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Abstract 

Mixed pixels are one of the largest sources of error and uncertainty in mapping from remotely sensed 

data. A Hopfield neural network based approach to super-resolution mapping has become popular for 

mapping at a sub-pixel scale, partly because it seeks to maintain the class proportional information 

indicated by a soft classification analysis. The use of the approach is, however, handicapped by a lack 

of guidance on the parameter setting values and of the impacts of different landscape patterns on the 

analysis. Here, the sensitivity of the Hopfield neural network for super-resolution mapping is 

investigated with a focus on the effect of different landscape types and parameter settings using 

simulated and real data sets. It is shown that the method‟s suitability varies between landscapes, being 

most suited to situations in which landscape patches are large (>1 pixel). Additionally, for such 

landscapes the widely used scenario in which the weighting parameters are set at equal values is 

successful but the approach is less effective for the mapping of small isolated land cover patches. 

With the latter, it is shown to be important to weight the area constraint highly and undertake a large 

number of iterations. Critically, it is shown that equal weighted parameter settings and imbalanced 

settings to emphasise the area constraint are most suitable for landscapes comprising large and small 

patches respectively. Moreover, the positive attributes of these two sets of parameter settings may be 

combined to yield an enhanced mapping method for landscapes that comprise a mixture of patch 

sizes.  

 

 



I. Introduction 

Mixed pixels are one of the major sources of error and uncertainty in the mapping of land cover from 

remotely sensed data [1]. Given that a mixed pixel must by definition represent an area containing two 

or more land cover classes, such pixels cannot be appropriately represented by conventional „hard‟ 

image classifications used widely to map land cover [2-4]. Unmixing and soft classification methods 

that allow for the multiple and partial class membership properties of mixed pixels have proved 

popular for mapping from remotely sensed imagery. They have been used in a range of studies, 

including those representing gradations between continuous classes [5,6] and those estimating the 

class composition of pixels [7,8] as well as forming the basis of important land cover data products 

such as vegetation continuous fields [9,10]. Although representing a major advancement on the 

conventional hard classification, the output of a soft classifier and its interpretation can be 

problematic. The output is, for example, typically a set of fraction images, each depicting the 

proportional cover of one of the classes in the area represented by the pixel which is harder to 

interpret than the standard, single layer, thematic map derived by a hard classification.  Additionally, 

the soft classification only indicates the class composition of image pixels, it does not indicate the 

geographical distribution of the classes in the area represented by the pixels [11].  One means to 

address these concerns and produce a single layer land cover map which shows the spatial distribution 

of the classes at a finer resolution than the image is to apply a super resolution mapping technique to 

the output of a soft classification. 

 

A variety of super resolution mapping methods has been used in remote sensing [11-18].One that has 

been widely promoted and demonstrates considerable potential is based on the Hopfield neural 

network (HNN) [19-21]. A key feature of the HNN is that it seeks to maintain the class proportional 

information of the soft classification in the super resolution map. Thus, the estimated proportion of a 

pixel‟s area comprised of a class depicted in a soft classification, or a value close to it, should also be 

contained in the same region in the output of the super-resolution mapping analysis.   

 



With the HNN based approach to super-resolution mapping, a pixel is decomposed into a large 

number of sub-pixels and the class labels of these sub-pixels are distributed in proportion to the class 

composition information provided by a soft classification for the pixel. The labels are initially 

distributed randomly amongst the sub-pixels and the HNN estimates their spatial distribution through 

an iterative analysis. The latter involves adjusting the sub-pixel class labels on the basis of the class 

label information for a sub-pixel and its immediate neighbourhood. As the approach incorporates 

spatial context into the determination of the location of sub-pixel class fractions the method is most 

suitable for the scenario in which the land cover patches are relatively large relation to the image pixel 

size. This type of scenario is common, with mixed pixels occurring at the edge of patches. There is, 

however, a variety of land cover mixing scenarios [22] and the basic HNN approach may not always 

be appropriate for the representation of the land cover distribution. In particular, one concern is when 

the mixing arises because of the landscape mosaic comprises small (area <1 pixel) isolated land cover 

patches. This may be a common occurrence, with the amount of small land cover patches varying as 

an interactive function of patch size relative to image spatial resolution. 

 

This article aims to evaluate the effect of land cover patch size on the accuracy of super resolution 

mapping by a HNN with particular regard to the accuracy with which patch area is represented. 

Section II provides a review of the key features of the HNN algorithm used for super resolution 

mapping. The data and methods used are described in Section III. Section IV provides the results and 

section V the conclusions. 

 

 

II. HNN 

The HNN is a recurrent artificial neural network which is designed for the solution of optimization 

problems [23, 24]. The fundamental structure of the network consists of a single layer of neurons and 

the output of each neuron is fed back to all other neurons except itself. The HNN is an optimization 

tool defined by an energy function [24] formulated for the application. In super-resolution mapping 

applications, each pixel of a coarse spatial resolution image is typically sub-divided into z×z sub-



pixels, where z is the zoom or scale factor of the spatial resolution increment. Each sub-pixel is 

associated with a single neuron in the HNN and can be located by its coordinates in the sub-pixel grid. 

The input to the neuron at row i column j of the grid is uij and its output is vij.  

 

The energy function that represents the problem of super-resolution mapping is generally represented 

as the sum of a goal and constraint term. The goal function considers the spatial correlation between 

observations, working on a neuron together with its closest neighbours rather than treating each 

neuron as an independent unit. The constraints specify the context of the available data by adding 

costs to the objective. By assuming that the spatial dependence between a neuron and its adjacent 

neurons is larger than that of neurons that are more distant, the energy function can be represented as 

the combination of spatial clustering goal functions and an area proportion constraint [19, 20, 25] 

which can be expressed as 
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where E is the network energy, 
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ijG and 
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ijG are the goal functions at a neuron  ,i j , 
ijP is the area 

proportion constraint, k1, k2, and kP are the weight constant for the goal functions and the area 

proportion constraint respectively. The rate of change for the energy function for a neuron is 
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The goal functions maximize the spatial correlation of nearby neurons that have similar values. The 

functions receive input from the neuron and its eight surrounding neurons. Two goal functions are 

used to drive the output into two binary states: on and off. The first goal function, 
ONG , increases the 

output of a neuron to 1 if the average value of its eight surrounding neurons is greater than a threshold 

value, T=0.5. If the average of the surrounding neurons is less than the threshold value, the goal 



function becomes 0. This function makes the output of a neuron similar to that of its neighbouring 

neurons and is based on 
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where λ is the gain that determines the steepness of the tanh function. The second goal 

function,
OFF

ijG , decreases the output of a neuron to 0 if the average value of its eight surrounding 

neurons is less than T. If the average of the surrounding neurons is greater than T, the second function 

increases the output of the centre neuron to 1. Again, this function makes the output of a neuron 

similar to that of its neighbouring neurons and is based on 
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The area proportion constraint regulates the energy equation by seeking to retain the pixel class 

proportion derived from soft classification, which for a pixel at location (x,y) in the image‟s pixel grid 

is denoted
xya  . The area proportion constraint is based on 
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If the area proportion of the estimate for the original pixel is lower or greater than the target area, the 

output values of the neurons are increased or decreased accordingly to help address the problem [19, 

25]. The value for each neuron in the HNN can be updated numerically using a Euler method [26] and 

is expressed as 

 



    
 ij
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which advances a solution from state  iju t  to state  iju t t  with t as time step [19,25].  

Equation 6 runs iteratively until     ij ij

ij

u t t u t     , where  is a small value.  

 

Operational use of the HNN approach to super-resolution mapping requires the analyst to specify the 

values of the weight parameters in equation 1 and the number of iterations to undertake or value for   

to act as a stopping criterion. The selection of optimum parameter settings can be a difficult and 

tedious process and the literature provides little guidance on the settings to use. It is common, for 

example, for weighting parameters to be set at equal values and to use >2000 iterations [19, 25]. The 

settings used are often selected on the basis of assumptions made by the analyst and trial runs [19, 

21]. A strategy to enhance the analysis is also to include prior information on the land cover mosaic, if 

known, perhaps via a semi-variance function [21] and/or provision of ancillary data [27, 28]. The 

inclusion of prior information in terms of a semi-variance function is, for example, one means to 

enhance the utility of the HNN for the representation of small land cover patches. To achieve this, the 

basic approach represented by equation 1 is adjusted such that the energy function is represented as 

the sum of a set of semi-variance functions and an area proportion constraint [21] which, assuming a  

zoom of z, can be expressed as 
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where k1 to kz are weighting factors for the output values for z
th

 semi-variance function,  1

ijS to 

 z
ijS . As explained by [21] the rate of change for the energy function becomes 
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in which the first part corresponds to the semi-variance functions while the second part is for 

the area proportion constraint. The prior knowledge about spatial pattern, perhaps from a fine 

spatial resolution image, is modelled using a semi-variance function 
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in which  h  is the semi-variance at lag h, N(h) is the number of pixels at lag h from the 

centre pixel (i,j) and
ijf is a pixel of the fine spatial resolution image used to generate the prior 

information. Further details on the approach are given in [21]. 

 

III. Data and Methods 

A variety of real and simulated data sets were used and discussed in four groupings.  

 

A. Fine resolution imagery 

To illustrate the sensitivity of the HNN to different mixing scenarios a set of four small images 

representing similar land covers but present in different patterns was derived from a SPOT image 

contained in Google Earth for a site near Granada, Spain. Each image extract was derived from a 

region lying between latitudes 37° 08' 19"N  and 37° 07' 41"N  and longitudes 4° 07' 60"W and  4° 07' 

09"W from an image acquired on 1 October 2004. The agricultural land use of the site produced four 

visually different landscape patterns, A-D (Figure 1) each comprised of two classes: vegetation and its 

background. Each image was spatially degraded by a factor of 8 with the pixels in the derived 

simulated coarse resolution images taking on the average value of the pixels in an 8×8 area of the 

original image. These simulated coarse resolution images were subjected to a series of analyses, using 

a standard k-means hard classification and super-resolution mapping by HNN using a zoom factor of 

8 to predict the land cover distribution. The number of cluster in the k-means classifier was set to two 

to differentiate between the vegetation and its background. The input to the HNN analyses was a soft 

classification of the coarse resolution images derived from the use of a fuzzy c-means (FCM; [29]) 



classifier in which the weighting parameter that determines the degree of fuzziness was set to 2.0. 

Following common practice, the weights in the HNN were set to equal values: k1=k2=kp=1. A further 

analysis was undertaken with the HNN informed by information on the land cover pattern represented 

by the semi-variogram [21] derived from each of the original resolution images.  

 

Accuracy assessment is typically based on the comparison of the derived land cover representation 

against a high quality reference. As a gold-standard reference data set is typically unavailable, this 

process often involves the evaluation of the degree of agreement between the derived representation 

and another, high quality, classification used as a reference [1]. Here, the accuracy of each analysis 

was evaluated against a standard hard classification of the relevant original fine resolution imagery 

(Figure 1c). The latter reference data were derived by a k-means classification of the original imagery. 

The degree of correspondence between the predicted and ground reference land cover distributions 

was evaluated visually and by cross-tabulation of the pixel labels, at a sub-pixel scale, with accuracy 

expressed as the percentage overall agreement in labelling. Although there are concerns with the use 

of site-specific accuracy assessment in the evaluation of super-resolution maps [30] the focus here is 

on the relative rather absolute magnitude of the estimates derived.  

 

B. Simulated blocks of pixels 

The relationship between land cover patch size and its predicted area was explored with simulated 

data representing blocks of image pixels. As with the previous example, the focus was on a simple 

situation in which there are just two classes; the patch and its background. Initial analyses focused on 

the representation of a relatively large patch and a small isolated patch by the standard HNN. This 

situation was evaluated with simulated data comprising blocks of 3×3 pixels in a coarse spatial 

resolution image. Two sets of scenarios were evaluated. The first was for the situation when the land 

cover patches were relatively large and information from neighbouring pixels could usefully inform 

the HNN analysis and the soft classification value of the central pixel was varied from 0.05 to 1.0 

with all values at a 0.05 step evaluated. The second set of scenarios was similar but with the land 

cover patch to be represented being small and isolated. In this instance only the central pixel in the 



block contains a single small patch of one land cover class with the rest of the 3×3 pixel area 

representing the background class. Again the soft classification value of the central pixel was varied 

over the range 0.05 to 1.0.  In each case it was assumed that the soft classification of the data was 

perfect, and so the DN or value for a pixel in the soft classified image corresponded to the 

proportional cover of the class in the area represented by that pixel.  

 

Three different HNNs were evaluated.  First, the weighting parameters were set at equal values. 

Specifically, the k1=k2=kp=1 scenario was again used and as the parameters were of equal magnitude 

this is approach is referred to as HNN(E). Second, a HNN with the goal function parameters set at a 

higher level than the area proportion constraint. This latter analysis used k1=k2=1.0 and kp=0.1 and as 

the goal functions were emphasised is referred to as HNN(G). Thirdly, a scenario in which the area 

proportion constraint was emphasised over the goal functions. With this scenario k1=k2=0.1 and kp=1.0 

and as the area proportion constraint was emphasised it is referred to as HNN(A). Analyses with these 

three HNNs were undertaken over a range of iterations: 1,000, 2,000, 5,000, 10,000 and 15,000. 

 

To further explore the effects of different weight parameter settings, the HNN(G) approach was also 

modified to explore the effect of variation in the kp value. For this, k1=k2=1.0 throughout but the value 

of kp was altered in 0.1 increments over the range 0.1 to 1.0. Similarly, with the HNN(A) approach a 

series of analyses were undertaken in which kp was fixed at 1.0 throughout but the value for k1=k2 was 

varied over the range 0.1 to 1.0 with a 0.1 step.  

 

C. Simulated imagery 

Variation in the representation of patch area was expected, mainly because the relative weighting of 

the area proportion constraint in the various analyses. It was anticipated that the accuracy of patch 

representation derived with the data outlined in section B above would vary between the three HNN 

scenarios as a function of patch size. However, it was also anticipated that the strengths of different 

approaches could be exploited and combined to form an enhanced analysis. To assess this, an image 

containing 34 patches of variable size was generated manually (Figure 2a); the size and location of the 



patches was determined in an unplanned, haphazard, manner. As with other analyses, this image was 

degraded by a factor of 8 and a soft classification of the resulting coarse resolution image derived by 

the FCM with the weighting parameter set to 2.0.  The soft classification was used as input to the 

HNN(E) and HNN(A). The outputs of these HNNs were also combined. This was achieved by using 

the output of HNN(E) for the large patches (defined here as >1 pixel in area) and HNN(A) for the 

remaining, small, patches. Since the approach is a combination of two HNN scenarios this is referred 

to later as the HNN2. 

 

The area of the patch in the output of each HNN analysis was calculated by counting the number of 

sub-pixels allocated to the patch class. This value could be compared directly against the actual 

proportion of patch cover, which was known from the simulation. Attention focused on the accuracy 

of the estimation over a range of patch sizes, expressed in terms of the patch proportional cover, 

which is illustrated in plots of the predicted against actual cover. In these plots deviation from the 1:1 

line indicates error, with values lying below the line highlighting an underestimation of patch area.  

 

D. Coarse resolution imagery 

Finally, a series of analyses of remote sensor data sets were undertaken to illustrate the issues in a real 

application. As in other studies, the adoption of finer spatial resolution imagery can enhance spatial 

detail and provide accurate information [31, 32]. Here, the focus was on the mapping of high latitude 

lakes from MODIS imagery. Presently there is considerable uncertainty over the number and size of 

lakes [33], especially at high latitudes where they may be disappearing due to climate change [34]. 

Mapping and monitoring lakes over such large regions is realistically only feasible with moderate 

spatial resolution systems such as MODIS, but the spatial resolution makes it difficult to study small 

lakes, which are often of interest as associated with considerable uncertainty [33]. Here, the potential 

of HNN based super-resolution mapping for the provision of information on lakes was evaluated. This 

work mapped lakes from MODIS data for a test site in Quebec province of Canada (Figure 3) 

acquired on 5 July 2002. As attention was focused on mapping water, which is relatively separable 

from land in the near-infrared part of the spectrum, and especially small lakes, a 250m spatial 



resolution image in the near infrared (841-876 nm) waveband was used. The MODIS imagery used 

was derived from tile 13 horizontal and 03 vertical of the MOD09GQ, a level 2 data, which have not 

been gridded into a map projection as in Level 3 data of composite images [35], facilitating further 

processing to be determined by users, such as relative shift measurement and reduction of sensor point 

spread function effects [36]. The MODIS images were projected from Sinusoidal projection into a 

Landsat Universal Transverse Mercator (UTM) projection at zone 16.  

 

A Landsat ETM+ image with a 30m spatial resolution acquired five days after the MODIS image on 

10 July 2002 was also obtained. The image used was acquired on path 25 row 22 and obtained from 

the US Geological Survey. A k-means hard classification of the ETM+ data acquired in the near-

infrared waveband (770-900nm) was used as reference data for the evaluation of the analyses of the 

MODIS data. The latter analyses included a standard k-means hard classification and super-resolution 

mapping using the HNN(E) and HNN(A), both with z=8 and run for 10,000 iterations. Note that the 

settings of the HNN analyses yield a map with a spatial resolution of ~31.2 m, approximately the 

same as the ETM+ data used as reference data. As previously, the FCM with a weighting parameter of 

2.0 was used to generate a soft classification for input to the HNN. 

 

IV. Results and Discussion 

A. Fine resolution imagery 

The four landscape mosaics, A-D (Figure 1), were represented with varying quality by the k-means 

hard classification and HNN analyses. For each landscape, the hard classification provided the least 

accurate representation which was also unrealistic visually due to its blocky nature (Figure 1d). The 

hard classification was particularly poor in representing mosaic B, with many of the very small, sub-

pixel sized, patches not represented in the classified image. The accuracy with which the four 

landscapes were mapped by the hard classification ranged from 73.52% to 81.86% 

 

The super-resolution maps were all more accurate than the hard classification for each landscape type 

(Figure 1). There was, however, considerable variation in the quality of the representations derived. 



For example, with the basic HNN (figure 1e), landscape A was classified to a very high accuracy, and 

substantially higher than the representation derived for that landscape in the hard classification. For 

landscape B, however, the HNN was only marginally (0.25%)  more accurate than that observed with 

the hard classification. The accuracy of the HNN derived maps varied from 73.77% to 91.79%, a 

range of 18.02%, a result which highlights that the utility of the HNN for super-resolution mapping 

varies as a function of the landscape mosaic to be represented. 

 

The addition of prior information into the HNN analysis increased the accuracy of the land cover 

representations for all four landscapes. Accuracy varied from 88.73% for landscape B to 96.70% for 

landscape A, a range of 7.97% (Figure 1f). The acquisition of suitable prior information may, 

however, be difficult. Furthermore, it is important that the prior information used is suitable. Figure 4 

illustrates the effect of using an inappropriate prior on the analysis, with the output over-influenced by 

the prior.  

 

The analyses of the four landscapes (Figure 1) highlight the value of super-resolution mapping over 

conventional hard classification. More critically, they also show that the HNN based approach varies 

in suitability over the four landscapes, being most suitable when the patches were relatively large (e.g. 

landscape A) and least where the patches were small (e.g. landscape B). The impact of variation in 

patch size on the HNN was explored further with the simulated data. 

 

B. Simulated blocks of pixels 

The impact of land cover patch size on the super-resolution representation is illustrated in Figures 5-8. 

For large patches, the basic HNN approach produced a visually realistic representation of the 

geographical distribution of the classes. In Figures 5 and 6 it is evident how information from 

neighbouring pixels aided the location of the patch cover in the central pixel. However, for small 

patches, which are associated with a low value in the soft classification and surrounded by other low 

or zero values, the HNN can produce a reasonable representation if the patch is relatively large 

(Figure 7) but not if it is small (Figure 8). This simple illustration shows the effect of the magnitude of 



the soft classification value of a pixel and its neighbours on the prediction of land cover distribution 

by HNN. 

 

In the basic HNN approach the algorithm‟s parameters had, as is common practice, been set at equal 

values (k1=k2=kp=1). Varying the parameter values may be one means to enhance the representation, 

especially of the small patches that have been shown above to be problematic in super-resolution 

mapping by HNN.  

 

Using the HNN(E), HNN(G) and HNN(A), the analyses reported above were repeated but across the 

full range of soft classification values. For large land cover patches each of the three HNN scenarios 

provided accurate representations of the patch area, with predictions lying close to the 1:1 line in 

Figure 9a. Differences between the scenarios were small but most apparent at low soft classification 

values. The results indicated that the minimum soft classification value, and so patch size, required for 

a patch to be represented in the output was 0.05 for HNN(G), 0.15 for HNN(A) and 0.20 for HNN(E); 

the estimated size of these patches were close to the 1:1 line across the full range of soft classification 

values above the minimum patch size noted.  

 

For the small patches, however, it was evident that the accuracy with which patch size was estimated 

by all three HNN scenarios varied greatly with the soft classification value and hence patch size 

(Figure 9b). It was especially evident that while HNN(A) consistently underestimated patch size the 

estimates derived were close to the actual value, lying close to the 1:1 line. However, the results from 

the HNN(E) and, especially, HNN(G) were less accurate. For the HNN(E) patch size was again 

consistently underestimated but generally close to the 1:1 line for soft classification values >0.5. At a 

soft classification value <0.5 the underestimation was large and a patch was not represented at all at 

values of 0.4 and below. The HNN(G) provided the least accurate results for small patches. Again, 

patch size was consistently underestimated, deviating considerably from the 1:1 line across the entire 

range of soft classification values. Additionally, a patch associated with a soft classification value of 

0.55 or smaller would not be represented in its output. It was evident, therefore, that for small patches 



the HNN(A) was able to provide accurate predictions of patch size across the entire range of soft 

classification values, helping to address concerns highlighted in relation to Figure 8.  The HNN(E) 

and HNN(G) were less useful, especially for the smallest patches.  

 

As well as the values of the k1, k2 and kp weighting parameters, the number of iterations can have an 

impact on super-resolution mapping by a HNN. Variation in the number of iterations had little effect 

on the representation of the large land cover patches by the three HNN scenarios except for the 

HNN(A) (Figure 10). With the latter, it was evident that at a small number of iterations, 2000 or less, 

poor estimates of patch size were derived. For large land cover patches the HNN(E) and HNN(G) 

could be used to derive accurate estimates with a small number of iterations. A larger number of 

iterations, here ~5000 or more, was required for accurate estimation with the HNN(A).  

 

For the small land cover patches the number of iterations had little impact on the accuracy of the 

estimates derived from the HNN(E) and HNN(G) but a large effect on the results from the HNN(A) 

(Figure 11). With the latter, the estimates derived from the use of 2000 and especially 1000 iterations 

were substantially underestimated. However, with a large number of iterations, the accuracy was high 

with estimates lying close to the 1:1 line (Figure 11). This is further emphasised in the visualization in 

Figure 12 of the results for one of the analyses, based on the situation when the value of the pixel in 

the soft classification was 0.2, which shows the requirement for a large number of iterations. The 

results above highlight the potential of the HNN(A) for the representation of small land cover patches, 

especially when a relatively large number of iterations is used. 

 

As the weight parameter settings used in the scenarios were defined relatively arbitrarily, it is 

interesting to note results obtained from different settings as this could influence the performance of 

the HNN(G) and HNN(A) methods. With the HNN(G) it was apparent that with k1=k2=1 variation in 

kp greatly influenced the accuracy of the patch size estimation (Figure 13). Critically, it was evident 

that the most accurate estimates were derived with large kp. With the HNN(A), if the value of kp was 

kept at 1 it was evident that the accuracy of the patch size estimation varied with the value of k1 and 



k2. In particular, when the soft classification value was low a small value for k1 and k2 was preferable 

(Figure 14).  

 

The results indicate that HNN(E) is suited to the situation when the patches are large, larger than a 

pixel. For patches smaller than the size of the pixel, the HNN(A) was most suitable, especially if low 

values were used for k1 and k2 and large number of iterations undertaken.  

 

C. Simulated imagery 

Application of the HNN(E) and HNN(A) approaches to a simulated image containing a variety of 

patches of differing size helps illustrate their potential and limitations for super-resolution mapping. 

Of the 34 patches present (figure 2a), the HNN(E) was able to represent only 4 large patches (Figure 

2c). Alternatively, the HNN(A) was more suited to the task as most patches were small and isolated 

and so it was able to represent 24 of the patches (Figure 2d); the 10 patches it missed were typically 

very small. However, it was evident that the representation of the large patches by the HNN(A) was 

often poor, with size and shape visually incorrect (Figure 2d).  

 

The results highlight that the HNN(E) may be expected to work well for large patches while the 

HNN(A) appears most suitable for the representation of small patches. In many landscapes there may 

be a mixture of patch sizes and neither approach would be ideal. The proposed HNN2 approach, 

which seeks to use the positive aspects of each method by gaining information on the large patches 

from the HNN(E) and the small patches from HNN(A) provided a better representation than the two 

HNNs it was based on. It too yielded a representation of 24 patches (Figure 2e) but visually this was 

superior to that from both the HNN(E) and HNN(A).  

 

D. Coarse resolution imagery 

Similar trends were also observed in the analyses based on the MODIS data. The test site contained a 

wide variety of lakes, differing greatly in terms of size and shape. Critically, some of the lakes were 

relatively large in relation to the pixel size, and so suited to standard HNN(E) analysis, while many 



were small and isolated and not suited to standard HNN analyses. A visual analysis illustrates the 

quality of the mapping by standard hard classification and HNN based methods (Figure 15). The hard 

classification of the MODIS data yielded a representation in which the lake boundaries were 

unrealistically jagged and clearly omitted the numerous small lakes (Figure 15b). The soft 

classification of the MODIS image yielded an enhanced representation (Figure 15c), with information 

on the small lakes more apparent. However, the three HNN analyses based on the soft classification 

provided representations that were much closer to the reference data than the standard hard 

classification. As noted above, the reference data set was a k-means classification of the Landsat 

ETM+ data. While it is not feasible to provide a rigorous evaluation of the accuracy of the k-means 

classification and so its suitability as a reference, a guide to its quality was obtained by checking its 

labelling against visual interpretation of the Landsat ETM+ image. The latter indicated that the k-

means classification had an accuracy of 90.5% and so provides a strong, albeit imperfect, reference 

data set. 

 

It was evident that the HNN(E) appeared to provide an accurate representation of the large lakes, with 

small lakes omitted (Figure 15d). The HNN(A) and HNN2, however, provided representations that 

depicted a greater number and variety of lakes (Figure 15e, 15f). While not suited to site-specific 

accuracy assessment because the precise location of a small patch is uncertain [30], non-site specific 

accuracy assessment highlighted some important trends. The reference data indicated that the total 

extent of lake water in the region was 202.09 km
2
, with much of this area associated with small, often 

very small, lakes. The HNN(E) which omitted small lakes provided a representation with 151.89 km
2 

while the HNN(A) and HNN2 were closer with 161.94 km
2
 and 162.89 km

2
. Although there was little 

difference between the HNN(A) and HNN2 in terms of the areal extent estimates, it was apparent that 

the shape of the lakes appeared to be more accurately represented by the HNN2. Further work to 

validate these and other super-resolution products would be useful but needs to address concerns 

linked to the required precision in the mapping. 

 

 



V. Conclusions 

The HNN has been widely used in super-resolution mapping applications. One attraction of the 

approach is that it includes a parameter that seeks to maintain the class proportional information 

provided by the soft classification upon which the analysis is based. There is, however, little guidance 

in the literature on what weight settings to use and the suitability of the HNN for different types of 

landscape. Here, the effect of different parameter settings and landscape patterns on HNN analysis 

was evaluated. There are five main conclusions to this work: 

1. The suitability of the HNN for super-resolution mapping varies as a function of the landscape 

to be represented. The basic HNN approach with equally weighted parameters, HNN(E), was 

able to provide accurate representations when patches were large but not when small. For 

example, the accuracy with which a landscape comprising relatively large patches was 

increased from 79.86% with a hard classification to 91.79% with the HNN(E). However, for a 

landscape composed of small patches the accuracy of the representation derived from a hard 

classification and HNN(E) analysis were very similar, at 73.52% and 73.77%  respectively. 

2. The incorporation of prior information into the HNN analysis could increase the accuracy of 

the mapping for each landscape pattern but it was essential that an appropriate prior was used. 

3. When patches were relatively large, all three HNN scenarios investigated were able to derive 

highly accurate land cover representations. Additionally, the number of iterations had little 

effect on the results of the HNN mapping except for the HNN(A) which yielded most 

accurate representations when a large number of iterations was used. 

4. When patches were relatively small, the HNNs using equally weighted and goal emphasised 

parameter settings tended to underestimate patch area, especially for the very small patches. 

By emphasising the area proportion constraint, as in HNN(A), the accuracy with which small 

patches could be represented was increased, especially if a large number of iterations was 

employed. Critically, the popular use of equal parameter values in the HNN(E) yielded 

substantial under-estimation of patch area when patch size was <0.5 pixel area. 

5. When the region to be mapped contains a variety of patch sizes, both large and small, neither 

the HNN(E) or HNN(A) approach is ideal. However, the output of the HNN(E) may be used 



to represent large patches and combined with that from HNN(A) for small patches to derive 

an enhanced representation.  
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Figure 1. Mapping four landscapes, A-D. (a) Original images, each 256 × 256 pixels, (b) Spatially 

degraded images, each degraded by a factor of 8 and 32 × 32 pixels, (c) Hard classification of the 

original imagery used as reference data for the evaluation of maps derived from the degraded 

imagery, (d) Hard classification of the degraded imagery, (e) Super-resolution maps from the standard 

HNN and (f) Super-resolution maps from the HNN using prior information on landscape pattern. The 

overall accuracy, expressed as percentage correct allocation, is listed below each map derived from 

the degraded data. 



 

 

 

 

Figure 2. Patch mapping. (a) Simulated image, (b) Spatially degraded image used as soft classification 

for input to super-resolution analyses, (c) Output from HNN(E), (d) Output from HNN(A), (f) Output 

from HNN2. 

 

 



 

 

 

 

Figure 3. Location of test site and MODIS image. 

 

 



 

 

 

Figure 4. Importance of using appropriate prior information. (a) Image of landscape C, (b) prior 

information derived for landscape B, (c) output from HNN using prior information applied to the 

degraded image of landscape C (see Figure 1b). 

 



 

 

 

 

Figure 5. Super-resolution mapping when a patch is large. (a) 3×3 block of coarse pixels, all are pure 

except the central pixel for which the class proportion =0.5, (b) initial random allocation of sub-pixels 

in a HNN-based analysis, (c) Output of the HNN. The same layout is used in Figures 6-8 

 

 

 



 

 

 

 

Figure 6. Super-resolution mapping when a patch is large, the class proportion of the central pixel is 

0.2. 

 

 

 



 

 

 

 

 

Figure 7. Super-resolution mapping when a patch is small, the class proportion of the central pixel is 

0.5. 

 

 

 



 

 

 

 

 

Figure 8. Super-resolution mapping when a patch is small, the class proportion of the central pixel is 

0.2. 
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Figure 9. Relationships between the estimated patch area and the soft classification value of a mixed 

pixel that equated to the actual patch area from the HNN(E), HNN(G) and HNN(A) each run for 

10,000 iterations. (a) large patches, (b) small patches. 
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Figure 10. Relationships between the estimated patch area and the soft classification value of a mixed 

pixel that equated to the actual patch area for large patches. (a) HNN(E), (b) HNN(G), (c) HNN(A). 
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Figure 11. Relationships between the estimated patch area and the soft classification value of a mixed 

pixel that equated to the actual patch area for small patches. (a) HNN(E), (b) HNN(G), (c) HNN(A). 

 



 

 

 

Figure 12. Example of using HNN(A). (a) Original image, soft classification value of the central pixel 

= 0.2, (b) Initial random distribution of sub-pixels, (c) Output after 1,000 iterations, (d) Output after 

2,000 iterations, (e) Output after 5,000 iterations, (f) Output after 10,000 iterations, (g) Output after 

15,000 iterations, (h) binarization of (g). 

 



 

 

 

 

Figure 13. Relationships between the estimated patch area and the soft classification value of a mixed 

pixel that equated to the actual patch area for small patches at different values of kp. 

 



 

 

 
 

 

 

 

Figure 14. Relationships between the estimated patch area and the soft classification value of a mixed 

pixel that equated to the actual patch area for small patches at different values of k1=k2. 

 



 

 

 

Figure 15. Analyses of the real remote sensor data. (a) Hard classification of the Landsat ETM+ data 

used as reference data, (b) Hard classification of the MODIS data, (c) Soft classification of the 

MODIS data, (d) Output of HNN(E), (e) Output of HNN(A), (f) Output of HNN2. 
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