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Abstract. In this article we develop both the a priori and a posteriori error analysis of hp–
version interior penalty discontinuous Galerkin finite element methods for strongly monotone
quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3. In the latter case,
computable upper and lower bounds on the error are derived in terms of a natural energy norm
which are explicit in the local mesh size and local polynomial degree of the approximating finite
element method. A series of numerical experiments illustrate the performance of the proposed
a posteriori error indicators within an automatic hp–adaptive refinement algorithm.

1. Introduction

In this article we develop the a priori and a posteriori error analysis, with respect to a mesh-
dependent energy norm, for hp–version discontinuous Galerkin finite element methods (DGFEMs)
for the quasi-Newtonian fluid flow problem:

−∇ · {µ (x, |e (u)|) e (u)} +∇p = f in Ω, (1.1)
∇ · u = 0 in Ω, (1.2)

u = 0 on Γ. (1.3)

Here, Ω ⊂ Rd, d = 2, 3, is a bounded polygonal Lipschitz domain with boundary Γ = ∂Ω,
f ∈ L2(Ω)d is a given source term, u = (u1, . . . , ud)! is the velocity vector, p is the pressure, and
e(u) is the symmetric d× d strain tensor defined by

eij(u) :=
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, . . . , d.

Furthermore, |e(u)| is the Frobenius norm of e(u).
In recent years, there has been considerable interest in DGFEMs for the numerical solution

of a wide range of partial differential equations (PDEs); for an extensive survey of this area of
research, we refer the reader to [12], and the references cited therein. DGFEMs have several
important advantages over well established finite volume methods. The concept of higher-order
discretization is inherent to the DGFEM. The stencil is minimal in the sense that each element
communicates only with its direct neighbours. In particular, in contrast to the increasing stencil
size needed to increase the accuracy of classical finite volume methods, the stencil of DGFEMs
is the same for any order of accuracy, which has important advantages for the implementation of
boundary conditions and for the parallel efficiency of the method. Moreover, because of the simple
communication at element interfaces, elements with so–called hanging nodes can be easily treated,
a fact that simplifies local mesh refinement (h–refinement). Additionally, the communication at
element interfaces is identical for any order of the method, which simplifies the use of methods
with different polynomial orders p in adjacent elements. This allows for the variation of the
degrees of polynomials over the computational domain (p–refinement), which in combination with
h–refinement leads to so–called hp–adaptivity.
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In the present article, we formulate a class of hp–version interior penalty DGFEMs for the
numerical approximation of the quasi-Newtonian problem (1.1)–(1.3). This article represents the
continuation of the work initiated in [16] and [24], where the a priori and a posteriori error analysis,
respectively, of DGFEMs was developed for quasilinear elliptic boundary-value problems, in the
case of a single equation; here, we focus on quasilinear elliptic systems. In particular, in the first
part of this article we establish the existence and uniqueness of both the analytical solution to
(1.1)–(1.3) and of its DGFEM counterpart. The a priori error analysis of the underlying class of
DGFEMs is then undertaken, with respect to the underlying natural energy norm. In the second
part of this article we derive computable upper and lower bounds on the error, again measured
in terms of the energy norm, which are explicit in the local mesh size and the local polynomial
degree of the approximating finite element method. At the expense of a slight suboptimality with
respect to the polynomial degree of the approximating finite element method, this upper bound
holds on general 1-irregular meshes. In particular, this means that elements can be divided into
smaller elements without the need of connecting the resulting hanging nodes. This feature clearly
improves both the feasibility and the flexibility of an hp–adaptive process. In addition, we note
that the use of irregular meshes is very natural and quite easily realizable in the context of DGFEM
schemes because of the discontinuous character of the corresponding finite element spaces. The
proof of the upper bound is based on employing a suitable DGFEM space decomposition, together
with an hp–version projection operator. This general approach was pursued in the series of articles
[24, 17, 21, 19, 25]. The proof of the local lower error bounds (efficiency) is based on the techniques
presented in [27], subject to the treatment of the nonlinearity. On the basis of these a posteriori
error indicators, we design and implement the corresponding hp–adaptive algorithm to ensure
reliable and efficient control of the discretization error. Numerical experiments are presented,
which demonstrate the performance of the proposed algorithm. For related work on h–version
local DGFEMs for quasi-linear PDEs, we refer to the articles [10, 11, 15], for example.

The article is organized as follows. In Section 2, we state the weak formulation of (1.1)–(1.3)
and prove its well-posedness. In Section 3 we formulate the interior penalty hp–DGFEM for the
numerical approximation of the boundary-value problem (1.1)–(1.3), and show that the proposed
scheme is also well-posed. Section 4 is devoted to the a priori error analysis of the underlying hp–
DGFEM. In Section 5 we establish both the upper and lower a posteriori error bounds. Section 6
contains a series of numerical experiments, which illustrate our theoretical results; in particular,
we demonstrate the performance of an hp–adaptive algorithm based on the hp–error indicators.
Finally, in Section 7 we summarise the main results of this article and draw some conclusions.

2. Weak Formulation

In this section, we will present a weak formulation for (1.1)–(1.3) and prove its well-posedness.

2.1. Notation. Throughout this paper, we use the following standard function spaces. For a
bounded Lipschitz domain D ⊂ Rd, d ≥ 1, we write Ht(D) to denote the usual Sobolev space of
real-valued functions of order t ≥ 0 with norm ‖·‖t,D. In the case when t = 0, we set L2(D) =
H0(D). We define H1

0(D) to be the subspace of functions in H1(D) with zero trace on ∂D.
Additionally, we set L2

0(D) := {q ∈ L2(D) :
∫

D q dx = 0}. For a function space X(D), we let
X(D)d and X(D)d×d denote the spaces of vector and tensor fields, respectively, whose components
belong to X(D). These spaces are equipped with the usual product norms which, for simplicity,
we denote in the same way as the norm in X(D).

For the d-component vector-valued functions v,w and d×d matrix-valued functions σ, τ ∈ Rd×d,
we define the operators

(∇v)ij :=
∂vi

∂xj
, (∇ · σ)i :=

d∑

j=1

∂σij

∂xj
,

(v ⊗w)ij := viwj , σ : τ :=
d∑

i=1

σijτij .
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For matrix-valued functions the Frobenius norm can be written as |τ |2 = τ : τ .

2.2. Variational Form. By introducing the forms

A(u,v) :=
∫

Ω
µ(|e(u)|)e(u) : e(v) dx, B(v, q) := −

∫

Ω
q∇ · v dx,

a natural weak formulation of the quasi-Newtonian problem (1.1)–(1.3) is to find (u, p) ∈ H1
0(Ω)d×

L2
0(Ω) such that

A(u,v) + B(v, p) =
∫

Ω
f · v dx, (2.1)

−B(u, q) = 0 (2.2)

for all (v, q) ∈ H1
0(Ω)d × L2

0(Ω). We note that the bilinear form B satisfies the following inf-sup
condition: there exists a constant κ > 0 such that

inf
0#=q∈L2

0(Ω)
sup

0#=v∈H1
0(Ω)d

B(v, q)
‖q‖0,Ω ‖e(v)‖0,Ω

≥ κ; (2.3)

see, e.g., [9].
We shall assume throughout this article that the function µ satisfies the following structural

hypothesis.

Assumption 1. We assume that the nonlinearity µ satisfies the following conditions:
(A1) µ ∈ C(Ω× [0,∞)).
(A2) There exist constants mµ, Mµ > 0 such that

mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω. (2.4)

From [4, Lemma 2.1], we note that as µ satisfies (2.4), there exists positive constants C1 and
C2, such that for all symmetric τ , ω ∈ Rd×d and all x ∈ Ω,

|µ(x, |τ |)τ − µ(x, |ω|)ω| ≤ C1|τ − ω|, (2.5)

C2|τ − ω|2 ≤ (µ(x, |τ |)τ − µ(x, |ω|)ω) : (τ − ω). (2.6)

For ease of notation we shall suppress the dependence of µ on x and write µ(t) instead of µ(x, t).

2.3. Well-Posedness. We will now show that the weak formulation (2.1)–(2.2) admits a unique
solution in the given spaces. To this end, we first give the following general theorem.

Theorem 2.1. Let X be a real Hilbert space. Furthermore, consider forms a : X × X → R
and l : X → R with
(a) l is linear and continuous on X,
(b) the functional v ,→ a(w, v) is linear and continuous on X for any fixed w ∈ X,
(c) there exists a constant L > 0 such that

|a(u, w)− a(v, w)| ≤ L‖u− v‖X‖w‖X

for any u, v, w ∈ X,
(d) there exists a constant c > 0 such that for any u, w ∈ X, there exists v ∈ X with

a(u, v)− a(w, v) ≥ c‖u− w‖X , ‖v‖X ≤ 1.

(e) for any 0 -= v ∈ X,
sup
u∈X

a(u, v) > 0.

Then, there exists a unique solution u ∈ X of the variational equation

a(u, v) = l(v) ∀v ∈ X. (2.7)

Proof. We proceed in several steps.
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Step 1: Denoting by (·, ·)X the inner product on X , upon application of Riesz’ theorem and (b),
we deduce that, for any w ∈ X , there is an element denoted by Aw ∈ X such that

a(w, u) = (Aw, u)X ∀u ∈ X.

This defines an operator A : X → X . Using (d), we note that for any u, w ∈ X , there is v ∈ X
with ‖v‖X ≤ 1 and

c‖u− w‖X ≤ a(u, v)− a(w, v) = (Au − Aw, v)X . (2.8)
Furthermore, by (c), we observe that

|(Au − Av, w)X | = |a(u, w)− a(v, w)| ≤ L‖u− v‖X‖w‖X ,

for any u, v, w ∈ X . Therefore,

‖Au− Av‖X = sup
‖w‖X≤1

|(Au − Av, w)X | ≤ L‖u− v‖X . (2.9)

In addition, again by Riesz’ theorem and by recalling (a), there exists & ∈ X such that

l(u) = (&, u)X ∀u ∈ X.

Hence, the variational formulation (2.7) corresponds to the operator equation

Au = &, u ∈ X. (2.10)

Step 2: Our goal is to prove that the image Im(A) of A is the entire space X . This implies
that (2.10) has a solution for any & ∈ X .

Step 2a: We begin by showing that Im(A) is closed in X . To this end, let us consider a se-
quence {zn}∞n=1 ⊂ Im(A) that converges to z̄ ∈ X . Evidently, this sequence is a Cauchy sequence.
Furthermore, there is a sequence {wn}∞n=1 ⊂ X such that zn = Awn for any n ∈ N. Hence, for
any m, n ∈ N, using (2.8), we have that

‖zm − zn‖X = ‖Awm − Awn‖X = sup
‖v‖X≤1

(Awm − Awn, v)X ≥ c‖wm − wn‖X ;

thereby, {wn}∞n=1 is a Cauchy sequence, with a limit w̄ ∈ X . Furthermore,

z̄ = lim
n→∞

Awn = lim
n→∞

(Awn − Aw̄) + Aw̄,

and by (2.9), we have
‖Awn − Aw̄‖X ≤ L‖wn − w̄‖X → 0

as n→∞. Thus, limn→∞ Awn = Aw̄, and hence, z̄ = Aw̄ ∈ Im(A).

Step 2b: Suppose now that Im(A) -= X . Then, since Im(A) is closed, we apply the Hahn–Banach
theorem to deduce that there exists 0 -= w̃ ∈ X with (v, w̃)X = 0 for all v ∈ Im(A). In particular,

0 = (Au, w̃) = a(u, w̃) ∀u ∈ X,

which contradicts (e). Consequently, ImA = X and (2.10) has a solution u ∈ X .

Step 3: We complete the proof by demonstrating that the solution of (2.10) is unique. Suppose
that there are two solutions u1, u2 ∈ X of (2.10). Then, recalling (2.8) there exists w ∈ X such
that

0 = (Au1 − Au2, w)X ≥ c‖u1 − u2‖X ,

and therefore, u1 = u2. !

We will now apply the above result to (2.1)–(2.2). To this end, we define the form

A((u, p); (v, q)) := A(u,v) + B(v, p)−B(u, q)

on the space (H1
0(Ω)d × L2

0(Ω))× (H1
0(Ω)d × L2

0(Ω)), and the norm

|||(u, p)|||2 := ‖e(u)‖20,Ω + ‖p‖20,Ω.

Proposition 2.2. There exist two constants L, c > 0 such that the following hold:
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(a) Continuity: For any (u, p), (v, q), (w, r) ∈ H1
0(Ω)d × L2

0(Ω), we have:

|A((u, p); (v, q))−A((w, r); (v, q))| ≤ L|||(u−w, p− r)||||||(v, q)|||.

(b) Inf-sup stability: For any (u, p), (w, r) ∈ H1
0(Ω)d ×L2

0(Ω) there exists (v, q) ∈ H1
0(Ω)d×L2

0(Ω)
such that

A((u, p); (v, q))−A((w, r); (v, q)) ≥ c|||(u −w, p− r)|||, |||(v, q)||| ≤ 1.

(c) For any 0 -= (v, q) ∈ H1
0(Ω)d × L2

0(Ω),

sup
(u,p)∈H1

0(Ω)d×L2
0(Ω)

A((u, p); (v, q)) > 0.

Proof. We prove (a)–(c) separately.

Proof of (a): Applying the triangle inequality, we have that

|A((u, p); (v, q))−A((w, r); (v, q))|
≤ |A(u,v)−A(w,v)| + |B(v, p− r)| + |B(u−w, q)|.

Then, recalling (2.5) leads to

|A(u,v)− A(w,v)| ≤
∫

Ω
|µ(|e(u)|)e(u)− µ(|e(w)|)e(w)||e(v)| dx

≤ C1

∫

Ω
|e(u)− e(w)||e(v)| dx

≤ C1‖e(u)− e(w)‖0,Ω‖e(v)‖0,Ω.

Furthermore,

|B(v, p− r)| ≤
∫

Ω
|p− r||∇ · v| dx ≤ ‖p− r‖0,Ω‖∇v‖0,Ω.

According to Korn’s inequality, there exist a positive constant C∗ such that ‖v‖1,Ω ≤ C∗‖e(v)‖0,Ω

for all v ∈ H1
0(Ω)d; thus we arrive at

|B(v, p− r)| ≤ C∗‖p− r‖0,Ω‖e(v)‖0,Ω.

Similarly,
|B(u−w, q)| ≤ C∗‖q‖0,Ω‖e(u)− e(w)‖0,Ω.

Combining these estimates we obtain

|A((u, p); (v, q))−A((w, r); (v, q))|
≤ C1‖e(u)− e(w))‖0,Ω‖e(v)‖0,Ω

+ C∗‖p− r‖0,Ω‖e(v)‖0,Ω + C∗‖q‖0,Ω‖e(u)− e(w)‖0,Ω.

Thence, using the Cauchy–Schwarz inequality, we deduce (a).

Proof of (b): Let p − r ∈ L2
0(Ω), then, from the inf-sup condition (2.3) there exists ξ ∈ H1

0(Ω)d

such that

−
∫

Ω
(p− r)∇ · ξ dx ≥ κ ‖p− r‖20,Ω , ‖e(ξ)‖0,Ω ≤ ‖p− r‖0,Ω . (2.11)

Now, we choose

v̂ := α(u−w) + βξ, q̂ := α(p− r),

with

α := C−1
2 (1 + C2

1κ
−2), β := 2κ−1,
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where C1, C2 are the constants from (2.5)–(2.6). Now, using (2.5), (2.6), (2.11) and the arithmetic-
geometric mean inequality we deduce that

A((u, p); (v̂, q̂))−A((w, r); (v̂, q̂))

=
∫

Ω
{µ(|e(u)|)e(u)− µ(|e(w)|)e(w)} : e(v̂) dx

−
∫

Ω
(p− r)∇ · v̂ dx +

∫

Ω
q̂∇ · (u−w) dx

= α

∫

Ω
{µ(|e(u)|)e(u)− µ(|e(w)|)e(w)} : e(u−w) dx

+ β

∫

Ω
{µ(|e(u)|)e(u)− µ(|e(w)|)e(w)} : e(ξ) dx− β

∫

Ω
(p− r)∇ · ξ dx

≥ αC2

∫

Ω
|e(u−w)|2 dx− 1

2
κβ

∫

Ω
|e(ξ)|2 dx + βκ ‖p− r‖20,Ω

− 1
2
κ−1β

∫

Ω
|µ(|e(u)|)e(u)− µ(|e(w)|)e(w)|2 dx

≥ (αC2 −
1
2
κ−1βC2

1 ) ‖e(u−w)‖20,Ω +
1
2
βκ ‖p− r‖20,Ω

= |||(u −w, p− r)|||2.

Using the triangle inequality, we deduce that

|||(v̂, q̂)|||2 = ‖e(v̂)‖20,Ω + ‖q‖20,Ω

≤ 2α2‖e(u−w)‖20,Ω + 2β2‖e(ξ)‖20,Ω + α2 ‖p− r‖20,Ω

≤ 2α2‖e(u−w)‖20,Ω + (α2 + 2β2) ‖p− r‖20,Ω

≤ max(2α2, α2 + 2β2)|||(u −w, p− r)|||2.

Setting (v, q) = max(2α2, α2 + 2β2)− 1
2 |||(u −w, p− r)|||−1(v̂, q̂) completes the proof.

Proof of (c): Let (v, q) ∈ H1
0(Ω)d × L2

0(Ω) \ {(0, 0)}. Then, for v -= 0, we have that

sup
(u,p)∈H1

0(Ω)d×L2
0(Ω)

A((u, p); (v, q)) ≥ A((v, q); (v, q)) = A(v,v),

and noting (2.6), yields

A(v,v) =
∫

Ω
µ(|e(v)|)e(v) : e(v) dx ≥ C2‖e(v)‖20,Ω > 0.

If v = 0, q -= 0, we use the inf-sup condition (2.3) to find vq ∈ H1
0(Ω)d such that

sup
(u,p)∈H1

0(Ω)d×L2
0(Ω)

A((u, p); (0, q)) ≥ A(−(vq, 0); (0, q)) = B(vq, q) ≥ κ‖q‖0,Ω > 0.

This completes the proof. !

We are now ready to prove the following result.

Theorem 2.3. There exists exactly one solution (u, p) ∈ H1
0(Ω)d × L2

0(Ω) to the weak formula-
tion (2.1)–(2.2).

Proof. We notice that (2.1)–(2.2) is equivalent to finding (u, p) ∈ H1
0(Ω)d × L2

0(Ω) such that

A((u, p); (v, q)) =
∫

Ω
f · v dx ∀(v, q) ∈ H1

0(Ω)d × L2
0(Ω).

Thence, noticing that by Korn’s inequality the linear form

v ,→
∫

Ω
f · v dx
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is continuous, and applying Theorem 2.1, in combination with the above Proposition 2.2, implies
the well-posedness of (2.1)–(2.2). !

3. DGFEM Approximation of Non-Newtonian Flows

In this section we present the discretization of (1.1)–(1.3) based on employing the hp–version
of a family of interior penalty (IP) DGFEMs, which includes the symmetric, non-symmetric, and
incomplete IP schemes. To this end, we first introduce the necessary notation.

3.1. Meshes, Spaces, and Trace Operators. Let Th be a subdivision of Ω into disjoint open-
element domains K such that Ω =

⋃
K∈Th

K. We assume that the family of subdivisions {Th}h>0

is shape regular ([7, pp. 61, 118 and Remark 2.2, p. 114]) and each K ∈ Th is an affine image of
a fixed master element K̂; i.e., for each K ∈ Th, there exists an affine mapping TK : K̂ → K such
that K = TK(K̂), where K̂ is the open cube (−1, 1)3 in R3 or the open square (−1, 1)2 in R2.
By hK we denote the element diameter of K ∈ Th, h = maxK∈Th hK , and nK signifies the unit
outward normal vector to K. We allow the meshes Th to be 1-irregular, i.e., each face of any one
element K ∈ Th contains at most one hanging node (which, for simplicity, we assume to be at the
centre of the corresponding face) and each edge of each face contains at most one hanging node
(yet again assumed to be at the centre of the edge). Here, we suppose that Th is regularly reducible
[28], i.e., there exists a shape-regular conforming mesh T̃h such that the closure of each element
in Th is a union of closures in T̃h, and that there exists a constant C > 0, independent of mesh
sizes, such that for any two elements K ∈ Th and K̃ ∈ T̃h with K̃ ⊆ K, we have that hK/h eK ≤ C.
Note that these assumptions imply that the family {Th}h>0 is of bounded local variation, i.e., there
exists a constant ρ1 ≥ 1, independent of element sizes, such that

ρ−1
1 ≤ hK/hK′ ≤ ρ1 (3.1)

for any pair of elements K, K ′ ∈ Th which share a common face F = ∂K ∩ ∂K ′. We store the
element sizes in the vector h := {hK : K ∈ Th}.

For a non-negative integer k, we denote by Qk(K̂) the set of all tensor-product polynomials
on K̂ of degree k in each coordinate direction. To each K ∈ Th, we assign a polynomial degree
kK ≥ 1 (local approximation order) and store these in a vector k = {kK : K ∈ Th}. We suppose
that k is also of bounded local variation, i.e., there exists a constant ρ2 ≥ 1, independent of the
element sizes and k, such that, for any pair of neighbouring elements K, K ′ ∈ Th,

ρ−1
2 ≤ kK/kK′ ≤ ρ2. (3.2)

With this notation we introduce the finite element spaces

Vh :=
{
v ∈ L2(Ω)d : v|K ◦ TK ∈ QkK (K̂)d, K ∈ Th

}
,

Qh :=
{
q ∈ L2

0(Ω) : q|K ◦ TK ∈ QkK−1(K̂), K ∈ Th

}
.

We define an interior face F of Th as the intersection of two neighbouring elements K, K ′ ∈ Th,
i.e., F = ∂K ∩ ∂K ′. Similarly, we define a boundary face F ⊂ Γ as the entire face of an element
K on the boundary. We denote by FI the set of all interior faces, FB the set of all boundary faces
and F = FI ∪ FB the set of all faces.

We shall now define suitable face operators that are required for the definition of the proceeding
DGFEM. Let q, v, and τ be scalar-, vector- and matrix-valued functions, respectively, which are
smooth inside each element K ∈ Th. Given two adjacent elements, K+, K− ∈ Th, which share a
common face F ∈ FI , i.e., F = ∂K+ ∩ ∂K−, we write q±, v±, and τ± to denote the traces of
the functions q, v, and τ , respectively, on the face F , taken from the interior of K±, respectively.
With this notation, the averages of q, v, and τ at x ∈ F are given by

{{q}} :=
1
2
(q+ + q−), {{v}} :=

1
2
(v+ + v−), {{τ}} :=

1
2
(τ+ + τ−),
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respectively. Similarly, the jumps of q, v, and τ at x ∈ F are given by

[[q]] := q+nK+ + q−nK− , [[v]] := v+ · nK+ + v− · nK− ,

[[v]] := v+ ⊗ nK+ + v− ⊗ nK− , [[τ ]] := τ+nK+ + τ−nK− .

On a boundary face F ∈ FB, we set {{q}} := q, {{v}} := v, {{τ}} := τ , [[q]] := qn, [[v]] := v · n,
[[v]] := v ⊗ n and [[τ ]] := τn, with n denoting the unit outward normal vector on the boundary Γ.

With this notation, we note the following elementary identities for any scalar–, vector–, and
matrix–valued functions q,v, and τ , respectively:

∑

K∈Th

∫

∂K
qv · nK ds =

∑

F∈F

∫

F
[[q]] · {{v}}ds +

∑

F∈FI

∫

F
{{q}}[[v]] ds,

∑

K∈Th

∫

∂K
τ : (v ⊗ nK) ds =

∑

F∈F

∫

F
[[v]] : {{τ}}ds +

∑

F∈FI

∫

F
{{v}} · [[τ ]] ds.

(3.3)

Here, nK denotes the unit outward normal vector to the element K ∈ Th.

3.2. DGFEM Discretization. Given a partition Th of Ω, together with the corresponding poly-
nomial degree vector k, the IP DGFEM formulation is defined as follows: find (uh, ph) ∈ Vh×Qh

such that

Ah(uh,v) + Bh(v, ph) = Fh(v), (3.4)
−Bh(uh, q) = 0 (3.5)

for all (v, q) ∈ Vh ×Qh, where

Ah(u,v) :=
∫

Ω
µ (|eh(u)|) eh(u) : eh(v) dx−

∑

F∈F

∫

F
{{µ (|eh(u)|) eh(u)}} : [[v]] ds

+ θ
∑

F∈F

∫

F
{{µ(h−1

F |[[u]]|)eh(v)}} : [[u]] ds +
∑

F∈F

∫

F
σ[[u]] : [[v]] ds,

Bh(v, q) :=−
∫

Ω
q∇h · v dx +

∑

F∈F

∫

F
{{q}}[[v]] ds

and

Fh(v) :=
∫

Ω
f · v dx.

Here, eh(·) and ∇h denote the element-wise strain tensor and gradient operator, respectively, and
θ ∈ [−1, 1]. The interior penalty parameter σ is defined as follows:

σ := γ
k2

F

hF
, (3.6)

where γ ≥ 1 is a constant, which must be chosen sufficiently large (independent of the local element
sizes and the polynomial degree). For a face F ∈ F, we define hF as the diameter of the face and
the face polynomial degree kF as

kF :=

{
max(kK , kK′), if F = ∂K ∩ ∂K ′ ∈ FI ,

kK , if F = ∂K ∩ Γ ∈ FB.

Remark 3.1. We note that the formulation (3.4)–(3.5) corresponds to the symmetric interior
penalty (SIP) method when θ = −1, the non-symmetric interior penalty (NIP) method when
θ = 1 and the incomplete interior penalty method (IIP) when θ = 0.

We introduce the energy norms ‖·‖1,h and ‖(·, ·)‖DG by

‖v‖21,h := ‖eh(v)‖20,Ω +
∑

F∈F

∫

F
σ|[[v]]|2 ds
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and

‖(v, q)‖2DG := ‖v‖21,h + ‖q‖20,Ω . (3.7)

Lemma 3.2. There exists a constant CK > 0, independent of h and k, such that

‖eh(v)‖20,Ω ≤ ‖∇hv‖20,Ω ≤ CK

(
‖eh(v)‖20,Ω +

∑

F∈F

∫

F
h−1

F |[[v]]|2 ds

)

for all v ∈ H1(Ω, Th), where H1(Ω, Th) =
{
v ∈ L2(Ω)d : v|K ∈ H1(K)d, K ∈ Th

}
.

Proof. The proof of the first bound follows from elementary manipulations and application of the
Cauchy–Schwarz inequality. Furthermore, the second estimate is a discrete Korn inequality for
piecewise H1 vector fields; see [8, Equation 1.19]. !

3.3. Well-Posedness of the DGFEM Formulation. In this section we will prove that the
DGFEM formulation (3.4)–(3.5) admits a unique solution. To this end, let us assume that the
bilinear form Bh satisfies the following discrete inf-sup condition:

inf
0#=q∈Qh

sup
0 #=v∈Vh

Bh(v, q)
‖v‖1,h‖q‖0,Ω

≥ c

(
max
K∈Th

kK

)−1

. (3.8)

We note that this inf-sup condition holds
• for kK ≥ 2, K ∈ Th, or
• for k ≥ 1 if Th is conforming and kK = k for all K ∈ Th;

see Theorem 6.2 and Theorem 6.12, respectively, in [29].

Theorem 3.3. Provided that the penalty parameter γ arising in (3.6) is chosen sufficiently large,
there is exactly one solution (uh, ph) ∈ Vh ×Qh of the hp-DGFEM (3.4)–(3.5).

Proof. We set
Ah((u, p); (v, q)) := Ah(u,v) + Bh(v, p)−Bh(u, q),

which allows the DGFEM defined in (3.4)–(3.5) to be written in the following compact form: find
(uh, ph) ∈ Vh ×Qh such that

Ah((uh, ph); (v, q)) = Fh(v) (3.9)

for all (v, q) ∈ Vh ×Qh.
We will now check conditions (a)–(e) of Theorem 2.1 separately.

(a) The continuity of the linear form Fh follows from applying the Cauchy–Schwarz inequality
together with Lemma 3.2.

(b) The linearity of (v, q) ,→ Ah((u, p); (v, q)), for fixed (u, p) ∈ Vh × Qh, follows directly from
the definition of Ah. Furthermore, the continuity is shown by using the Cauchy–Schwarz
inequality and invoking (2.5).

(c) The estimate (c) is established as in the proof of Proposition 2.2 (a) by applying (2.5), the
Cauchy–Schwarz inequality, and the discrete Korn inequality from Lemma 3.2. In addition,
the flux terms are treated similarly as in [16, Lemma 2.2]; see also [20, Lemma 4.1] or [33,
Lemma 5.5].

(d) The inf-sup stability of Ah is proved along the lines of [33, Theorem 5.4], provided that γ > 0
is large enough, using the discrete inf-sup condition (3.8), where the nonlinear terms are
estimated as in Proposition 2.2 (b) using (2.5)–(2.6). More precisely, in this way, it can be
seen that, for any (u, p), (w, r) ∈ Vh ×Qh, there exists (v, q) ∈ Vh ×Qh such that

Ah((u, p); (v, q))−Ah((w, r); (v, q)) ≥ c

(
max
K∈Th

kK

)−2

‖(u−w, p− r)‖DG,

‖(v, q)‖DG ≤ 1.

(3.10)
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(e) We proceed as in the proof of Proposition 2.2 (c), and consider (0, 0) -= (v, q) ∈ Vh × Qh.
Firstly, if v -= 0, then

sup
(u,p)∈Vh×Qh

Ah((u, p); (v, q)) ≥ Ah((v, q); (v, q)) = Ah(v,v).

Now, referring to [16, Lemma 2.3] (with w1 = v, w2 = 0 and γ > 0 sufficiently large), there
exists a constant C > 0 independent of the mesh size and the local polynomial degrees such
that

Ah(v,v) ≥ C‖v‖21,h ∀v ∈ Vh. (3.11)
Hence,

sup
(u,p)∈Vh×Qh

Ah((u, p); (v, q)) > 0.

Secondly, if v = 0, q -= 0, then we apply the discrete inf-sup condition (3.8), similar as in the
proof of Proposition 2.2 (c), to obtain that

sup
(u,p)∈Vh×Qh

Ah((u, p); (0, q)) > 0.

This completes the proof. !

4. A Priori Error Analysis

The goal of this section is to derive an a priori bound for the hp–DGFEM proposed in this
paper. To this end, we state the following result.

Theorem 4.1. Let the penalty parameter γ be sufficiently large, and the solution (u, p) of (1.1)–
(1.3) belong to (C1(Ω) ∩ H2(Ω))d × (C0(Ω) ∩ H1(Ω)), and u|K ∈ HsK+1(K)d, p|K ∈ HsK (K),
sK ≥ 1, K ∈ Th. Then, provided that the discrete inf-sup condition (3.8) is valid, the following
estimate holds

‖(u− uh, p− ph)‖2DG ≤ C max
K∈Th

k4
K

∑

K∈Th

(
h2min{sK ,kK}

K

k2sK−1
K

‖u‖2sK+1,K +
h2min{sK ,kK}

K

k2sK
K

‖p‖2sK,K

)
,

where (uh, ph) is the DGFEM solution defined in (3.4)–(3.5), and the constant C > 0 is indepen-
dent of the mesh size and the polynomial degrees.

Proof. Let us consider two interpolants Πu and Πp satisfying

‖u−Πuu‖21,h ≤ C
∑

K∈Th

h2min{sK ,kK}
K

k2sK−1
K

‖u‖2sK+1,K ,

∑

K∈Th

(
‖p−Πpp‖20,K + hKk−1

K ‖p−Πpp‖20,∂K

)
≤ C

∑

K∈Th

h2min{sK ,kK}
K

k2sK
K

‖p‖2sK ,K ;

(4.1)

see [16, Equation (3.2)], and [22], respectively. Thence, defining

u− uh = (u−Πuu) + (Πuu− uh) =: ηu + ξu,

p− ph = (p−Πpp) + (Πpp− ph) =: ηp + ξp,

we have (ξu, ξp) ∈ Vh × Qh. Next, by the inf-sup stability (3.10) we find (ξ̂u, ξ̂p) ∈ Vh × Qh

with ‖(ξ̂u, ξ̂p)‖DG ≤ 1 and

c

(
max
K∈Th

kK

)−2

‖(ξu, ξp)‖DG ≤ Ah((Πuu,Πpp); (ξ̂u, ξ̂p))−Ah((uh, ph); (ξ̂u, ξ̂p)).

Then, thanks to our regularity assumptions, the DGFEM (3.4)–(3.5) is consistent, and thus,

c

(
max
K∈Th

kK

)−2

‖(ξu, ξp)‖DG ≤ Ah((Πuu,Πpp); (ξ̂u, ξ̂p))−Ah((u, p); (ξ̂u, ξ̂p))

≤ |Ah(Πuu, ξ̂u)−Ah(u, ξ̂u)| + |Bh(ξ̂u,Πpp− p)| + |Bh(Πuu− u, ξ̂p)|
=: T1 + T2 + T3.
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For term T1, we apply [16, Lemma 3.2] to obtain

T1 = |Ah(Πuu, ξ̂u)−Ah(u, ξ̂u)| ≤ C

(
∑

K∈Th

h2 min{sK ,kK}
K

k2sK−1
K

‖u‖2sK+1,K

) 1
2

‖ξ̂u‖1,h.

For term T2, by applying the Cauchy–Schwarz inequality, we arrive at

T2 = |Bh(ξ̂u,Πpp− p)| ≤ ‖∇ · ξ̂u‖0,Ω‖Πpp− p‖0,Ω

+

(
∑

F∈F

∫

F
σ−1|{{Πpp− p}}|2 ds

) 1
2
(
∑

F∈F

∫

F
σ|[[ξ̂u)]]|2 ds

) 1
2

.

By applying Korn’s inequality and recalling (3.6) we have that

|Bh(ξ̂u,Πpp− p)| ≤ C‖ξ̂u‖1,h

(
∑

K∈Th

(
‖p−Πpp‖20,K + hKk−2

K ‖p−Πpp‖20,∂K

)
) 1

2

.

Invoking (4.1) results in

|Bh(ξ̂u,Πpp− p)| ≤ C‖ξ̂u‖1,h

(
∑

K∈Th

h2min{sK ,kK}
K

k2sK
K

‖p‖2sK ,K

) 1
2

.

Similarly,

T3 = |Bh(Πuu− u, ξ̂p)| ≤ C‖Πuu− u‖1,h

(
∑

K∈Th

(
‖ξ̂p‖20,K + hKk−2

K ‖ξ̂p‖20,∂K

)) 1
2

.

By applying an inverse estimate to the boundary term, see, e.g. [31, Theorem 4.76], and scaling,
and using (4.1), leads to

|Bh(Πuu− u, ξ̂p)| ≤ C‖Πuu− u‖1,h‖ξ̂p‖0,Ω ≤ C‖ξ̂p‖0,Ω

(
∑

K∈Th

h2min{sK ,kK}
K

k2sK−1
K

‖u‖2sK+1,K

) 1
2

.

Finally, recalling that ‖(ξ̂u, ξ̂p)‖DG ≤ 1, noting that

‖(u− uh, p− ph)‖DG ≤ ‖(ηu, ηp)‖DG + ‖(ξu, ξp)‖DG,

and combining the bounds on T1, T2 and T3 completes the proof. !

5. A Posteriori Error Analysis

In this section, we develop the a posteriori error analysis of the DGFEM defined by (3.4)–(3.5).
We define, for an element K ∈ Th and face F ∈ FI , the data-oscillation terms

O(1)
K := h2

Kk−2
K ‖(I−ΠTh)|K(f +∇ · {µ(|e(uh)|)e(uh)})‖20,K

and

O(2)
F := hKk−1

K ‖(I−ΠF)|F ([[µ(|eh(uh))eh(uh)]])‖20,F ,

respectively, which depend on the right-hand side f in (1.1) and the numerical solution uh from
(3.4)–(3.5). Here, I represents a generic identity operator, ΠTh is an element-wise L2–projector
onto the finite element space with polynomial degree vector {kK − 1 : K ∈ Th} and ΠF |F is the
L2–projector onto QkF −1(F ).
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5.1. Upper Bounds. We now state the followinga posteriori upper bound for the DGFEM de-
fined by (3.4)–(3.5).

Theorem 5.1. Let (u, p) ∈ H1
0(Ω)d × L2

0(Ω) be the analytical solution to the problem (1.1)–(1.3)
and (uh, ph) ∈ Vh × Qh be its DGFEM approximation obtained from (3.4)–(3.5). Then, the
following hp–version a posteriori error bound holds:

‖(u− uh, p− ph)‖DG ≤ C

(
∑

K∈Th

η2
K + O(f ,uh)

) 1
2

, (5.1)

where the local error indicators ηK , K ∈ Th, are defined by

η2
K := h2

Kk−2
K ‖ΠTh(f +∇ · {µ(|e(uh)|)e(uh)})−∇ph‖20,K + ‖∇ · uh‖20,K (5.2)

+ hKk−1
K ‖[[ph]]−ΠF([[µ(|eh(uh)|)eh(uh)]])‖20,∂K\Γ + γ2h−1

K k3
K

∥∥∥[[uh]]
∥∥∥

2

0,∂K

and
O(f ,uh) :=

∑

K∈Th

O(1)
K +

∑

F∈FI

O(2)
F . (5.3)

Here, the constant C > 0 is independent of h, the polynomial degree vector k and the parameter
γ, and only depends on the shape-regularity of the mesh and the constants ρ1 and ρ2 from (3.1)
and (3.2), respectively.

The proof of this result will follow in Section 5.3.

Remark 5.2. We observe a slight suboptimality with respect to the polynomial degree in the
last term of the local error indicator ηK in (5.2). This results from the use of a non-conforming
interpolant in the proof of Theorem 5.1 to deal with the possible presence of hanging nodes in
Th. For conforming meshes, i.e., meshes without hanging nodes, a conforming hp–version Clément
interpolant, as constructed in [26], can be employed which results in an a posteriori error bound
of the form (5.1) with the final term in the local error indicators (5.2) replaced by the improved
expression

γh−1
K k2

K

∥∥∥[[uh]]
∥∥∥

2

0,∂K
,

cf. [19].

5.2. Local Lower Bounds. For simplicity we shall restrict ourselves to local lower bounds on
conforming meshes Th; the extension to non-conforming 1-irregular regularly reducible meshes
follows analogously, cf., for example, [24, Remark 3.9]. The following result can be proved along
the lines of the analyses contained in [17, 24]; for details, see [13].

Theorem 5.3. Let K and K ′ be any two neighbouring elements in Th, F = ∂K ∩ ∂K ′ and
ωF = (K ∪K

′)◦. Then, for all δ ∈ (0, 1
2 ], the following hp–version a posteriori local bounds on

the error between the analytical solution (u, p) ∈ H1
0(Ω)d × L2

0(Ω) satisfying (1.1)–(1.3) and the
numerical solution (uh, ph) ∈ Vh ×Qh obtained by (3.4)–(3.5) hold:
(a)

‖ΠTh |K(f +∇ · {µ(|e(uh)|)e(uh)})−∇p‖0,K

≤ Ch−1
K k2

K

(
‖e(u− uh)‖0,K + ‖p− ph‖0,K + k

δ− 1
2

K

√
O(1)

K

)
,

(b)
‖∇ · uh‖0,K ≤ C ‖e(u− uh)‖0,K ,

(c)

‖[[ph]]−ΠF |F ([[µ(|eh(uh)|)eh(uh)]])‖0,F

≤Ch
− 1

2
K k

δ+ 3
2

K

(
‖e(u− uh)‖0,ωF

+ ‖p− ph‖0,ωF
+ k

δ− 1
2

K

∑

τ∈{K,K′}

√
O(1)
τ + k

− 1
2

K

√
O(2)

F

)
,
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(d) ∥∥∥[[uh]]
∥∥∥

0,F
≤ Cγ−

1
2 h

1
2
Kk−1

K

∥∥∥σ
1
2 [[u− uh]]

∥∥∥
0,F

.

Here, the generic constant C > 0 depends on δ, but is independent of h and k.

5.3. Proof of Theorem 5.1. The proof of Theorem 5.1 is based on the techniques developed
in [17, 24], cf. also [25].

5.3.1. DGFEM Decomposition. In order to admit 1-irregular meshes, we consider a subdivision
Th which is regularly reducible, i.e., Th may be refined to create a conforming mesh T̃h as outlined
in Section 3.1, cf. [28, 24]. We denote by Ṽh and Q̃h the corresponding DGFEM finite element
spaces with polynomial degree vector k̃ defined by k̃ eK := kK for any K̃ ∈ T̃h with K̃ ⊆ K, for
some K ∈ Th. We note that Vh ⊆ Ṽh, Qh ⊆ Q̃h and thanks to the assumptions in Section 3.1,
the energy norms ‖ · ‖1,h and ‖ · ‖f1,h

corresponding to the spaces Vh and Ṽh, respectively, are
equivalent on Vh; in particular, there exist constants N1, N2 > 0, independent of h and k, such
that

N1

∑

F∈F

∫

F
σ|[[u]]|2 ds ≤

∑

eF∈eF

∫

eF
σ̃|[[u]]|2 ds ≤ N2

∑

F∈F

∫

F
σ|[[u]]|2 ds, (5.4)

cf. [28, 24]. Here, F̃ denotes the set of all faces in the mesh T̃h and σ̃ is the discontinuous
penalization parameter on Ṽh which is defined analogously to σ on Vh.

An important step in the proof is to decompose the DGFEM space Ṽh into two orthogonal
subspaces: a conforming part Ṽ

c

h = Ṽh∩H1
0(Ω)d and a non-conforming part Ṽ

⊥
h , which is defined

as the orthogonal complement of Ṽ
c

h with respect to the energy inner product (·, ·) f1,h (inducing
the norm ‖·‖f1,h), i.e.,

Ṽh = Ṽ
c

h ⊕‖·‖g1,h
Ṽ

⊥
h .

Based on this setting the DGFEM solution uh may be split accordingly,

uh = uc
h + u⊥

h , (5.5)

where uc
h ∈ Ṽ

c

h and u⊥
h ∈ Ṽ

⊥
h . Furthermore, we define the error in the velocity vector as

eu := u− uh, (5.6)

and error in the pressure as
ep := p− ph, (5.7)

and let
ec
u := u− uc

h ∈ H1
0(Ω)d. (5.8)

5.3.2. Auxiliary Results. In order to prove Theorem 5.1, we require the following auxiliary results.

Proposition 5.4. Under the foregoing assumptions on the subdivision T̃h, the following bound
holds over the space Ṽ

⊥
h :

C̃ ‖v‖2f1,h
≤
∑

eF∈eF

∫

eF
σ̃|[[v]]|2 ds ∀v ∈ Ṽ

⊥
h ,

where the constant C̃ > 0 depends only on the shape regularity of the mesh and the constants ρ1

and ρ2 from (3.1) and (3.2), respectively.

Proof. The proof follows, for the case when d = 2, by first applying Lemma 3.2 and then extending
[21, Proposition 4.1] and [24, Proposition 3.5] to vector–valued functions. The case when d = 3
can be similarly derived from [34, Theorem 4.1]. !
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Corollary 5.5. With u⊥
h defined by (5.5), the following bound holds

∥∥u⊥
h

∥∥f1,h
≤ D

(
∑

F∈F

∫

F
σ|[[uh]]|2 ds

) 1
2

,

where the constant D > 0 is independent of γ, h and k, and depends only on the shape regularity
of the mesh and the constants ρ1 and ρ2 from (3.1) and (3.2), respectively.

Proof. Due to the fact that Proposition 5.4 holds we can simply extend the proof from [24, Corol-
lary 3.6]. !

We now state the following approximation result:

Lemma 5.6. For any v ∈ H1
0(Ω)d there exists vh ∈ Vh such that

∑

K∈Th

(
k2

K

hK
‖v − vh‖20,K + ‖e(v − vh)‖20,K +

kK

hK
‖v − vh‖20,∂K

)
≤ CI ‖eh(v)‖20,Ω,

with an interpolation constant CI > 0 independent of h and k, which depends only on the shape
regularity of the mesh and the constants ρ1 and ρ2 from (3.1) and (3.2), respectively.

Proof. This follows from applying [24, Lemma 3.7] componentwise to the vector field v. !

5.3.3. Proof of Theorem 5.1. We now complete the proof of Theorem 5.1. To this end we recall
the compact formulation (3.9) as well as the definition of the error, defined in (5.6) and (5.7).
Then, by (5.4), Corollary 5.5 and the fact that γ ≥ 1 and kK ≥ 1, we have that

‖(eu, ep)‖DG ≤ ‖(e
c
u, ep)‖DG +

∥∥u⊥
h

∥∥
1,h

= ‖(ec
u, ep)‖DG +




∑

eK∈fTh

∥∥e(u⊥
h )
∥∥2

0, eK +
∑

F∈F

∫

F
σ|[[u⊥

h ]]|2 ds





1
2

≤ ‖(ec
u, ep)‖DG + max(1, N

− 1
2

1 )
∥∥u⊥

h

∥∥f1,h

≤ ‖(ec
u, ep)‖DG + max(1, N

− 1
2

1 )D

(
∑

F∈F

∫

F
σ|[[uh]]|2 ds

) 1
2

≤ ‖(ec
u, ep)‖DG + max(1, N

− 1
2

1 )D

(
∑

K∈Th

η2
K

) 1
2

. (5.9)

To bound the term ‖(ec
u, ep)‖DG, we invoke the result from Proposition 2.2 (b) which gives a

function (v, q) ∈ H1
0(Ω)d × L2

0(Ω) such that

c ‖(ec
u, ep)‖DG ≤ Ah(u, p,v, q)−Ah(uc

h, ph,v, q), ‖(v, q)‖DG ≤ 1. (5.10)
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Notice here that, since v ∈ H1
0(Ω)d, we have that [[v]] = 0 on F . Therefore, from (5.5), we deduce

that

c ‖(ec
u, ep)‖DG ≤

∑

eK∈fTh

∫

eK
{µ(|e(u)|)e(u)− µ(|e(uc

h)|)e(uc
h)} : e(v) dx

−
∑

eK∈fTh

∫

eK
(p− ph)∇ · v dx +

∑

eK∈fTh

∫

eK
q∇ · (u− uc

h) dx

=
∑

eK∈fTh

∫

eK
{µ(|e(u)|)e(u)− µ(|e(uh)|)e(uh)} : e(v) dx

+
∑

eK∈fTh

∫

eK
{µ(|e(uh)|)e(uh)− µ(|e(uc

h)|)e(uc
h)} : e(v) dx

−
∑

eK∈fTh

∫

eK
(p− ph)∇ · v dx +

∑

eK∈fTh

∫

eK
q∇ · (u− uh) dx

+
∑

eK∈fTh

∫

eK
q∇ · u⊥

h dx

≡T1 + T2, (5.11)

where

T1 =
∑

eK∈fTh

∫

eK
{µ(|e(u)|)e(u)− µ(|e(uh)|)e(uh)} : e(v) dx

−
∑

eK∈fTh

∫

eK
(p− ph)∇ · v dx +

∑

eK∈fTh

∫

eK
q∇ · (u− uh) dx,

T2 =
∑

eK∈fTh

∫

eK
{µ(|e(uh)|)e(uh)− µ(|e(uc

h)|)e(uc
h)} : e(v) dx +

∑

eK∈fTh

∫

eK
q∇ · u⊥

h dx.

We start by bounding T1. To this end, employing integration by parts and equations (1.1) and
(1.2), we get

T1 =
∑

K∈Th

∫

K
(−∇ · {µ(|e(u)|)e(u)} +∇p) · v dx−

∑

K∈Th

∫

K
µ(|e(uh)|)e(uh) : e(v) dx

+
∑

K∈Th

∫

K
ph∇ · v dx +

∑

K∈Th

∫

K
q∇ · (u− uh) dx

=
∑

K∈Th

∫

K
f · v dx−

∑

K∈Th

∫

K
µ(|e(uh)|)e(uh) : e(v) dx

+
∑

K∈Th

∫

K
ph∇ · v dx−

∑

K∈Th

∫

K
q∇ · uh dx.
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We let vh ∈ Vh be the elementwise interpolant of v, which satisfies Lemma 5.6. Then, noting
from (3.9) that Ah(uh, ph,vh, 0)− Fh(vh) = 0, for all vh ∈ Vh, gives

T1 =
∑

K∈Th

∫

K
f · (v − vh) dx−

∑

K∈Th

∫

K
µ(|e(uh)|)e(uh) : e(v − vh) dx

−
∑

F∈F

∫

F

(
{{µ(|eh(uh)|)eh(uh)}} : [[vh]]− θ{{µ(h−1|[[uh]]|)eh(vh)}} : [[uh]]

)
ds

+
∑

K∈Th

∫

K
ph∇ · (v − vh) dx +

∑

F∈F

∫

F
{{ph}}[[vh]] ds

−
∑

K∈Th

∫

K
q∇ · uh dx +

∑

F∈F

∫

F
σ[[uh]] : [[vh]] ds.

Integration by parts yields

T1 =
∑

K∈Th

∫

K
(f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph) · (v − vh) dx

+
∑

K∈Th

∫

∂K
(ph(v − vh) · nK − µ(|e(uh)|)e(uh) : (v − vh)⊗ nK) ds

−
∑

F∈F

∫

F

(
{{µ(|eh(uh)|)eh(uh)}} : [[vh]]− θ{{µ(h−1|[[uh]]|)eh(vh)}} : [[uh]]

)
ds

+
∑

F∈F

∫

F
{{ph}}[[vh]] ds−

∑

K∈Th

∫

K
q∇ · uh dx +

∑

F∈F

∫

F
σ[[uh]] : [[vh]] ds.

Since v ∈ H1
0(Ω)d, we have that [[v]] = 0, which implies that |[[vh]]| = |[[v − vh]]| on F . Thereby,

using this result, together with the application of (3.3), gives

T1 =
∑

K∈Th

∫

K
(f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph) · (v − vh) dx

+
∑

F∈FI

∫

F
([[ph]]− [[µ(|eh(uh)|)eh(uh)]]) · {{v − vh}}ds−

∑

K∈Th

∫

K
q∇ · uh dx

+ θ
∑

F∈F

∫

F
{{µ(h−1|[[uh]]|)eh(vh)}} : [[uh]] ds +

∑

F∈F

∫

F
σ[[uh]] : [[vh − v]] ds

≤
∑

K∈Th

‖f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph‖0,K ‖v − vh‖0,K

+
∑

K∈Th

‖q‖0,K ‖∇ · uh‖0,K

+ C
∑

K∈Th

‖[[ph]]− [[µ(|eh(uh)|)eh(uh)]]‖0,∂K\Γ ‖v − vh‖0,∂K\Γ

+ Mµ|θ|
(
∑

F∈F

∫

F
h−1

F k2
F |[[uh]]|2 ds

) 1
2
(
∑

F∈F

∫

F
hF k−2

F |{{|eh(vh)|}}|2 ds

) 1
2

+

(
∑

F∈F

∫

F
σkF |[[uh]]|2 ds

) 1
2
(
∑

F∈F

∫

F
σk−1

F |[[v − vh]]|2 ds

) 1
2

.
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Exploiting the trace inequalities in [31, Theorem 4.76] and [29, Lemma 7.1], and noting that
kF ≥ 1, we get

T1 ≤
∑

K∈Th

hKk−1
K ‖f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph‖0,K h−1

K kK ‖v − vh‖0,K

+
∑

K∈Th

‖q‖0,K ‖∇ · uh‖0,K

+ C
∑

K∈Th

h1/2
K k−1/2

K ‖[[ph]]− [[µ(|eh(uh)|)eh(uh)]]‖0,∂K\Γ h−1/2
K k1/2

K ‖v − vh‖0,∂K\Γ

+ C|θ|
(
∑

F∈F

∫

F
h−1

F k2
F |[[uh]]|2 ds

) 1
2
(
∑

K∈Th

‖e(vh)‖20,K

) 1
2

+ Cγ1/2

(
∑

F∈F

∫

F
σkF |[[uh]]|2 ds

) 1
2
(
∑

K∈Th

h−1
K kK ‖v − vh‖20,∂K

) 1
2

≤C

{
∑

K∈Th

(
h2

Kk−2
K ‖f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph‖20,K + ‖∇ · uh‖20,K

+ hKk−1
K ‖[[ph]]− [[µ(|eh(uh)|)eh(uh)]]‖20,∂K\Γ

)
+ γ

∑

F∈F

∫

F
σkF |[[uh]]|2 ds

} 1
2

×
{
∑

K∈Th

(
h−2

K k2
K ‖v − vh‖20,K + h−1

K kK ‖v − vh‖20,∂K + |θ| ‖e(vh)‖20,K + ‖q‖20,K

)} 1
2

.

For K ∈ Th, we write

η̃2
K =h2

Kk−2
K ‖f +∇ · {µ(|e(uh)|)e(uh)} − ∇ph‖20,K + ‖∇ · uh‖20,K

+ hKk−1
K ‖[[ph]]− [[µ(|eh(uh)|)eh(uh)]]‖20,∂K\Γ + γ2h−1

K k3
K

∥∥∥[[uh]]
∥∥∥

2

0,∂K
.

Then, noting that γ ≥ 1 ≥ |θ| ≥ 0, ‖e(vh)‖20,K ≤ ‖e(v − vh)‖20,K +‖e(v)‖20,K , applying Lemma 5.6
and (5.10) gives

T1 ≤ C

(
∑

K∈Th

η̃2
K

) 1
2
(
∑

K∈Th

{
‖e(v)‖20,K + ‖q‖20,K

}) 1
2

≤ C

(
∑

K∈Th

η̃2
K

) 1
2

‖(v, q)‖DG ≤ C

(
∑

K∈Th

η̃2
K

) 1
2

.

By application of the triangle inequality we deduce the following bound for T1:

T1 ≤ C

(
∑

K∈Th

η2
K + O(f ,uh)

) 1
2

. (5.12)
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We now consider the T2 term. By using the bound (2.5) and the trace inequality, we get that

T2 ≤
∑

eK∈fTh

∫

eK
|µ(|e(uh)|)e(uh)− µ(|e(uc

h)|)e(uc
h)||e(v)| dx +

∑

eK∈fTh

∫

eK
|q||∇ · u⊥

h | dx

≤C1

∑

eK∈fTh

∫

eK
|e(u⊥

h )||e(v)| dx +
∑

eK∈fTh

∫

eK
|q||∇ · u⊥

h | dx

≤C1

∑

eK∈fTh

(∥∥e(u⊥
h )
∥∥

0, eK ‖e(v)‖0, eK + ‖q‖0, eK
∥∥∇ · u⊥

h

∥∥
0, eK

)

≤C





∑

eK∈fTh

(∥∥e(u⊥
h )
∥∥2

0, eK +
∥∥∇ · u⊥

h

∥∥2

0, eK

)





1
2




∑

eK∈fTh

(
‖e(v)‖20, eK + ‖q‖20, eK

)





1
2

.

We note that because of Lemma 3.2 we have that
∑

K̃∈fTh

∥∥∇ · u⊥
h

∥∥2

0, eK ≤ d
∑

K̃∈fTh

∥∥∇u⊥
h

∥∥2

0, eK ≤ dCK
∥∥u⊥

h

∥∥2
f1,h

.

Therefore, applying Corollary 5.5, gives

T2 ≤ C
(
(1 + dCK)

∥∥u⊥
h

∥∥2
f1,h

) 1
2 ‖(v, q)‖DG ≤ C

(
∑

F∈F

∫

F
σ|[[uh]]|2 ds

) 1
2

‖(v, q)‖DG .

Recalling (5.10), we deduce that

T2 ≤ C

(
∑

K∈Th

η2
K

) 1
2

. (5.13)

Substituting (5.11), (5.12) and (5.13) into (5.9) completes the proof.

6. Numerical Experiments

In this section we present a series of numerical experiments to numerically verify the a priori
error estimate derived in Section 4, as well as to demonstrate the performance of the a posteriori
error bound derived in Theorem 5.1 within an automatic hp–adaptive refinement procedure based
on 1-irregular quadrilateral elements for Ω ⊂ R2. Throughout this section the DGFEM solution
(uh, ph) defined by (3.4)–(3.5) is computed with θ = −1, i.e., we employ the SIP DGFEM. Ad-
ditionally, we set the constant γ appearing in the interior penalty parameter σ defined by (3.6)
equal to 10. The resulting system of nonlinear equations is solved based on employing a damped
Newton method; for each inner (linear) iteration, we employ the Multifrontal Massively Parallel
Solver (MUMPS), see [1, 2, 3].

The hp–adaptive meshes are constructed by first marking the elements for refinement/derefine-
ment according to the size of the local error indicators ηK ; this is achieved via a fixed fraction strat-
egy where the refinement and derefinement fractions are set to 25% and 5%, respectively. We em-
ploy the hp–adaptive strategy developed by [23] to decide whether h– or p–refinement/derefinement
should be performed on an element K ∈ Th marked for refinement/derefinement. We note here
that we start with a polynomial degree of kK = 3 for all K ∈ Th.

The purpose of these experiments is to demonstrate that the a posteriori error indicator in
Theorem 5.1 converges to zero at the same asymptotic rate as the actual error in the DGFEM
energy norm ‖(·, ·)‖DG, on a sequence of non-uniform hp–adaptively refined meshes. We also
demonstrate that the hp–adaptive strategy converges at a higher rate than an h–adaptive refine-
ment strategy, which uses the same 25% and 5% refinement/derefinement fixed fraction strategy,
but only undertakes mesh subdivision for a fixed (uniform) polynomial degree distribution. As in
[5, 24] we set the constant C arising in Theorem 5.1 equal to one for simplicity; in general this
constant must be determined numerically from the underlying problem to ensure the reliability of
the error estimator, cf. [14]. We are then able to check that the effectivity indices, defined as the
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Figure 1: Example 1. Convergence of the DGFEM with (a) h–refinement; (b) p–refinement.

ratio of the a posteriori error bound and the DGFEM energy norm of the true error, is roughly
constant. We also ignore in all our experiments the data-oscillation terms arising in Theorem 5.1.

6.1. Example 1: Smooth solution. In this first example, we let Ω be the L-shaped domain
(−1, 1)2 \ [0, 1)× (−1, 0], and consider the nonlinearity

µ(|e(u)|) = 2 +
1

1 + |e(u)|2 .

In addition, we select f so that the analytical solution to (1.1)–(1.3) is given by

u(x, y) =
(
−ex(y cos(y) + sin(y))

exy sin(y)

)
,

p(x, y) = 2ex sin(y)− (2(1− e)(cos(1)− 1))/3.

Here, we investigate the convergence of the DGFEM (3.4)–(3.5) on a sequence of hierarchically
and uniformly refined square meshes for different (fixed) values of the polynomial degree k. To
this end, in Figure 1(a) we present a comparison of the DGFEM energy norm ‖(·, ·)‖DG with the
mesh function h for k ranging between 1 and 5. Here, we clearly see that ‖(u − uh, p − ph)‖DG

converges like O(hk) as h tends to zero for each (fixed) k, which is in complete agreement with
Theorem 4.1. Secondly, we investigate the convergence of the DGFEM with p–enrichment for
fixed h. Since the analytical solution to this problem is a real analytic function, we expect to
observe exponential rates of convergence. Indeed, Figure 1(b) clearly illustrates this behaviour:
on the linear–log scale, the convergence plots for each mesh become straight lines as the degree of
the approximating polynomial is increased.

6.2. Example 2: Cavity problem. In this example we consider the cavity-like problem from [6,
Section 6.1] using the Carreau law nonlinearity

µ(|e(u)|) = k∞ + (k0 − k∞)(1 + λ|e(u)|2)(θ−2)/2,
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Figure 2: Example 2. (a) Comparison of the error in the DGFEM norm employing both h– and hp–
refinement, with respect to the number of degrees of freedom; (b) Effectivity index using both h– and
hp–refinement.

with k∞ = 1, k0 = 2, λ = 1 and θ = 1.2. We let Ω be the unit square (0, 1)2 ⊂ R2 and select the
forcing function f so that the analytical solution to (1.1)–(1.3) is given by

u(x, y) =





(
1− cos

(
2π(eθx−1)

eθ−1

))
sin(2πy)

−θeθx sin
(

2π(eθx−1)
eθ−1

)
1−cos(2πy)

eθ−1



 ,

p(x, y) = 2πθeθx sin

(
2
π
(
eθx − 1

)

eθ − 1

)
sin(2πy)
eθ − 1

.

In this example, we now turn our attention to the performance of the proposed hp–adaptive
refinement algorithm. To this end, in Figure 2(a) we present a comparison of the actual error
measured in the DGFEM norm and the a posteriori error bound versus the third root of the
number of degrees of freedom on a linear-log scale for the sequence of meshes generated by both
the h– and hp–adaptive algorithm; in each case the initial value of the polynomial degree k is set
equal to 3. We remark that the choice of the third root of the number of degrees of freedom is
based on the a priori analysis performed in [30] for the linear Stokes problem, cf. [18]. We observe
that the error bound over-estimates the true error by roughly a consistent factor; this is confirmed
in Figure 2(b), where the effectivity indices for the sequence of meshes which, although slightly
oscillatory, all lie in roughly the range 4–7. From Figure 2(a) we can also see that the DGFEM
norm of the error converges to zero at an exponential rate when hp–adaptivity is employed.
Consequently, we observe the superiority of the grid adaptation algorithm based on employing
hp–refinement in comparison to a standard h–version method; on the final mesh the DGFEM
norm of the discretization error is over an order of magnitude smaller when the former algorithm
is employed, in comparison to the latter, for a fixed number of degrees of freedom.

In Figures 3(a) and (b) we show the meshes generated after 10 mesh refinements using the
h– and hp–adaptive mesh refinement strategies, respectively. Figure 3(c) displays the analytical
solution to this example for comparison to the meshes; as noted in [6] the flow exhibits a counter-
clockwise vortex around the point ((1/θ) log((eθ + 1)/2), 1/2), though the analytical solution is
relatively smooth. We can see that the h–adaptive refinement strategy performs nearly uniform
h–refinement as we would expect for such a smooth analytical solution, with more refinement
around the vortex centre and the hill and valley on the right side of the vortex. With the hp–
refinement strategy, we note that mostly p–refinement has occurred, which is as expected for a
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Figure 3: Example 2. Finite element mesh after 10 adaptive refinements: (a) h–adaptivity; (b) hp–
adaptivity; (c) Analytical solution.

smooth analytical solution, with the main p–refinement occurring around the vortex centre and
more h–refinement occurring around the centre of the hills and valleys in the pressure function;
further h–refinement has also occurred in the ‘tighter’ hill and valley on the right caused by the
off-centre vortex.

6.3. Example 3: Singular solution. For this example we consider a nonlinear version of the
singular solution from [32, p. 113], see also [17], using the nonlinearity

µ(|e(u)|) = 1 + e−|e(u)|.

We let Ω be the L-shaped domain (−1, 1)2 \ [0, 1) × (−1, 0] and select f so that the analytical
solution to (1.1)–(1.3), where (r, ϕ) denotes the system of polar coordinates, is given by

u(x, y) = rλ
(

(1 + λ) sin(ϕ)Ψ(ϕ) + cos(ϕ)Ψ′(ϕ)
sin(ϕ)Ψ′(ϕ) − (1 + λ) cos(ϕ)Ψ(ϕ)

)
,

p(x, y) = −rλ−1 (1 + λ)2Ψ′(ϕ) + Ψ′′′(ϕ)
(1− λ)

,
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Figure 4: Example 3. (a) Comparison of the error in the DGFEM norm employing both h– and hp–
refinement, with respect to the number of degrees of freedom; (b) Effectivity index using both h– and
hp–refinement.

where

Ψ(ϕ) =
sin((1 + λ)ϕ) cos(λω)

1 + λ
− cos((1 + λ)ϕ) − sin((1 − λ)ϕ) cos(λω)

1− λ
+ cos((1 − λ)ϕ),

and ω = 3π
2 . Here, the exponent λ is the smallest positive solution of

sin(λω) + λ sin(ω) = 0;

thereby, λ ≈ 0.54448373678246.
We note that (u, p) is analytic in Ω\ {0}, but both ∇u and p are singular at the origin; indeed,

u -∈ H2(Ω)2 and p -∈ H1(Ω).
Figure 4(a) presents the comparison of the actual error in the DGFEM norm and the a posteriori

error bound versus the third root of the number of degrees of freedom on a linear-log scale for
the sequence of meshes generated by both the h– and hp–adaptive algorithm. We again observe
that the error bound over-estimates the true error by a roughly consistent factor, although the
hp–refinement has some initial increase before stabilizing at a higher value than for h–refinement;
this is confirmed again by the effectivity indices for the sequence of meshes, cf. Figure 4(b). From
Figure 4(a) we can also see that yet again the error in the DGFEM norm converges to zero at
an exponential rate when the hp–adaptive algorithm is employed, leading to a greater reduction
in the error for a given number of degrees of freedom when compared with the corresponding
quantity computed using h–refinement.

Figures 5(a) and (b) show the meshes generated after 8 mesh refinements using the h– and
hp–adaptive mesh refinement strategies, respectively. We can see that both refinement strategies
perform mostly h–refinement in the region of the singularity at the origin. However, the hp–
adaptive strategy is able to perform less h–refinement around the origin as it only performs enough
to isolate the singularity; then it performs mostly uniform p–refinement, with a larger p–refinement
to the immediate top-left of the singularity.

7. Concluding Remarks

In this article, we have studied the numerical approximation of a quasi-Newtonian flow problem
of strongly monotone type by means of hp-interior penalty discontinuous Galerkin methods. We
have established well-posedness for both the given PDE system as well as for the proposed hp-
DGFEM. In addition, a priori and a posteriori error bounds in the discontinuous Galerkin energy
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Figure 5: Example 3. Finite element mesh after 8 adaptive refinements: (a) h–adaptivity; (b) hp–
adaptivity.

norm (3.7) have been derived. In the latter case, both global upper and local lower residual-based
a posteriori error bounds have been given. The proof of the upper bound is based on employing
a suitable DGFEM space decomposition, together with an hp–version projection operator. At
the expense of a slight suboptimality with respect to the polynomial degree of the approximating
finite element method, this upper bound holds on general 1-irregular meshes. The numerical
experiments undertaken in this article demonstrate the theoretical results. In particular, we have
shown that the a posteriori upper bound converges to zero at the same asymptotic rate as the
true error measured in the DGFEM energy norm on sequences of hp–adaptively refined meshes.
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[28] C. Ortner and E. Süli. Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic
and hyperbolic systems. SIAM J. Numer. Anal., 45(4):1370–1397, 2007.
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