defective crystals (of a certain class), having decided

that the appropriate generalization of the perfect lattices is a set of points G`.

We will require that w ({ei} , S) = w
({
e′i
}
, S′
)

in the case that ({ei} , S) and({
e′i
}
, S′
)

generate the same set of points G`. So, having recalled from Cermelli

and Parry [5], Parry [12], [13] how to determine this set, the paper will be concerned

with deriving the set of all geometrical quantities
({
e′i
}
, S′
)

which lead to a given

G`. This will end with a generalization, to crystals with defects, of the well known

fact that {ei} and
{
e′i
}

are bases of the same lattice L if and only if ei = γije
′
j

where γij are the integer components of a matrix γ ∈ GL3(Z).

We shall be concerned, also, with a generalization of the following result for a

perfect crystal: let C be a symmetric matrix with entries ei · ej , i, j = 1, 2, 3, then a

frame indifferent strain energy function has the symmetry w(C) = w(γCγT ), where

γT is the transpose of γ. Pitteri [17] has discussed the distribution of the points γCγT

in the space of strictly positive definite symmetric matrices by showing that :

(i) the set P (C) of matrices γ ∈ GL3(Z) such that γCγT = C is finite;

(ii) if C0 is prescribed, then there is a neighbourhood N(C0) of C0 such that if C ∈
N(C0) then γCγT ∈ N(C0) if and only if γ ∈ P (C0).

This result allows one to confine attention to a finite set of symmetries of the strain

energy function, if one is concerned only with small but finite changes in the crystal

configuration that is specified by C0 – we shall provide a similar result for crystals with

defects (in a given class).

The context of the paper is a continuum model of defective crystals proposed by

Davini [6]. In that model the geometrical structure of the defective crystalline contin-

uum is given by the prescription of three smooth linearly independent lattice vector

fields `1(·), `2(·), `3(·), defined at all points of a region Ω (in this paper we shall take

Ω ≡ R3 throughout). These lattice vector fields have duals d1(·),d2(·),d3(·), so that

da(x) · `b(x) = δab, a, b = 1, 2, 3, (δab) the Krönecker delta, x ∈ R3, and the corre-

sponding dislocation density tensor (ddt) S is defined by

S = (Sab) =
∇∧ da · db
d1 · d2 ∧ d3

, a, b = 1, 2, 3. (1)

The ddt, S, is related to the Lie bracket of pairs of lattice vector fields, Parry and

S̆ilhavý [11], and if S 6= 0 the vector fields are not commutative.

Note that in a perfect crystal there is a natural concept of the ‘neighbour’ of a

given point: both x+ ea and x− ea may be called neighbours of a given point x ∈ L
relative to the vector field `a(·) defined by `a(p) = ea, p ∈ R3. Said differently, if

x(t) is the solution of ẋ = `a (x(t)), where the dot represents differentiation with re-

spect to t ∈ R, then y is called a neighbour of x (relative to the vector field `a(·)) if

either (x(0) = x and x(1) = y) or (x(0) = y and x(1) = x). The lattice L is the set

of points which consists of the origin, the neighbours of the origin (relative to each of

the vector fields `1(·), `2(·), `3(·)), the neighbours of those neighbours, and so forth.

The ‘neighbour’ idea extends to arbitrary vector fields `a(·), a = 1, 2, 3, in the obvious

way, irrespective of whether or not the ddt is zero, and the sets of points G` that we

will adopt as generalizations of the perfect lattices will be precisely those sets of points

which consist of the origin, its neighbours, the neighbours of those neighbours, etc.,

relative to prescribed lattice vector fields `1(·), `2(·), `3(·).
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One aim of the paper is to discuss properties of energy functions of the form

w ({ei} , S) by associating a structure (i.e. a set of points in R3) G` with the pre-

scribed values of the geometrical variables {ei} , S. In constructing G`, then, one has

only the single prescribed value of S (so far as the distribution of values of S(·) defined

by (1) is concerned). To proceed, we assume that S(·) (defined by (1)) is constant in

R3, with value equal to that prescribed as the second argument of w. (This would not

be an appropriate assumption if w were given to depend on gradients of S also). Since

S involves derivatives of da(·) (or `a(·)), one cannot make analogous assumptions re-

garding `a(·), if S 6= 0. It is a main result in Lie theory (phrased rather differently to

the following), that if S(·) is constant, then the neighbours of the origin are elements of

a Lie group, and the subgroup of that Lie group which is generated by the neighbours

of the origin is the set G` which consists of the origin, its neighbours, the neighbours

of those neighbours, and so on. These facts are recalled in more detail in Parry [12],

[13], and recalled briefly in section 2.1. One has also that:

(iii) Once it is assumed that S(·) is constant, there is defined a Lie group composition

function ψ(·, ·) : R3 × R3 → R3 such that

` (ψ (x,y)) = ∇1ψ (x,y) `a(x), a = 1, 2, 3. (2)

When (2) holds, `a(·) is called a right invariant field with respect to the group

multiplication function ψ(·, ·). Putting u(x) ≡ ψ(x,y) in (2), that equation can

be rewritten as

`a (u(x)) = ∇u(x)`a(x), a = 1, 2, 3, (3)

which expresses an (elastic) self–similarity of the geometrical crystal configuration

defined by the lattice vector fields. (In the case S = 0, the elastic deformation u(·)
can be chosen to be a translation, and the fields become translation invariant);

(iv) It is shown in Davini [6] that S is an elastic invariant, which leads to a certain

arbitrariness in the choice of the corresponding Lie group (e.g. if S = 0, then da(·)
may be any fields of the form da(x) = ∇ψa(x), for potentials ψ1, ψ2, ψ3 such that

∇ψ1∧∇ψ2 ·∇ψ3 6= 0. A certain elastic deformation of the fields ‘straightens’ them

out to da(·) ≡ ea). It is shown in Mal’cev [10], Parry [14], that this freedom allows

one to choose the Lie group, in a canonical way, so that the integral curves through

the origin of the lattice vector fields are straight lines (even when S 6= 0);

(v) The structures G` that are generated when the Lie group is chosen in this canon-

ical way are generally not discrete sets of points, but it is shown in Mal’cev [10],

Thurston [18], Cermelli and Parry [5] that one can provide sufficient conditions on

S in order that these sets of points are discrete. (These are rationality conditions

on a form of S);

(vi) Mal’cev [10] provides a canonical form for the discrete set of points G`, and shows

that the automorphisms of G` (which are ‘symmetries’ of G`) extend to automor-

phisms of the ambient Lie group;

(vii) Adopting the rationality conditions above, Cermelli and Parry [5] have investigated

the nature of the structures G`, and shown that they are multilattices in the sense

of Ericksen [7] and Pitteri and Zanzotto [17].

The plan of the paper is as follows. In the next section we recall basic definitions

and facts regarding Lie groups and algebras which will be useful later. These facts

give information about G` as discrete subgroups of certain Lie groups – we generalize

the relation e′i = γijej (which connects bases of a perfect lattice) to connect different



4

(multiplicative) generators of the discrete subgroups G` via some linear transformation.

The canonical choice of Lie groups helps here because it ensures that the one parameter

subgroups of the canonical group are straight lines through the origin. To get at this

connection, we also introduce the translation subgroup T` of G` – this is the set of

vectors t ∈ R3 such that g+ t ∈ G` if g ∈ G`. T` has the structure of a perfect lattice,

and one can introduce the linear transformations which map to T` to itself as a step on

the way to describing the mappings from one set of (multiplicative) generators of G`
to another. We also account for different descriptions of the cosets G`/T` (represented

by the ‘shift’ vectors in this particular example of a multilattice, in Ericksen’s [7] and

Pitteri and Zanzotto’s [17] terminology).

We give, in Theorem 7, necessary and sufficient conditions that different generators{
e′i
}
, {ei} give the same structure G`, within the given canonical Lie group. It turns

out that this canonical group is parameterized by an integer k (which is related to

the ddt, S), so we ask if the set of points corresponding to G` can be the same in

different canonical groups (corresponding to different values of k, different values of

S). We accept that w
({
e′a
}
, S′
)

= w ({ea} , S) whenever the set of points generated

by
{
e′a
}
, S′ is the same as the set of points generated by {ea} , S (irrespective of the

group structure), and calculate
({
e′a
}
, S′
)

in terms of ({ea} , S). Finally we discuss

whether or not there is a result analogous to that of Pitteri [16], in this case, to

facilitate the analysis of small but finite changes of geometrical configuration in this

class of discrete defective crystals.

2 Definitions and preliminary results

Here we recall relevant definitions and facts to do with Lie groups and Lie algebras,

and make a particular choice of Lie group (given the value of the elastic invariant

dislocation density tensor S). The discrete structures with which we shall be concerned

are discrete subgroups of the chosen ‘canonical’ group J , and we prove a few preliminary

results regarding the translation group associated with such a discrete subgroup in

order to facilitate the discussion of symmetries of the subgroup in terms of linear

transformations of R3 to itself, in the next section.

2.1 Definitions

A Lie group G is a group with the structure of a manifold where the group multipli-

cation function ψ : G×G→ G is smooth. Group multiplication of elements x,y ∈ G
will be denoted here by xy ≡ ψ(x,y). It will be sufficient for our purposes to iden-

tify elements of the group with points of R3, so that one may associate coordinates

x1, x2, x3 ∈ R with a group element x = xiei, by introducing a basis e1, e2, e3 of R3.

Note that summation convention operates throughout, except when a summation is

explicit. The group identity will be 0 ∈ R3, and so

0x = x0 = x, (xy)z = x(yz), xx−1 = x−1x = 0, (4)

for all x,y,z ∈ G, and where the inverse element x−1 of x exists for all x ∈ G.
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The structure constants are defined to be the quantities

Cijk =
∂2ψi
∂xj∂yk

(0,0)− ∂2ψi
∂xk∂yj

(0,0), (5)

where ψ(x,y) = ψi(x,y)ei, and the Lie bracket operation [·, ·] : R3 × R3 → R3 is

defined by

[x,y] = Cijkxjykei, x,y ∈ R3. (6)

Here, the vector space R3 and the operation [·, ·] make up the Lie algebra which cor-

responds to the group G. Note that

[ei, ej ] = Ckijek. (7)

Suppose that lattice vector fields `a(·), a = 1, 2, 3, have duals da(·), a = 1, 2, 3, and

define the dislocation density tensor S = (Sab) by

Sab(x) =
∇∧ da(x) · db(x)

d1(x) · d2(x) ∧ d3(x)
. (8)

Then if Sab(·) is constant for each a, b = 1, 2, 3, there exists a Lie group G such that

(Sab) is related to the structure constants of G with respect to e1 ≡ `1(0), e2 ≡
`2(0), e3 ≡ `3(0) as basis via

Ckij = εrijSkr. (9)

It follows, when S = (Sab(·)) is constant, that the lattice vector fields `a(·), a = 1, 2, 3,

are right invariant with respect to the composition function ψ, in the sense that

`a (ψ(x,y)) = ∇1ψ(x,y)`a(x), a = 1, 2, 3, (10)

where

∇1ψ(x,y) ≡ ∂ψ

∂x
(x,y).

This is a self similarity property of lattice vector fields with constant S (a generalization

of the translational invariance of lattice vector fields when S = 0,ψ(x,y) ≡ x+ y). If

λ(·) is any right invariant field, satisfying

λ (ψ(x,y)) = ∇1ψ(x,y)λ(x), (11)

then

λ (x) = ∇1ψ(0,x)λ(0), (12)

so that the field λ(·) is determined by its value at the origin (once ψ is given). The

integral curve through x0, {x(t); t ∈ R}, of the right invariant field λ(·) is defined to

be the solution of
dx

dt
= λ (x(t)) , x(0) = x0, t ∈ R. (13)

Integral curves through the origin are one parameter subgroups of G, that is, the

solutions of (13) satisfy x(t)x(s) = x(t + s), s, t ∈ R. The exponential mapping

exp(tλ) : R3 → R3, t ∈ R, λ ∈ R3, is defined by constructing the right invariant field

λ(·) from (12) and (13) by putting λ(0) = λ, setting

exp(tλ)(x0) = x(t), (14)
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and noting that exp(tλ) = exp(t′λ′), if tλ = t′λ′. Group elements e(tλ) are defined by

e(tλ) = exp(tλ)(0), (15)

and it is a fact that

ψ(e(tλ),x) ≡ e(tλ)x = exp(tλ)(x). (16)

This, (16), is an important result which relates group multiplication to flow along the

right invariant field. Let x0 ∈ G be given, and say that y is a neighbour of x0 if

there is an index a ∈ {1, 2, 3} such that either (ẋ = `a(x),x(0) = x0,x(1) = y) or

(ẋ = `a(x),x(0) = y,x(1) = x0). Then, from (16), the subgroup G` of G that is gen-

erated by the three elements e(`1), e(`2), e(`3), where `1 = `1(0), etc., is the set which

consists of the origin, the neighbours of the origin, the neighbours of those neighbours,

and so on.

An automorphism of the Lie algebra determined by the Lie bracket [·, ·] is here an

invertible linear transformation L : R3 → R3 such that [Lx, Ly] = L[x,y], x,y ∈ R3

and the corresponding structure constants satisfy CijkLjpLkq = LirCrpq. An au-

tomorphism of the Lie group G is an invertible mapping φ : G → G such that

φ(x)φ(y) = φ(xy). If L is a Lie algebra automorphism, then there exists a Lie group

automorphism φ such that L = ∇φ(0), and vice versa. Moreover,

φ(e(λ)) = e(∇φ(0)λ). (17)

According to Thurston [18], if the subgroup G` of G is to be discrete (that is, if

the elements of G` are to be isolated, as points of R3) in the case that the generators

e(`1), e(`2), e(`3) of G` are sufficiently small, then G must be a nilpotent group and

this implies, in this case, that the structure constants can be put in the form

Ckij = εijpλνpνk, λ ∈ Q, νr ∈ Z, r = 1, 2, 3, (18)

where ν1, ν2, ν3 are relatively prime integers, Parry [12], Cermelli and Parry [5]. It

follows that

[x,y] = λ
(
εkijxiyjνk

)
(νrer), [x, [y,z]] = 0, x,y,z ∈ R3. (19)

We shall assume henceforward that the structure constants are such that (18) holds,

for some choice of the rational number λ, some choice of the relatively prime integers

ν1, ν2, ν3.

Now we recall the particular choice of the Lie group (equivalently, choice of compo-

sition function ψ) that was made in [10], compatible with the given structure constants

(equivalently, Lie bracket). Let x,y ∈ R3, then according to the Campbell Baker Haus-

dorff theorem, there exists a function c = c(x,y) such that

e(c) = e(x)e(y). (20)

It is a fact that the function c has the properties required to be a Lie group composition

function, and in the case that (18) holds we have c ≡ x+y+ 1
2 [x,y]. With Lie bracket

given by (19), we choose

ψ(x,y) = x+ y + 1
2 [x,y] (21)

and call the corresponding G the canonical Lie group J associated with the Lie bracket

(19), cf. Mal’cev [10]. This choice of composition function gives that;
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(i) the one-parameter subgroups of J are straight lines through the origin,

(ii) e(x) ≡ exp(x)(0) = x,

(iii) from (17), φ(x) = ∇φ(0)x.

According to the second of these facts, elements of the group J may be identified with

elements of the Lie algebra (here, R3). The third fact asserts that the automorphisms

of J can be written as linear transformations of R3 to itself. (From the point of view

of continuum mechanics, this will allow us to interpret some symmetries of various

structures as ‘homogeneous elastic deformations’).

2.2 The translation group T`

The translation group T` of the discrete subgroup G` ⊂ J is defined by

T` = {t ∈ J ; if g ∈ G`, g + t ∈ G`} . (22)

Note that, since 0 ∈ G`, T` ⊆ G`. Let Z(G`) be the centre of G`, so Z(G`) := {x ∈ G` :

if y ∈ G`, (x,y) = 0}, where (x,y) := x−1y−1xy, x,y ∈ G`.According to Cermelli

and Parry [5]

t ∈ T` if and only if 1
2 [t, g] ∈ Z(G`) for all g ∈ G`. (23)

It follows from this and Hall’s identities [9] (see also (28) below) that T` is a normal

subgroup of G`. Also, T` is an additive subgroup of R3, and Z(G`) ⊆ T`.

Proposition 1 If g ∈ G`, then g2 = 2g ∈ T`.

Proof Let G′` be the commutator subgroup of G`, so G′` is generated by all elements

of the form (x,y), x,y ∈ G`. By Hall’s identities, if g ∈ G`, 1
2 [g2,x] = [g,x] ∈ G′` ⊆

Z(G`) for all x ∈ G`. So the result follows by (23). �
If x1,x2 . . .xp ∈ R3, p an integer, let

〈x1,x2, . . .xp〉 :=

{
x ∈ R3; x =

p∑
i=1

nixi, ni ∈ Z, i = 1, 2 . . . p

}
, (24)

denote the integer linear span of the vectors x1,x2 . . .xp. Note that, since T` is a

discrete additive subgroup of R3, it equals the integer linear span of a finite number of

elements of the vector space R3, Bourbaki [3].

Proposition 2

(i) If α ∈ G`, then α+ T` = αT`.

(ii) Let T` = 〈x1,x2 . . .xp〉 and suppose that one of x1,x2 . . .xp is a generator of

Z(G`). Then each element of T` is expressible as a product of the elements x1,x2 . . .

xp ∈ G` and their inverses.

Proof

(i) αT` ⊆ α+ T` because, if t ∈ T`, then αt = α+ t+ 1
2 [α, t] ≡ α+ s, where s ∈ T`

because s = t + 1
2 [α, t], t ∈ T` and 1

2 [α, t] ∈ Z(G`) ⊆ T` by (23). The reverse

inclusion is similar.
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(ii) Let t, t′ ∈ T`. Since tt′ = t + t′ + 1
2 [t, t′] and 1

2 [t, t′] ∈ Z(G`) by (23), it follows

that

t+ t′ = tt′
{

1
2 [t, t′]

}−1
, (25)

and the result follows by induction. �

Next we record some results from Cermelli and Parry [5], for later convenience. Recall

that Z(G`) is the centre of G`, G
′
` is the commutator subgroup. Then in the case

in hand G′` ⊆ Z(G`) and Z(G`) has a single generator. The index of G′` in Z(G`) is

denoted k (so, if s ∈ G` generates Z(G`), then sk generates G′`).

Theorem 3 Let J be the Lie group with composition function (21), where [x,y] is

given by (19) with λ = p/q ∈ Q, where p, q ∈ Z have no common factors, and ν1, ν2, ν3

are relatively prime. Define ν := ν1ν2ν3. Let G` be the discrete subgroup of J generated

by the three elements e(`1), e(`2), e(`3) (so e(`1) = `1(0), etc., by the remark following

(16)). Then:

(i) Z(G`) is generated by λνr`r(0)/k = λν/k if we put er ≡ `r(0), ν ≡ νrer;

(ii) G′` is generated by λν;

(iii) (a) k = p if ν is even, or if (ν is odd and p ∈ 4Z),

(b) k = 1
2p if ν is odd and p ∈ 2Z, p 6∈ 4Z,

(c) k = 2p if ν is odd and p 6∈ 2Z;

(iv) If k is even, T` = G`, and T` consists of (all) integer linear combinations of

e1, e2, e3, λν/k;

(v) If k is odd, T` consists of (all) integer linear combinations of 2e1, 2e2, 2e3, λν/k.

G`/T` has four elements which may be written as T`,αT`,βT`,αβT`, for some

α,β ∈ G`.

Proof (i) and (ii) are Proposition 2, [5]. (iii) is Proposition 3, [5]. (iv) comes from

remarks following (89), [5]. The first sentence of (v) is Proposition 6, [5]. Regarding

the second sentence of (v), let α = en1
1 e

n2
2 e

n3
3 , β = e

n′1
1 e

n′2
2 e

n′3
3 , modulo G′` (putting

e`1 = `1(0) ≡ e1, etc.). Then according to (98), [5], α and β are equivalent modulo T`
if and only if na−n′a = νa mod 2, a = 1, 2, 3. So if T`,αT` and βT` are distinct cosets

in G`, then each of (na = νa mod 2), (n′a = νa mod 2), (na − n′a = νa mod 2) is

false for some choice of a = 1, 2, 3. Since αβ = e
n1+n′1
1 e

n2+n′2
2 e

n3+n′3
3 , modulo G′`, it

follows that αβT` is distinct from each of T`,αT`,βT` (since, for example, it is false

that na + n′a = νa mod 2, a = 1, 2, 3, so αβT` 6= T`). It is shown in [5] that G`/T`
has four elements. �

2.3 Canonical coordinates for G`

G` is generated by three elements e(`1), e(`2), e(`3). Thus if g ∈ G`, g is expressible

as a product of the three generators and their inverses. According to Mal’cev [10], in

a nilpotent group (in particular, in a three dimensional nilpotent group, where the

structure constants have the form (18)) one may choose the three generators in such a

way that the Lie bracket has a particular simple form: there are generators of G` ⊂ J
and corresponding Lie algebra elements c1, c2, c3 ∈ R3 such that for some integer k,

[c1, c2] = kc3, [c1, c3] = [c2, c3] = 0, k ∈ Z. (26)
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Recalling that group and algebra elements may be identified in J , Mal’cev shows further

that any g ∈ G` ⊂ J may be written in the form

g = cα1 c
β
2c
γ
3 , α, β, γ ∈ Z. (27)

(Note that this relation (27) is a generalization of the expression of a point x of a

perfect lattice with basis e1, e2, e3 as x = αe1 + βe2 + γe3, α, β, γ ∈ Z).

Let G′` be the commutator subgroup of G` and recall the following identities, due

to Hall [9],

(x,yz) = (x,z)(x,y) ((x,y),z) , (xy,z) = (x,z) ((x,z),y) (y,z). (28)

In the nilpotent case, one has ((x,y),z) = 0 for all x,y,z ∈ G`, so that (x,yz) =

(x,z)(x,y), (xy,z) = (x,z)(y,z). It follows that if x = cn1
1 c

n2
2 c

n3
3 , y = cm1

1 cm2
2 cm3

3
for integers ni,mi, i = 1, 2, 3, then (x,y) is a product of terms of the form (ci, cj).

Also, note that, for x,y ∈ J , with x−1 = −x, etc.,

(x,y) =
(
−x− y + 1

2 [x,y]
) (
x+ y + 1

2 [x,y]
)

= [x,y], (29)

using properties of [·, ·] given above. In particular, (26) may be rewritten as

(c1, c2) = ck3 , (c1, c3) = (c2, c3) = 0, (30)

and it follows that G′` is generated by ck3 .

Also, let Z(G`) be the centre of G`. If x = cα1 c
β
2c
γ
3 , then (x, c1) = (cβ2 , c1) =

(c2, c1)β = c−βk3 , and (x1, c2) = cαk3 , so if x ∈ Z(G`), then x = cγ3 for some integer

γ. Moreover (cγ3 ,y) = 0 for all γ ∈ Z, so Z(G`) is generated by c3 (this is consistent

with Theorem 3).

The integer k is the index of the (normal) subgroup G′` in Z(G`), and this integer

will figure prominently in what follows. Note also that Mal’cev [10] shows that every

automorphism of G` extends uniquely to an automorphism of J . Given fact (iii) at the

end of section 2.1, this implies that the automorphisms of G` ⊂ J are (restrictions of)

linear transformations of R3 to itself.

3 Generators of Gc

Here we presume that a canonical basis c1, c2, c3 of a discrete subgroup Gc ⊂ J is

given, and find necessary and sufficient conditions that elements e1, e2, e3 ∈ Gc also

generate Gc.

3.1 Canonical basis

Let J = (R3, ·) be the canonical nilpotent Lie group with composition function (mul-

tiplication of group elements) defined by

xy = x+ y + 1
2 [x,y], x,y ∈ R3. (31)
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Now let c1, c2, c3 be a canonical basis of some discrete group Gc ⊂ J . Then there

exists an integer kc, which is the index of G′c ≡ [Gc, Gc] in Z(Gc), with the property

that

[c1, c2] = kcc3, [c1, c3] = [c2, c3] = 0. (32)

With respect to that particular basis, writing x = xici, y = yici, one has

[x,y] = xiyj εijpkcδp3(δr3cr), (33)

a particular form of equation (19) above.

Let Tc be the translational group corresponding to Gc. According to remarks

in section 2.3, G′c is generated by ckc
3 , the index of G′c in Z(Gc) is kc, and Z(Gc) is

generated by c3. (These facts are evident from (32), directly). From Cermelli and Parry

[5], or Theorem 3 above, we have that

Tc = 〈c1, c2, c3〉, kc even

= 〈2c1, 2c2, c3〉, kc odd .
(34)

3.2 Conditions necessary and sufficient that e1, e2, e3 ∈ Gc generate Gc

In this section we find the set of all generators of the given discrete group Gc. Let

e1, e2, e3 ∈ Gc and consider to begin with the subgroup of Gc which consists of all

products of the elements e1, e2, e3 and their inverses, denoted Ge. We shall assume

that e1, e2, e3 provide a basis of R3.

Proposition 4 With respect to the basis vectors e1, e2, e3, the composition function

xy = x+ y + 1
2 [x,y] with Lie bracket given by (33) has the form

xy = x+ y +
θkc
2Γ

εijpxiyjνp(νrer) (35)

for some integers Γ, νi, i = 1, 2, 3, where θ = 1 if kc is even and θ = 2 if kc is odd.

Also [ei, ej ] = θkc
Γ εijpνp(νrer).

Proof

(i) Suppose that kc is even. Then according to Cermelli and Parry [5], Gc = Tc =

〈c1, c2, c3〉. Since ei ∈ Gc, i = 1, 2, 3, there exists a matrix γ ≡ (γij) of integers,

with determinant Γ := det(γ) such that

ei = γijcj . (36)

So [ei, ej ] = γipγjq[cp, cq] = εpq3γipγjqkcc3. Define, and observe that,

p`k := ± 1
2εpq`εijkγipγjq, p`k ∈ Z, `, k = 1, 2, 3. (37)

Then

p`kγkm = ± 1
2εpq`εpqmΓ = ±Γδ`m, γ−1 = ±

(p`k
Γ

)
, (38)

and so

cj = ± 1
Γ pjiei, Γ, pij ∈ Z, i, j = 1, 2, 3. (39)
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Thus,

[e1, e2] = 1
2εij3[ei, ej ] = 1

2εij3εpq3γipγjqkcc3

= ±p33kcc3 = p33
kc
Γ (p3iei). (40)

Similarly one finds [e2, e3] = ±p31kcc3, [e3, e1] = ±p32kcc3.

Define νi := p3i, so νi ∈ Z, i = 1, 2, 3. Then

[x,y] = xiyj [ei, ej ] = xiyjεijpνp
kc
Γ (νrer), (41)

noting that [ei, ej ] = εijpνp
kc
Γ (νrer). This proves the result in the case that kc is

even.

(ii) Suppose that kc is odd. From Cermelli and Parry [5], Tc = 〈2c1, 2c2, c3〉 and Tc is

a normal subgroup of Gc. Note that if g ∈ Gc, then g2 ∈ Tc, from proposition 1

in section 2.2. Hence, since ei ∈ Gc, i = 1, 2, 3, there exists a matrix γ = (γij) of

integers, with determinant Γ := det(γ) ∈ Z, such that

2ei = γijc
′
j (42)

where one defines c′1 = 2c1, c
′
2 = 2c2, c

′
3 = c3. Note that [c′1, c

′
2] = 4kcc3, so

[c′p, c
′
q] = 4kcεpq3c3. So from (42)

[ei, ej ] =
1

4
γipγjq[c

′
p, c
′
q] = εpq3γipγjqkcc3, (43)

which has the form shown above (37). Define p`k as in (37) above and note that,

correspondingly, γ−1 = ± 1
Γ p. Hence c′1 = 2c1 = γ−1

1j (2ej) = ± 2
Γ p1jej , etc.. Thus

c1 = ±
p1jej
Γ

, c2 = ±
p2jej
Γ

, c3 = ±
2p3jej
Γ

. (44)

Let νi := p3i as before, then we have

[e1, e2] = ±ν3kcc3, [e2, e3] = ±ν1kcc3, [e3, e1] = ±ν2kcc3, (45)

from which the second assertion in the Proposition follows, in this case, using (44)3.

The form of the composition function follows from the expression for [ei, ej ]. �

Now since xy is expressed in terms of the basis e1, e2, e3 in proposition 4, Theorem

3 allows us to calculate G′e, Z(Ge), and the index of G′e in Z(Ge), denoted ke. First

we have:

Proposition 5 G′e = G′c if and only if the integers ν1, ν2, ν3 are relatively prime. In

that case, G′e is generated by kcc3 (as is G′c).

Proof Let νi = dν′i, i = 1, 2, 3, where d := hcf(ν1, ν2, ν3), the highest common factor

of ν1, ν2, ν3. Then the expression for xy, with respect to the basis e1, e2, e3, is

xy = x+ y +
θd2

2Γ
εijpxiyjν

′
pkc(ν

′
rer) (46)

It follows that G′e is generated by θd2kc
Γ (ν′rer) = θdkc

Γ νrer = dkcc3 (as is evident

from (45)). But G′c is generated by kcc3. Hence d = ±1 and the integers ν1, ν2, ν3 are

relatively prime, in case G′e = G′c. �
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Proposition 6 G′e = G′c and Z(Ge) = Z(Gc) if and only if the integers ν1, ν2, ν3 are

relatively prime, and also (with ν := ν1ν2ν3 and with Γ := det(γ), and γ = (γij) such

that (36) or (42) holds),

(i) if kc ∈ 4Z, hcf(kc, Γ ) = 1,

(ii) if kc ∈ 2Z, kc 6∈ 4Z, either (ν is even and hcf(kc, Γ ) = 1 or (ν is odd and

hcf(kc, Γ ) = 2),

(iii) if kc 6∈ 2Z, hcf(kc, Γ ) = 1 and either (ν, Γ are both even) or (ν, Γ are both odd).

Proof Let ke be the index of G′e in Z(Ge). One only has to find the conditions that

kc = ke, which may be found from Theorem 3.

Suppose that kc is even, so θ = 1 in (35). Comparing (35) with (19) we see that in this

case we have λ = p/q = k/Γ where hcf(p, q) = 1 and so p = k/d where d := hcf(kc, Γ ).

Then by Theorem 3:

(ai) ke = kc/d if ν is even,

(aii) ke = kc/d if ν is odd and kc/d ∈ 4Z,

(aiii) ke = kc/2d if ν is odd and kc/d ∈ 2Z, kc/d 6∈ 4Z, (this implies ke is odd).

(aiv) ke = 2kc/d if ν is odd and kc/d 6∈ 2Z.

From these observations, it follows that in the case where kc is even, kc = ke if and

only if

(bi) if ν is even, hcf(kc, Γ ) = 1,

(bii) if ν is odd, hcf(kc, Γ ) = 1, kc ∈ 4Z,

(biii) if ν is odd, hcf(kc, Γ ) = 2, kc/2 6∈ 2Z,

noting that kc 6= ke in case (aiii). Then, (bi) and (bii) give (i) in the proposition, (bi)

and (biii) give (ii) in the proposition.

Next, if kc is odd, so θ = 2 in (35), we have from Theorem 3, again with d :=

hcf(kc, Γ ) (noting that if 2kc/Γ = p/q and p, q ∈ Z have no common factors, then

p = kc/d, q = Γ/2d if Γ is even, and p = 2kc/d, q = Γ/d if Γ is odd):

(ci) if ν is even, Γ is even, ke = kc/d,

(cii) if ν is even, Γ is odd, ke = 2kc/d (this implies ke is even),

(ciii) if ν is odd, Γ is even, kc/d ∈ 4Z, ke = kc/d (this implies ke ∈ 4Z),

(civ) if ν is odd, Γ is odd, 2kc/d ∈ 4Z, ke = 2kc/d (this implies ke ∈ 4Z),

(cv) if ν is odd, Γ is even, kc/d ∈ 2Z, kc/d 6∈ 4Z, ke = kc/2d (this implies ke < kc),

(cvi) if ν is odd, Γ is odd, 2kc/d ∈ 2Z, 2kc/d 6∈ 4Z, then ke = kc/d,

(cvii) if ν is odd, Γ is even, kc/d 6∈ 2Z, ke = 2kc/d, (this implies ke is even),

(cviii) if ν is odd, Γ is odd, 2kc/d 6∈ 2Z, ke = 4kc/d (this case is empty).

Only cases (ci) and (cvi) survive, if ke = kc 6∈ 2Z, and they give statement (iii) of the

proposition.

�

Theorem 7 Gc = Ge if and only if there exist integers l0,m0, Γ , a matrix A ∈
GL3(Z) with third row ν1, ν2, ν3, such that the conditions of proposition 6 are satisfied,

and

(i) if kc is even,  1 0 −l0
0 1 −m0

0 0 ±Γ

  c1

c2

c3

 = A

e1

e2

e3

 , (47)
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(ii) if kc is odd,  1 0 −(2l0 + θ(l))

0 1 −(2m0 + θ(m))

0 0 ±Γ

  c1

c2
1
2c3

 = A

e1

e2

e3

 , (48)

where

A =

 l1 l2 l3
m1 m2 m3

ν1 ν2 ν3

 ,
θ(l) = ν1l2l3 − ν2l3l1 + ν3l1l2 mod 2

θ(m) = ν1m2m3 − ν2m3m1 + ν3m1m2 mod 2

and Γ det{ci} = det{ei}.

Proof

(i) Suppose that Gc = Ge and kc = ke is even. Then the conditions of proposition 6

hold and also Tc = Te, Tc = Gc regarding Tc as a (normal) subgroup of Gc. Thus

〈c1, c2, c3〉 =
〈
e1, e2, e3,

νiei
Γ

〉
, (49)

with c3 = ±νiei/Γ . Hence there exist integers l0, l1, l2, l3,m0,m1,m2,m3 such

that
c1 = `1e1 + `2e2 + `3e3 + `0

νiei
Γ

,

c2 = m1e1 +m2e2 +m3e3 +m0
νiei
Γ

,

±Γc3 = ν1e1 + ν2e2 + ν3e3.

(50)

If A is the matrix with rows (l1, l2, l3), (m1,m2,m3), (ν1, ν2, ν3), it follows that

(47) holds, with A an integral matrix, but as yet no information regarding detA

is known. Taking the determinant of (47), ±Γc1 ∧ c2 · c3 = detA e1 ∧ e2 · e3.

From ei = γijcj , we have det{ei} = Γ det{ci}, and comparing with (47) we get

A ∈ GL3(Z).

Conversely if (47) holds with A ∈ GL3(Z), then ei = γijcj where

γ = A−1

 1 0 −l0
0 1 −m0

0 0 ±Γ

 .

Also det γ = Γ (since Γ det{ci} = det{ei}). Since

c1 − l0c3 = liei, c2 −m0c3 = miei, ±Γc3 = νiei, (51)

we have

Te =
〈
e1, e2, e3,

νiei
Γ

〉
=
〈
l,m,ν,

ν

Γ

〉
=
〈
l,m,

ν

Γ

〉
= 〈c1, c2, c3〉 = Tc, (52)

(writing l = liei, etc.).

The conditions of proposition 6 ensure that kc = ke, so that c3 = ±νiei/Γ is a

generator of Z(Ge). Hence by proposition 2, e1, e2, e3 generate Te = Ge (multi-

plicatively), since νiei/Γ ∈ Z(Ge) implies that νiei/Γ is a product of e1, e2, e3

and their inverses. Hence, e1, e2, e3 is a (multiplicative) set of generators of Ge =

Te = Tc = Gc.
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(ii) Next suppose that Gc = Ge and kc = ke is odd. Then the conditions of the previous

proposition hold and Tc = Te. We have that

Gc = Tc ∪ c1Tc ∪ c2Tc ∪ c1c2Tc, (53)

from Cermelli and Parry [5]. Let the four cosets in Ge/Te be Te,αTe,βTe,γTe
for some α,β,γ ∈ Ge. It is necessary, then, that Tc = Te and that c1Tc, c2Tc and

c1c2Tc are the same as αTe,βTe,γTe, in some order. Note that if c1Tc, c2Tc are

some two of αTe,βTe,γTe, then c1c2Tc is the one remaining coset of those three.

Notice that Tc = Te if and only if

〈2c1, 2c2, c3〉 =

〈
2e1, 2e2, 2e3,

2νiei
Γ

〉
. (54)

Consider first the constraints on representatives 0,α,β,γ of the four distinct cosets

in Ge/Te. According to Cermelli and Parry [5] and Parry [14], all elements α ∈
Ge have the form α = el11 e

l2
2 e

l3
3 c

l0
3 , for some integers l0, l1, l2, l3 (writing c3 for

a generator of Z(Ge) = Z(Gc)). If α has this form, and correspondingly β =

em1
1 em2

2 em3
3 cm0

3 , for integers m0,m1,m2,m3, then from [5], α and β are in the

same coset if and only if

li −mi = τνi, mod 2, i = 1, 2, 3, (55)

for some integer τ . Let l̄ = 0 if l is even, l̄ = 1 if l is odd. Then (55) is equivalent to

l̄i − m̄i = τνi = τ̄ ν̄i = 0 or ν̄i, mod 2. (56)

Note that (56) is also equivalent to the condition that

rli + smi = τνi, mod 2, (57)

for some integers r, s, τ , as this also reduces to the requirement that either two of

l̄i, m̄i, ν̄i are the same (for all i = 1, 2, 3), or that any one of l̄i, m̄i, ν̄i is the sum (or

difference) of the other two, for all i = 1, 2, 3. Bearing in mind that eν11 e
ν2
2 e

ν3
3 c

ν0
3 ∈

Z(Ge) ⊂ Te, it follows that Te,αTe,βTe are different cosets, in Ge/Te, if and only

if the rows, l = (l1, l2, l3), m = (m1,m2,m3), ν = (ν1, ν2, ν3), of the matrix A are

linearly independent, mod 2.

It follows that, if Gc = Ge, then c1 ∈ αTe, c2 ∈ βTe for α,β ∈ Ge corresponding

to triples l,m such that A is an integer matrix whose rows are linearly independent

mod 2.

Since
αTe = α+ Te = el11 e

l2
2 e

l3
3 c

l0
3 + Te

= l̄1e1 + l̄2e2 + l̄3e3 + 1
2θ(̄l)c3 + Te,

(58)

where the definition of θ(¯̀) is given in the statement of the theorem, it follows that

there are integers L1, L2, L3 with the same parity as `1, `2, `3, respectively, such

that

c1 = L1e1 + L2e2 + L3e3 + 1
2θ(L)c3 + l0c3. (59)

Without loss of generality, we write l1, l2, l3 for L1, L2, L3, etc., and have:

c1 = l1e1 + l2e2 + l3e3 + 1
2θ(̄l)c3 + l0c3,

c2 = m1e1 +m2e2 +m3e3 + 1
2θ(m̄)c3 +m0c3,

±Γ2 c3 = ν1e1 + ν2e2 + ν3e3.

(60)
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This gives equation (48) in the statement of the theorem, except that we have no

information regarding detA yet. From (60), comparing with 2ei = γijc
′
j , we get

γ = A−1

 1 0 −(2l0 + θ(l))

0 1 −(2m0 + θ(m))

0 0 ±Γ

 (61)

and it follows that det γ = detA−1(±Γ ) = Γ , so detA = ±1 and A ∈ GL3(Z).

This condition is itself sufficient that the rows of A as linearly independent, mod

2 (for if one adds two to a single element of A, then detA is changed by an even

number). So the necessity of (48) is proven.

Conversely, if (48) holds, then the group elements corresponding to the rows

l,m,ν of A are in different cosets, in Ge/Te. Multiplying the first two equations

of (60), or (48), by two, one sees that (48) implies that Tc = Te (via (54)). The

first equation of (60) gives c1 ∈ αTe, so c1 is a product of α ∈ Ge with an integer

linear combination of 2e1, 2e1, 2e3, 2νiei/Γ . But 2νiei/Γ generates Z(Ge) (by the

conditions which appear in proposition 6, for they guarantee that Z(Ge) = Z(Gc),

and Z(Gc) is generated by c3 = 2νiei/Γ ), and so is a product of e1, e2, e3 and

their inverses. Hence c1 is expressible as a product of e1, e2, e3 and their inverses.

Likewise for c2. This proves that e1, e2, e3 is a (multiplicative) set of generators

for Gc. �

4 Generalization of Ericksen–Pitteri neighbourhoods

Let c1, c2, c3 be a canonical basis of a discrete subgroup Gc ⊂ J such that (30) holds

for some k ∈ Z. With respect to this basis the Lie bracket associated with this subgroup

is given by (33) and hence the corresponding structure constants are Cijk = ε3jkkδi3
and by (9) the components of the dislocation density tensor, S, with respect to this

basis are Spr = kδp3δr3.

Let e1, e2, e3 be a basis of R3 which satisfies the conditions of Theorem 7 so that

Ge = Gc where Ge is the group generated by e1, e2, e3. By Proposition 4, with respect

to the basis e1, e2, e3, the Lie bracket has the form (35) and hence the components of

the dislocation density tensor with respect to this basis are Spr = θk
Γ νpνr where the

integers k, Γ, νp, p = 1, 2, 3 satisfy the conditions of Proposition 6.

Since Gc and Ge are the same group they correspond to the same set of points in

R3 and hence if w is a strain energy function then that depends only on the positions

of these points, then

w
(
{ei}, Spr = θk

Γ νpνr
)

= w
(
{ci}, Spr = kδp3δr3

)
(62)

where the ei, i = 1, 2, 3 can be expressed in terms of the ci, i = 1, 2, 3 and vice versa

via (47) or (48) depending on the parity of k.
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Suppose now that c∗1, c
∗
2, c
∗
3 ∈ R3 is a canonical basis of another discrete subgroup

Gc∗ ⊂ J and that Gc∗ = Ge∗ where Ge∗ is generated by e∗1, e
∗
2, e
∗
3 ∈ Gc∗ . Then we

also have

w
(
{e∗i }, S

∗
pr = θ∗k∗

Γ∗ ν
∗
pν
∗
r

)
= w

(
{c∗i }, S

∗
pr = k∗δp3δr3

)
, (63)

where the integers k∗, Γ ∗, ν∗p , p = 1, 2, 3 also satisfy the conditions of Proposition 6

and the e∗i , i = 1, 2, 3 can be expressed in terms of the c∗j , j = 1, 2, 3 and vice versa via

(47) or (48) depending on the parity of k∗.

Equations (62), (63) express some global symmetries of a strain energy function

that depends only on the positions of points that correspond to the elements of a

given discrete subgroup. In what follows we shall see that a given set of points may

correspond to different subgroups Gc, Gc∗ , with k 6= k∗, so that (62) and (63) must be

supplemented by further conditions so as to reflect the fact that the energy density is

to be independent of the description of the given set of points in terms of any particular

choice of group, and any particular choice of generators within a group. However to

begin with we deal with the simplest case where Gc = Gc∗ , k = k∗ and the relevant

symmetries derive just from (62) and (63), and prove an analogue of the Ericksen–

Pitteri result (cf. (i) and (ii) in the Introduction). The remainder of the section is

devoted to the case where k 6= k∗.

4.1 k = k∗, Gc = Gc∗

Suppose that k = k∗ with {ci} = {c∗i } a canonical basis of J such that (c1, c2) =

ck3 , (c2, c3) = (c1, c3) = 0. We then have from (62) and (63), since k = k∗ and since θ

depends only on the parity of k, θ = θ∗,

w
(
{ei}, Spr = θk

Γ νpνr
)

= w
(
{e∗i }, S

∗
pr = θk

Γ∗ ν
∗
pν
∗
r

)
. (64)

Then from (47) and (48), since e1, e2, e3 and e∗1, e
∗
2, e
∗
3 are two different sets of gener-

ators of the group Ge = Gc = Gc∗ = Ge∗ , we have for k evene∗1e∗2
e∗3

 = (A∗)−1

 1 0 −l∗0
0 1 −m∗0
0 0 ±Γ ∗

  c∗1c∗2
c∗3

 = (A∗)−1

 1 0 −l∗0
0 1 −m∗0
0 0 ±Γ ∗

  c1

c2

c3



= (A∗)−1

 1 0 −l∗0
0 1 −m∗0
0 0 ±Γ ∗

 1 0 −l0
0 1 −m0

0 0 ±Γ

−1

A

︸ ︷︷ ︸
M

e1

e2

e3

 (65)

and for k odd,e∗1e∗2
e∗3

 = (A∗)−1

 1 0 −(2l∗0 + θ(l∗))
0 1 −(2m∗0 + θ(m∗))
0 0 ±Γ ∗

 c∗1
c∗2
1
2c
∗
3



= (A∗)−1

 1 0 −(2l∗0 + θ(l∗))
0 1 −(2m∗0 + θ(m∗))
0 0 ±Γ ∗

 1 0 −(2l0 + θ(l))

0 1 −(2m0 + θ(m))

0 0 ±Γ

−1

A

︸ ︷︷ ︸
M

e1

e2

e3

 ,

(66)
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where A,A∗ ∈ GL3(Z) and

det{e∗i } = Γ ∗ det{c∗i } =
Γ ∗

Γ
Γ det{ci} =

Γ ∗

Γ
det{ei}. (67)

In (65) and (66), let

e∗i ≡Mijej , i, j = 1, 2, 3. (68)

Let the third row of A be (ν1, ν2, ν3), and let the third row of A∗ be (ν∗1 , ν
∗
2 , ν
∗
3 ), with

the elements of each row consisting of relatively prime integers (as A∗, A ∈ GL3(Z)).

We have from (65)–(68),

detM =
Γ ∗

Γ
, Mij =

mij

Γ
for some mij ∈ Z, i, j = 1, 2, 3. (69)

From Theorem 7, (65)–(68), we get

Mijν
∗
i = τ

Γ ∗

Γ
νj , where τ ≡ sign (detA∗) sign (detA). (70)

Now define

H(k, Γ, {νi}) ≡
{
M ∈ GL3(Q) : {e∗i = Mijej} generates Ge

}
= {M ∈ GL3(Q) : M is as in (65), (66)} (71)

Notice that if M,M ′ ∈ H(k, Γ, {νi}), and M 6= M ′, then there exist indices i, j ∈
{1, 2, 3} such that (with M ′ = (M ′ij) ≡ (m′ij/Γ ))

|M ′ij −Mij | ≥ 1/|Γ |. (72)

Now any frame indifferent strain energy function w must satisfy w({ei}, S) =

w({Rei}, S) for any rotation R, so that w({ei}, S) = w̃(C, S) where C is the positive

definite symmetric matrix with entries Cij = ei · ej . C is the metric of the basis

e1, e2, e3 and C = ETE where E is the matrix with columns e1, e2, e3. Defining

the metric C∗ similarly, from (64) we have w̃(C, S) = w̃(C∗, S∗). Note that since

e∗i = Mijej , if E∗ is the matrix with columns e∗1, e
∗
2, e
∗
3, (E∗)T = MET and thus

C∗ = (E∗)TE∗ = MET (MET )T = METEMT = MCMT . (73)

We want to determine, in part, whether or not if (C, S) is given, the quantities

(C∗, S∗) may accumulate at (C, S). To proceed, we adapt Ball and James [2] a little

and introduce a neighbourhood Nε, ε > 0, of the point ({ei}, S) via the following

definitions:

Nε ({ei}, k, Γ, {νi}) ≡{(
{e∗i },

{
k∗

Γ ∗
ν∗i ν
∗
j

})
:
∥∥C∗ − C∥∥{ei} < ε,

∥∥∥∥ k∗Γ ∗ ν∗i ν∗j − k

Γ
νiνj

∥∥∥∥ < ε

}
,

(74)

where ‖A‖ ≥ 0 is defined by

‖A‖2 ≡ tr(ATA), (75)

and

‖A‖{ei} =
∥∥∥DADT ∥∥∥ , (76)

where E is the matrix with columns e1, e2, e3 and D ≡ E−T .
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Proposition 8 If ε is small enough, k 6= 0 and some νi 6= 0, then
(
{e∗i },

{
k∗

Γ∗ ν
∗
i ν
∗
j

})
∈ Nε ({ei}, k, Γ, {νi}) only if Γ = Γ ∗, ν∗i = ±νi for i = 1, 2, 3 (with the choice of sign

independent of the index i).

Proof

First, if ‖C∗ − C‖{ei} =
∥∥∥DC∗DT −DCDT ∥∥∥ is sufficiently small, then detDC∗DT

can be made arbitrarily close to detDCDT . Hence, as detD 6= 0 is fixed, detC∗ =

detC(detM)2 is arbitrarily close to detC, and so from (69), (Γ ∗)2 = Γ 2, since both

Γ ∗, Γ are integers.

Next, if
∥∥∥ k
Γ∗ ν

∗
i ν
∗
j − k

Γ νiνj

∥∥∥ =
∣∣∣ kΓ ∣∣∣ ∥∥ν∗i ν∗j ± νiνj∥∥ is sufficiently small (recall k = k∗

in this section), then ν∗i = ±νi, i = 1, 2, 3, with the choice of sign possibly dependent

on the index i. (For if this were not so, ν∗2i 6= ν2
i for some index i and this would

contradict the fact that
∣∣∣ kΓ ∣∣∣ ∣∣∣ν∗2i ± ν2

i

∣∣∣ ≥ ∣∣∣ kΓ ∣∣∣ is sufficiently small).

Then, if for example ν∗1 = ν1, ν
∗
2 = −ν2 with ν1ν2 6= 0, in the case Γ = Γ ∗

we get
∣∣∣ kΓ ∣∣∣ ∥∥ν∗i ν∗j − νiνj∥∥ ≥ ∣∣∣ kΓ ∣∣∣ |2ν1ν2| ≥

∣∣∣ kΓ ∣∣∣, whereas in the case Γ = −Γ ∗ one

has
∣∣∣ kΓ ∣∣∣ ∥∥ν∗i ν∗j + νiνj

∥∥ ≥ ∣∣∣ kΓ ∣∣∣ ∣∣∣2ν2
1

∣∣∣ ≥ ∣∣∣ kΓ ∣∣∣. In either case we get a contradiction, so

that ν∗i = ±νi, with sign independent of the index. Finally, with this information,∥∥∥ k
Γ∗ ν

∗
i ν
∗
j − k

Γ νiνj

∥∥∥ =
∣∣∣ kΓ ∣∣∣ ∣∣∣(sign Γ

Γ∗ − 1)
∣∣∣ ∥∥νiνj∥∥ leads to a contradiction unless Γ =

Γ ∗. This proves the proposition. �

Definition

L(k, Γ, {νi}) ≡ {M ∈ H(k, Γ, {νi}) : Γ ∗ = Γ and ν∗i = ±νi, i = 1, 2, 3}, (77)

when the sign in the expression ±νi is independent of the index i. We remark that

L(k, Γ, {νi}) is a subgroup of GL3(Q).

Proposition 9 The free substitution of Ge which takes generators {ei} to generators

{e∗i } (corresponding to e∗i = Mijej , with (Mij) the matrices that appear in (65) and

(66)) extends to an elastic deformation of J if and only if k
Γ∗ ν

∗
i ν
∗
j = k

Γ νiνj .

Proof

Let ψ : Ge → Ge be the free substitution defined by ψ(ei) = e∗i , i = 1, 2, 3, where

e∗i = Mijej in line with (65), (66). Then according to Auslander [1], Parry [12], ψ

extends to an elastic deformation (automorphism) of J if and only if the defining

relations of Ge are invariant under that substitution and its inverse, i.e., if and only if

(
ψ(ei),ψ(ej)

)
= ψ

(
εijpkνpc3

)
,
(
ψ−1(ei),ψ

−1(ej)
)

= ψ−1(εijpkνpc3), (78)

where, in (78), c3 is a product of the elements e1, e2, e3 that generates Z(Ge). Note that

ψ−1 is the substitution that maps ψ(ei) to ei, i = 1, 2, 3. Thus we have to show just

that (78) is equivalent to Γ = Γ ∗, ν∗i = ±νi (bearing in mind that 1
Γ∗ ν

∗
i ν
∗
j = 1

Γ νiνj
is equivalent to Γ = Γ ∗, ν∗i = ±νi, when {ν∗i }, {νi} are triples of relatively prime inte-

gers).
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First suppose that (78)1 holds. Then(
ψ(ei),ψ(ej)

)
= [Mipep,Mjqeq] = MipMjqεpqrkνrc3

= εij`M
−1
r` det(M)kνrc3 = εij`τν

∗
` kc3,

(79)

from (70) and (71). Since εijpkνp is an integer,

ψ(εijpkνpc3) = εijpkνpψ(c3). (80)

Since ψ is an automorphism, ψ(c3) generates Z(Ge), as does c3, so

ψ(c3) = c±1
3 = εc3, say, where ε = ±1. (81)

So from (79), (80), (81)

τν∗` = εν`. (82)

From Parry [12], following Mal’cev [10], as ψ : Ge → Ge is an automorphism, it

extends uniquely to a linear automorphism φ : J → J . In the case k even, from (39),

c3 = π
Γ νkek, where π = ±1, so

εc3 = ψ(c3) = ψ
( π
Γ
νkek

)
= φ

( π
Γ
νkek

)
=
π

Γ
νkφ(ek) =

π

Γ
νke
∗
k

=
π

Γ
νkMkjej =

πετ

Γ
ν∗kMkjej = επ

Γ ∗

Γ 2
νjej ,

(83)

via (70). Hence

εc3 ≡ ε
( π
Γ
νkek

)
= επ

Γ ∗

Γ 2
νjej , so Γ = Γ ∗. (84)

Equations (82) and (84) show that ν∗` = ±ν`, Γ ∗ = Γ .

Since ψ−1 is also an automorphism, it also extends to a (linear) automorphism of J

and so corresponds to the linear transformation M−1. One checks that (78)2 provides

no further information, in this case. The case where k is odd is similar, and we leave

it to the reader to check that if ν∗` = ±ν`, Γ ∗ = Γ , then (78) holds. �

Propositions 8 and 9, taken together, imply that the symmetries of this class of

defective crystals which are sufficiently small (in the sense of (74)) extend to elastic

deformations. In particular, if ε is sufficiently small then (cf. (74))

Nε ({ei}, k, Γ, {νi}) =
{(
{e∗i }, kΓ νiνj

)
:
∥∥C∗ − C∥∥{ei} < ε

}
. (85)

As a matter of notation, define M [Nε] for sufficiently small ε by

M [Nε] =
{(
{Mije

∗
j}, kΓ νiνj

)
: (Mij) ∈ H(k, Γ, {νi}),(

{e∗i }, kΓ νiνj
)
∈ Nε ({ei}, k, Γ, {νi})

} (86)

Now one can follow Ball and James [2], Cermelli and Mazzucco [4], Fosdick and Hertog

[8] to prove (in particular) that if ε is sufficiently small:

either M [Nε] = Nε, in which case Mijej = Qei, with Q orthogonal,

or M [Nε] ∩Nε = ∅. (87)
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For the proof of (87), it suffices to remark that Ball and James’ proof [2] of their The-

orem 2.4 applies with the replacement of (µji ) ∈ GL3(Z) by M = (Mij) = 1
Γ (mij) ∈

H(k, Γ, {νi}) – this relies on the fact that if {Mr}, r = 1, 2 . . . , is a convergent sequence

of elements of H(k, Γ{νi}), then Mr = Mr0 if r ≥ r0, for some r0 ∈ Z.

Definition Define P ({ei}, k, Γ, {νi}) by

P ({ei}, k, Γ, {νi}) ≡
{
Q ∈ O(3) : Qei = Mijej for some (Mij) ≡M ∈ L (k, Γ, {νi})

}
,

(88)

and call it the defective point group of the discrete structure defined by the parameters

({ei}, k, Γ, {νi}).

Proposition 10 If ({ei}, k, Γ, {νi}) and ({e∗i }, k, Γ, {νi}) define the same discrete

structure, then the corresponding defective point groups are identical.

Proof

The hypotheses imply that, from (65)–(70),

e∗i = Mijej , where (Mij) ≡M ∈ L(k, Γ, {νi}).

Let Q ∈ P ({ei}, k, Γ, {νi}), then Qei = γijej for some (γij) = γ ∈ L(k, Γ, {νi}). It

follows that Qe∗i = (MγM−1)ije
∗
j . Since L(k, Γ, {νi}) is a matrix group, one obtains

that Q ∈ P ({e∗i }, k, Γ, {νi}) and this leads to the result. �

4.2 k 6= k∗, Gc 6= Gc∗

Suppose now that k 6= k∗ so that the canonical bases c1, c2, c3 and c∗1, c
∗
2, c
∗
3 generate

different groupsGc andGc∗ withGc 6= Gc∗ . Suppose however that
(
{ci}, Spr = kδp3δr3

)
and

(
{c∗i }, S

∗
pr = k∗δp3δr3

)
define the same set of points so that

w
(
{ei}, Spr = θk

Γ νpνr
)

= w
(
{ci}, Spr = kδp3δr3

)
= w

(
{c∗i }, S

∗
pr = k∗δp3δr3

)
= w

(
{e∗i }, S

∗
pr = θ∗k∗

Γ∗ ν
∗
pν
∗
r

)
.

(89)

For this to occur it must be the case that k and k∗ have the same parity (so θ = θ∗) since

the structure associated with
(
{ci}, kδp3δr3

)
is a lattice for k even or a multilattice for

k odd. In either case, k and k∗ both even or both odd, the translation groups Tc and

Tc∗ , given by (34), are lattices. If these lattices are to consist of the same points of R3,

then if k and k∗ are even,  c∗1c∗2
c∗3

 = B

 c1

c2

c3

 (90)

where B ∈ GL3(Z) and if k and k∗ are odd then c∗1
c∗2
1
2c
∗
3

 = B

 c1

c2
1
2c3

 (91)
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where B ∈ GL3(Z). Then the generators e1, e2, e3 of Ge and e∗1, e
∗
2, e
∗
3 of Ge∗ are

related in the following way. If k is even thene∗1e∗2
e∗3

 = (A∗)−1

 1 0 −l∗0
0 1 −m∗0
0 0 ±Γ ∗

B

 1 0 −l0
0 1 −m0

0 0 ±Γ

−1

A

︸ ︷︷ ︸
M

e1

e2

e3

 (92)

or for k odd,e∗1e∗2
e∗3

 = (A∗)−1

 1 0 −(2l∗0 + θ(l∗))
0 1 −(2m∗0 + θ(m∗))
0 0 ±Γ ∗

B

 1 0 −(2l0 + θ(l))

0 1 −(2m0 + θ(m))

0 0 ±Γ

−1

A

︸ ︷︷ ︸
M

e1

e2

e3

 ,

(93)

where A,A∗, B ∈ GL3(Z).

Then (89) is to hold when {e∗i } and {ei} are related by (92), in the case k and

k∗ even, since (90) is sufficient that the points of Ge = Te = Tc coincide with those

of Ge∗ = Te∗ = Tc∗ . However, (91) is not evidently sufficient to guarantee that the

points of Ge coincide with those of Ge∗ in the case where {e∗i } and {ei} are related

by (93) and k and k∗ odd, since one also requires that the cosets of Te in Gc coincide

with those of Tc∗ in Gc∗ (as sets of points in R3).

Proposition 11 In the case that k and k∗ are both odd with k 6= k∗, the sets of points

determined by the groups Gc, Gc∗ coincide provided that (91) holds and that certain

conditions on the parity of the elements of B are satisfied.

Proof

Relation (91) gives that the points of Tc and Tc∗ coincide. Recall from (53) that

the cosets of Gc are Tc, c1Tc,c2Tc, c1c2Tc and similarly for Gc∗ . So we have to

find the conditions that {c1, c2, c1c2} are equivalent to {c∗1, c∗2, c∗1c∗2} mod Tc (recall

Proposition 2(i)). So, as points of R3, c∗1 = c`11 c
`2
2 c

`3
3 = `1c1 + `2c2 +(2`3 +k`1`2) 1

2c3,

for some integers `1, `2, `3. Note that c`11 c
`2
2 c

`3
3 = cL1

1 cL2
2 cL3

3 , mod Tc = 〈2c1, 2c2, c3〉
provided that ¯̀

1 = L̄1, ¯̀
2 = L̄2, where ¯̀= 1 if ` is odd, ¯̀= 0 if ` is even. Hence c∗1 =

c
¯̀1
1 c

¯̀2
2 ,c∗2 = cm̄1

1 cm̄2
2 , mod Tc, for some integers m1,m2. So (¯̀

1, ¯̀
2), (m̄1, m̄2) must be

some two of (1, 0), (0, 1), (1, 1), and so c∗1 = ¯̀
1c1 + ¯̀

2c2 + k ¯̀
1
¯̀
2( 1

2c3) = ¯̀
1c1 + ¯̀

2c2 +
¯̀
1
¯̀
2( 1

2c3), mod Tc, as k is odd, and similarly for c∗2. Since Tc = 〈2c1, 2c2, 2( 1
2c3)〉,

these relations are constraints on the parity of elements in the first two rows of B in

(91). Next c∗1c
∗
2 = c∗1+c∗2+ 1

2k
∗c∗3 = c∗1+c∗2+ 1

2c
∗
3, mod Tc∗ , as k∗ is odd, and there is a

similar expression for c1c2. Since the elements of {c∗1, c∗2, c∗1c∗2} are just {c1, c2, c1c2},
mod Tc, it follows that

1
2c
∗
3 = c∗1c

∗
2 − c∗1 − c∗2 = c∗1c

∗
2 + c∗1 + c∗2 =

c1c2 + c1 + c2 = c1c2 − c1 − c2 = 1
2c3, mod Tc∗ = Tc.

Hence 1
2c
∗
3 = 1

2c3, mod Tc, and this is a constraint on the parity of elements in the

third row of B in (91). �
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Finally, an argument which is in all essential details identical to that presented

above in the case k = k∗ leads to an analysis of the Ericksen–Pitteri result (cf.(87)) in

the case k 6= k∗. (For in the proof of the analogue of Proposition 8, one may note first

of all that Γ ∗ = Γ is obtained as before. The second paragraph of the proof may be

replaced by the following:

‘Next, since
∥∥∥k∗Γ ν∗i ν∗j − k

Γ νiνj

∥∥∥ ≥ 1
|Γ | if k∗ν∗i ν

∗
j 6= kνiνj for any choice of indices i, j,

it follows that if
∥∥∥k∗Γ ν∗i ν∗j − k

Γ νiνj

∥∥∥ is sufficiently small, then k∗ = k and ν∗i = ±νi,
i = 1, 2, 3, with the choice of sign possibly dependent on the index i.’ The proof of

Proposition 8 then proceeds as before, with the additional information that k = k∗.
The calculations that follow Proposition 8 are taken across effectively unchanged (in

this case (µji ) is replaced by M from (92), (93)).

5 Summary

In the given class of defective crystals, when the dislocation density tensor S has

a given form, we have calculated the symmetries of energy density functions based

on the assumptions that: (i) such functions depend only on the location of points in

R3 which correspond to a certain discrete structure Ge, and (ii) such functions are

frame indifferent. The structures Ge are determined by S and a choice of three vectors

e1, e2, e3 ∈ R3, and we have accounted for the fact that different choices of ({ei}, S)

may lead to the same set of points in R3.

The symmetries that are sufficiently small (in the sense of (74)) preserve the dis-

location density tensor and extend uniquely to elastic deformations of a continuum

in which the points of the crystal may be embedded. Indeed those ‘elastic’ (discrete)

symmetries are conjugate to rotations which map the discrete structure to itself. The

‘defective point group’ which consists of those rotations that are conjugate to the elas-

tic symmetries is an invariant of the discrete structures, once the dislocation density

is chosen (cf. Proposition 10).
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