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Abstract

Intercellular signalling is key in determining cell fate. In closely packed tissues
such as epithelia, juxtacrine signalling is thought to be a mechanism for the gener-
ation of fine-grained spatial patterns in cell differentiation commonly observed in
early development.

Theoretical studies of such signalling processes have shown that negative feed-
back between receptor activation and ligand production is arobust mechanism for
fine-grained pattern generation and that cell shape is an important factor in the re-
sulting pattern type. It has previously been assumed that such patterns can be anal-
ysed only with discrete models since significant variation occurs over a lengthscale
concomitant with an individual cell; however, consideringa generic juxtacrine sig-
nalling model in square cells, in O’Dea & King (Multiscale analysis of pattern
formation via intercellular signalling, Accepted inMath. Biosci.), a systematic
method for the derivation of a continuum model capturing such phenomena due to
variations in a model parameter associated with signallingfeedback strength was
presented. Here, we extend this work to derive continuum models of the more
complex fine-grained patterning in hexagonal cells, constructing individual mod-
els for the generation of patterns from the homogeneous state and for the transi-
tion between patterning modes. In addition, by consideringpatterning behaviour
under the influence of simultaneous variation of feedback parameters, we con-
struct a more general continuum representation, capturingthe emergence of the
patterning bifurcation structure. Comparison with the steady-state and dynamic
behaviour of the underlying discrete system is made; in particular, we consider
pattern-generating travelling waves and the competition between various stable
patterning modes, through which we highlight an important deficiency in the abil-
ity of continuum representations to accommodate certain dynamics associated with
discrete systems.

1 Introduction

The derivation of continuum models which represent underlying discrete phenomena
is emerging as an important part of mathematical biology: integration between sub-
cellular, cellular and tissue-level behaviour is crucial to understanding tissue growth
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and mechanics with self-evident application to, for instance,in vitro tissue engineering
or the understanding of tumour growth and invasion.

It is well known that cell-signalling mechanisms regulate differentiation, cell-fate
determination and, ultimately, tissue and organ development. Such regulation is me-
diated by the production, transport and binding of intercellular signalling molecules,
which may be free to diffuse throughout the tissue or may be anchored in the cell
membrane. In the latter case, cell-signalling molecules may bind only to directly adja-
cent cells; such a juxtacrine signalling mechanism is therefore of particular interest in
closely packed structures such as epithelia.

Lateral inhibition is a juxtacrine pattern-forming mechanism employed by devel-
oping tissues to create fine-grained patterns of cell differentiation, in which adjacent
or nearby cells diverge to achieve differing cell fates. This mechanism is controlled by
a negative feedback loop: receipt of inhibition reduces theability of a cell to inhibit
others, leading to the amplification of differences betweencells. This mechanism is
evolutionarily conserved and is observed in insects, nematode worms and vertebrates,
in all of which the transmembrane proteins Notch and Delta (or their homologues) have
been identified as mediators of the interaction (see Collieret al (1996) and biological
references therein). Well studied examples of such fine-grained patterns include com-
pound eye and nervous tissue development in insects, such asthe fruit fly, Drosophila
(Haddon, 1998; Appel et al, 2001; Carthew, 2007). Within thecontext of regener-
ative medicine, Delta-Notch signalling has been shown to regulate cell fate in stem
cell clusters (Lowell et al, 2000). While other ligand-receptor interaction-mediated
cell signalling mechanisms have been characterised (e.g. the binding of cyclic AMP
to Dictyostelium cells (Martiel and Goldbeter, 1987; Dallon and Othmer, 1997) and
Transforming Growth Factor-α and Epidermal Growth Factor binding in keratinocytes
(Clark et al, 1985; Coffey et al, 1987), here we consider the well-studied Delta-Notch
signalling interaction, which provides an ideal model system to illustrate our method-
ology.

Inspired by the microscopic, contact-dependent nature of the juxtacrine signalling
mechanism and the short-range patterns often observed in tissue development, many
authors have used a discrete mathematical formulation to investigate the pattern-forming
potential of such signalling mechanisms. The first such study was presented by Col-
lier et al (1996), in which Delta-Notch binding was considered. Lateral inhibition was
shown robustly to produce fine-grained patterns of the kind observed in early devel-
opment, provided that the feedback strength was sufficiently strong. The model was
formulated in terms of ordinary differential equations (ODEs) representing Delta and
Notch activity on individual cells. Many other relatively recent studies have considered
a discrete representation of juxtacrine signalling. Owen and Sherratt (1998) analysed
a more complicated model, considering explicitly the numbers of ligand and free and
bound receptors on each cell. Lateral induction (positive feedback between ligand-
receptor binding and subsequent ligand production) was accommodated and the range
over which juxtacrine signals may be transmitted was studied; Wearing and Sherratt
(2001) performed a comprehensive nonlinear analysis of this model, highlighting that
linear analysis alone is unable to predict the model’s behaviour for large numbers of
cells. Webb and Owen (2004) extended this model, considering the dynamics of ligand
and free and bound receptors in systems of varying geometry (strings and square or
hexagonal arrays), showing that lateral inhibition can produce patterns with a length-
scale of many cell diameters and that cell shape is a crucial determining factor in the
patterns produced.

Such discrete approaches necessitate intensive numericalstudy, especially when
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linear analysis cannot predict the patterns formed. Extensive study of pattern forma-
tion has also been undertaken within continuum formulations. Continuous reaction-
diffusion models have formed the basis of many models of biological pattern forma-
tion since the study of Turing (1952) in which it was shown that reaction and diffusion
of chemicals can produce heterogeneous distributions of chemical concentration that
consequently determine cell fate (we remark that Turing (1952) employed both discrete
and continuous analyses, however). In these models, spatial patterns of morphogens
are assumed to induce cells to differentiate. Examples include Kauffman et al (1978),
in which segmentation ofDrosophila was considered, and Varea et al (1997), who con-
sidered a Turing system on a growing domain to model the formation of skin patterns
in fish. An alternative continuum approach is known as mechanochemical modelling in
which the patterns in biological tissue are dictated by mechanical laws applied to cells
and their environment, reflecting, for instance, tissue deformation or cell migration
(see, for example, Murray et al (1988)). Here, pattern formation and morphogenesis
take place simultaneously and the system may therefore adjust to external disturbances,
an important feature of embryonic pattern formation.

Discrete models are able to reflect the inherently discrete nature of cell population
behaviour, capturing explicitly the interactions betweenindividual cells, cell move-
ment or short-range patterning. Appropriate continuum models of such phenomena
facilitate their incorporation into tissue-scale modelling and, in addition, may admit
analytic progress or simpler numerical analysis. For thesereasons, multiscale (or ho-
mogenisation) techniques have been employed to derive continuum models directly
from underlying discrete systems, enabling some of these discrete effects to be in-
corporated into tissue-scale models in a mathematically precise way. The method of
multiple scale expansions for partial differential equations is well-developed (see, for
example, Kevorkian and Cole (1996)) and widely used to derive models for a variety of
physical and biological problems. In a biological context,such techniques have been
employed by (e.g.) Turner et al (2004) and Fozard et al (2009) to represent, within a
continuum formulation, the collective motion of adherent epithelial cells.

It has typically been assumed that the analysis of cell signalling mechanisms de-
mands a discrete approach, especially when considering contact-dependent juxtacrine
signalling processes (Wearing et al, 2000; Plahte and Øyehaug, 2007) and short-range
patterning (Roussel and Roussel, 2004); however, in our previous work (O’Dea and
King, 2011), we have shown how a multiscale method may be employed to analyse
the fine-grained patterns of period two (in each coordinate direction) generated by the
discrete model of Collier et al (1996) in an array of square cells within a continuum
formulation. The resulting reduced model, which takes the form of a semilinear par-
tial differential equation (PDE), demonstrates that on themacroscale the interaction
between adjacent cells manifests itself as a diffusive process despite the short-range
variation in signal concentration. Travelling wave analysis showed excellent quantita-
tive agreement between the continuum formulation and the underlying discrete model.

Square cells were considered in O’Dea and King (2011) as an initial geometry with
which to illustrate the methodology. However, Webb and Owen(2004) have demon-
strated that cell shape is a determining factor in the patterns produced by cell signalling
systems; furthermore, relevant biological structures such as the simple squamous ep-
ithelium are not necessarily well-approximated by square cells, and can display hexag-
onal morphology of striking regularity (e.g. squamous epithelial cells; the hexagonal
configuration is, of course, one of minimal surface energy, as seen in soap films, for
example). An example of such cell shapes is given in Figure 1.Inspired by this, in this
paper, we extend our previous work to consider the fine-grained patterning behaviour
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in an array of hexagonal cells. Such investigations are therefore biologically relevant
as well as revealing important mathematical insight; whilein the cell signalling sys-
tems under consideration, cells may not form exactly hexagonal arrays, our caricature
enables the derivation of a continuum model amenable to analysis which, nevertheless,
reflects microscale complexity of biological relevance. Wenote further that, Webb and
Owen (2004) show that small random perturbations of cell geometry do not prohibit
the formation of regular patterns; we therefore expect the qualitative features of our
results to apply to the non-uniform case.

In one-dimensional strings (or arrays of square cells), fine-grained patterning cor-
responds to patterns with a period of two cell lengths (in each coordinate direction),
whilst hexagonal cells imply patterns of period three in each direction; though still
fine-grained in nature, the increased number of possible patterning modes results in a
significant increase in mathematical complexity. Concentrating on patterns of period
three cell lengths, we construct individual continuum models for the generation of pat-
terns from the homogeneous state and the transition betweenthe various patterning
modes in response to variation of a parameter associated with feedback strength. In
addition, via a two-parameter expansion, we construct a more general continuum rep-
resentation of this system, capturing the emergence of the multiple bifurcation structure
from a single pitchfork-like bifurcation. The resulting continuum models allow repre-
sentation of the generation ofmicroscale patterns in a tissue in response tomacroscale
variation in cell signalling (e.g. that induced by tissue-level chemical or physical stim-
ulation). Via comparison with both the steady-state and thedynamic behaviour of the
underlying discrete system, we show that the continuum models faithfully represent the
fine-grained patterning behaviour displayed by the discrete signalling model. Quanti-
tative comparison is made by analysing the travelling-wavebehaviour; specifically, the
speed of a ‘linearly-selected’ pattern-generating wave invading an unstable patterned
state is considered, providing an indication of the range ofapplicability of our contin-
uum formulations. In addition, we consider in detail the competition between various
stable patterning modes, revealing important insight intothe ability of continuum rep-
resentations to accommodate such discrete dynamics.

Figure 1: A surface view of a typical epithelium, displayinga regular polygonal mor-
phology. Image courtesy of Martin Nelson (Wolfson Centre for Stem Cells, Tissue
Engineering and Modelling; Centre for Biomolecular Science; University of Notting-
ham; UK).

In §2, the model of Collier et al (1996) is summarised and its period three patterning
behaviour examined. In§3, a continuum formulation for period three pattern generation
by Delta-Notch signalling in hexagonal cells based on this underlying discrete system
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is derived. Solution of this model is compared to numerical simulations of the discrete
system in§4, illustrating the generation of patterns under spatial variation of feedback
strength, and pattern competition and travelling-wave behaviour in the case of uniform
feedback. In§5 our findings are summarised, together with suggestions forfuture
research.

2 Pattern formation in a discrete Delta-Notch intercel-
lular signalling model

2.1 Formulation

In Collier et al (1996), the feedback between the binding of amembrane-bound sig-
nalling protein, Delta, to its receptor, Notch, and subsequent Delta expression was
considered. The crucial aspect of the feedback loop is that elevated Delta expression in
a cell downregulates Delta expression in its neighbours viathe receptor, Notch. This
mechanism, known as lateral inhibition, is a fundamental cell-fate control mechanism
(Mitsiadis et al, 1999), creating fine-grained patterns in developing tissues which de-
termine subsequent cell development. The key postulate of the Delta-Notch signalling
model is that the level of activated Notch in a cell determines its fate: low levels lead
to the adoption of default (primary) fate, whilst high levels relegate the cell to the
secondary fate. In the specific case of nervous tissue inDrosophila, the primary fate
corresponds to the adoption of a neural phenotype, the secondary fate being the main-
tenance of the epidermal phenotype (Lehmann et al, 1983; Campos-Ortega, 1993). The
model is formulated in terms of Delta and Notch “activity”; the details of the signalling
pathways, as well as cell division, are neglected for simplicity.

The model comprises a pair of ordinary differential equations that govern the levels
of Delta (d j) and Notch (n j) activity in each cell (j). In dimensionless terms these are
(Collier et al, 1996):

ḋ j = λ (g(n j)−d j) , (1a)

ṅ j = f (d j)−n j, (1b)

where dots denote differentiation with respect to time andλ is the ratio of the decay
rates of Delta and Notch activity. We remark that a single subscript is used to denote
each cell for simplicity; however, generalisation to higher spatial dimensions is trivial.
In (1), f (d j) andg(n j) are feedback functions representing the coupling between adja-
cent cells and the inhibitory effect of Delta-Notch binding, respectively andd j denotes
the mean level of Delta activity in theN cells surrounding cellj:

f (σ) =
σ k

a + σ k
, g(σ) =

1
1+ bσh

, d j =
1
N

N

∑
i=1

di. (2)

The positive parametersk, h, a andb determine the feedback strength. Detail of the
biological meaning of the exponents together with example molecules is given in Webb
and Owen (2004).

In vivo, Delta-Notch binding and the resulting Delta production are dependent on
the cell’s biochemical and biophysical environment. Experimental evidence suggests
that environmental inhomogeneities are significant, whichprovides motivation for the
consideration of microscale patterning in response to macroscale variation in tissue
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stimulation, leading us to include spatial variation in theparameters associated with
the feedback functionsf andg. For constant feedback strength Collier et al (1996),
Plahte (2001) and Plahte and Øyehaug (2007) remark that a striking feature of the
Delta-Notch model is the robustness of the fine-grained pattern1. Webb and Owen
(2004) have demonstrated that cell shape is an important factor in the patterns produced
in cell-signalling models; furthermore, certain epithelial cells are not necessarily well-
approximated by square cells (see Figure 1). In view of theseconsiderations, below, we
extend our previous work (O’Dea and King, 2011) to investigate the emergence of fine-
grained patterning modes in hexagonal cells in response to variation in the parameters
associated with the feedback strength.

2.2 Patterning and stability

By linear and bifurcation analysis we now determine the parameter regimes for which
fine-grained spatial patterning will be produced by this model. In arrays of square cells,
fine-grained patterning corresponds to patterns with a period of two cell lengths in each
direction (and the periodic unit therefore contains four cells). In contrast, the shortest
wavelength pattern which fits onto a discrete hexagonal meshis of period three in each
direction (the periodic unit containing three cells), corresponding to the dominant fine-
grained patterning mode discussed in§2.1. In each case, in what follows, we will refer
to these as patterns of period two and three, respectively. Due to the local nature of
the juxtacrine signalling mechanism, considering patterns of Delta and Notch activity
in such a periodic unit provides insights into more extensive arrays and the results
obtained are crucial to the subsequent multiscale analysis. The system (1) reduces
to a system of six coupled equations to which the solutions are either homogeneous
or patterned with a wavelength of three cells. We remark that, in view of (2), in the
period-three regime the connectivity of the periodic network is identical both in arrays
of hexagonal cells and in one-dimensional strings. For the purposes of the following
patterning and stability analysis, we therefore persist with the single indexj to indicate
each of the three cells in the periodic unit.

Via linear analysis of (1) it is straightforward to show thatthe homogeneous state
is unstable and period three patterns exist iff ′(d∗)g′(n∗) < −2, where(n∗,d∗) are the
homogeneous steady states satisfyingd∗ = g(n∗),n∗ = f (g(n∗)) and′ denotes differen-
tiation (Collier et al, 1996). Furthermore, the period three pattern is the fastest growing
mode from the uniform state. Similarly, period three steadystatesn∗j , d∗

j ( j = 1,2,3)

become unstable to period three perturbations iff ′(d
∗
j)g

′(n∗j) < −2, whered
∗
j denotes

the weighted sum of neighbouring steady-state values defined by (2).
The transition from parameter regimes in which the homogeneous steady state is

stable (so that adjacent cells exhibit identical levels of Notch activation and thereby
attain identical cell fates) to that in which stable heterogeneous states emerge leads to
the generation of fine-grained patterns of Delta and Notch upregulation (so that nearby
cells diverge to different fates). We remark that since it ispostulated that the level
of Notch activity determines its fate, in the following, we will use the terms “up-” or
“down-regulated” to refer to the level of Notch activation in each cell.

Bifurcation analysis indicates that the system admits three distinct pattern types of
period three: (i) a ratio of two identically up-regulated cells to one down-regulated,

1Plahte (2001) suggested that the feedback structure of the model (1) fundamentally favours this pattern,
independent of the specific feedback functionsf andg: the apparent negative feedback loop actually consists
of a sequence of interlaced positive loops and negative loops (more detail is given in Plahte (2001)) that drive
Delta and Notch activity into alternate extreme states, stabilised by the negative loops.
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(ii) a ratio of two identically down-regulated cells to one up-regulated and (iii) one
up-regulated cell, one down-regulated and one intermediate; in the following, we shall
refer to these patterns as type (i), (ii) and (iii) for clarity. Figure 2 shows typical
numerical simulations displaying period three patterns oftype (i) and (iii).
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Figure 2: Typical numerical simulations showing the level of Notch activity in a 10×10
section of a two-dimensional periodic array of hexagonal cells illustrating the steady-
state type (i) and (iii) patterning modes. Parameter values: λ = 1, a = 0.1, b = 100 and
(a) k = h = 2, corresponding to type (i); (b)k = h = 4.25, corresponding to type (ii).

In the three cell system under consideration the various pattern permutations mean
that types (i) and (ii) comprise three patterns each, whilsttype (iii) contains six pattern
configurations. Figure 3 shows the transition from one patterning mode to the next
under variation of the exponentsk andh which govern the feedback strength in the
signalling model (similar bifurcation behaviour is observed under variation ofk or h
alone), indicating that there is a distinct range of parameter space in which each of
the three types of pattern is stable, and that type (i) and (ii) patterns are stable for a
significantly larger portion of parameter space than those of type (iii). We highlight
that ‘stability’ as indicated in Figure 3 refers to stability of period three patterns within
the three-cell periodic unit. The various pattern configurations within each pattern type
are highlighted on the relevant curves; Figures 3(b) and (c)show the configurations in
detail. The solution branches indicate the level of Notch activation in each cell. For
instance, in the type (i) patterning regime, referring to Figure 3(a), if the level of Notch
activation in a cell follows the lower solution branch marked with circles, the remaining
pair of cells follow the upper branch (marked with diamonds). Similarly, in the type
(ii) regime, if the level of activation in a cell tracks the upper branch (filled circles),
the remaining cells track the lower branch (marked with squares); in between these
parameter ranges, type (iii) patterns are observed. Lastly, we remark that the bifurca-
tion structure is significantly more complex than that associated with the generation
of period two patterns (in each coordinate direction) in square cells (O’Dea and King
(2011)). It is important to note, however, that O’Dea and King (2011) considered the
specific case of checkerboard patterns, for which the analysis corresponds exactly to
that in a one-dimensional string of cells. In the case for which the periodic unit con-
tains four distinct levels of upregulation (only two exist for checkerboard patterns) the
behaviour is likely to be more complex.

Figure 3(a) indicates that type (i) patterns branch from thehomogeneous steady
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state subcritically; patterns containing three distinct levels of upregulation (type (iii)
patterns) and type (ii) patterns are created at subsequent bifurcations labelledCa–Cd .
The bifurcation pointsCa, Cc andCb, Cd form solution pairs: the Notch activity in two
of the three cells diverges from the supercritical bifurcations atCb andCc; the remain-
ing cell increases or decreases from its bifurcation point valueCa or Cd via the relevant
solution branch. The pitchfork bifurcations atCb andCc imply that patterns with three
distinct levels of Notch activation are generated from type(i) or type (ii) patterns by
the local, symmetric divergence of two of the three cells. Figure 4(a) illustrates how
this bifurcation structure changes under variation of the inhibitory feedback function
parameterb, demonstrating that the five bifurcations shown in Figure 3 collapse onto a
single patterning bifurcation from the homogeneous steadystate asb is reduced. Addi-
tionally shown are the resulting pattern-forming bifurcations obtained under variation
of k,h for values ofb at which the bifurcations collapse onto a subcritical bifurcation
(Figure 4(b)) and a supercritical pitchfork-like bifurcation (Figure 4(c)). Here, only
stable type (ii) and unstable type (i) patterns exist.
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Figure 3: (a) Bifurcation diagram showing the level of Notchactivation for the system
(1) in a three cell system with periodic boundary conditionsunder variation of the
parametersk andh. The stable homogeneous steady state, and various period three
patterns, are identified via different line styles; the corresponding unstable states are
represented by dotted lines (the unstable homogeneous state is indicated by a dot-dash
line for clarity). The various solution branches indicate the level of Notch activation
in each of the three cells; see text. Bifurcations at which patterns are created from
the homogeneous state and between different pattern types are denotedC ∗ andCa–
Cd , respectively. The homogeneous steady state is denotedn∗; for type (i) and (ii)
patterns, up- and down-regulated cells are denoted ‘+’ and ‘−’; type (iii) is denoted
(1 : 1 : 1). Panes (b) and (c) show in more detail the behaviour near the branch points
Cb andCc at which the transition from types (i) and (ii) to type (iii) patterns occurs.
The different type (iii) steady states are labelled 1,2,3 to denote increasing levels of
Notch upregulation in each cell. Asterisks denote type (iii) solutions with associated
type (i) or (ii) patterns.

The patterns shown in Figure 2 are robust, being generated from random initial data
as well as appropriate periodic or near-periodic initial conditions for a wide range of pa-
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Figure 4: (a) Bifurcation diagram showing the positions of the bifurcation pointsC ∗

andCa, Cc–Cd (see Figure 3) under variation of the parametersb andk, h. For the
particular valuea = 0.1 chosen here, the five bifurcations coalesce atb∗ ≈ 1.927. Panes
(b) and (c) illustrate the change in bifurcation structure for illustrative values ofb at
which only unstable type (i) and stable type (ii) patterns exist. In each case the upper
branch indicates the steady-state values of two of the threecells and the lower branch,
the remaining cell. In (b)b = 1 and (c)b = b∗; solid and dotted lines indicate stable
and unstable branches, respectively. The structure forb = 100 is shown in Figure 3.

rameter values. We remark that longer-range patterns (of period greater than three) may
be generated in this array of hexagonal cells by appropriatechoice of periodic initial
conditions and domain size. We note that these patterns are stable to periodic or ape-
riodic perturbations but that their domain of attraction issmall and therefore are only
observed for suitable initial data. Numerical simulationsof (1) indicate that regions
of these longer-range patterns form stable patterned distributions when competed with
period-three patterns and, additionally, are able to invade the unstable homogeneous
steady-state (invasive or competitive behaviour is generated via initial data comprising
a region of stable longer-range patterning adjacent to the unstable homogeneous state
or stable period-three pattern in the remainder of the domain). However, the introduc-
tion of random noise to periodic initial data, which is not itself a steady state of (1),
seems always to result in the emergence of the dominant period-three patterning mode;
similarly, an initial state comprising a region of unstableperiod-three pattern adjacent
to a region of stable longer-range pattern, leads to the invasion of the unstable state
with the corresponding stable period-three, rather than long-range, pattern (though the
region of stable longer-range pattern remains). Figure 5(a) shows an illustrative stable
pattern configuration obtained by competition of stable period-three and period-five
patterns; Figure 5(b) shows the modulated travelling wave of period-five pattern invad-
ing the unstable homogeneous state. Lastly, we note that therange of patterns formed
is limited by the hexagonal mesh; in particular, patterns ofeven period in each coordi-
nate direction are prohibited (though we remark that striped patterns of arbitrary period
are, of course, permitted).

To summarise, the signalling model of Collier et al (1996) displays robust fine-
grained patterning, consistent with those patterns observed in relevant biological sig-
nalling systems. In square cells, consideration of such patterns leads to the investiga-
tion of checkerboard-type patterns with period of two cell lengths in each coordinate
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Figure 5: Numerical simulations of (1) performed in a 60×60 hexagonal mesh illus-
trating the behaviour of longer-range patterns. (a) A stable configuration comprising
a stable period three pattern of type (iii) (left) adjacent to a stable period five (right)
Notch activation pattern. (b) The modulated wave of period-five Notch activation trav-
elling through the hexagonal mesh (j, l) and invading the unstable homogeneous steady
state at successive timest = 0,10,25 along the linel = 30. Initial conditions comprise
the domain split equally between the unstable homogeneous state (j < 30) and stable
period-five pattern (j > 30). All parameter values as in Figure 2(b).

direction. In hexagonal cells, the fine-grained patterningmode corresponds to patterns
of period three in each direction. Collier et al (1996) identified these patterns as the
fastest-growing mode a via linear analysis. The results contained in this section show
that the generation of fine-grained patterns in hexagonal cells is significantly more
complex than their checkerboard counterparts in square cells. We have isolated the
three possible types of fine-grained pattern, demonstratedtheir robustness via numeri-
cal simulation and shown how the bifurcation structure varies under variation of certain
feedback parameters. Such information will prove crucial for the following multiscale
analyses. In addition, via numerical simulations of (1) we have shown that patterns of
wavelength greater than three may be produced by this model,though these patterns
have small domains of attraction and are therefore only observed for suitable initial
data, further exemplifying the dominance of the fine-grained model.

In the following sections, we employ a multiscale analysis to construct continuum
models of the period-three patterning behaviour for parameter values near the pattern-
ing bifurcation points investigated above.

3 Multiscale analyses of Delta and Notch activity in an
array of hexagonal cells

3.1 Model formulation

In this section, we employ a multiscale method to derive continuum models based upon
the discrete system (1) that capture the period-three patterning phenomena described
in §2.2. Figures 3–2 imply that introducing appropriate spatial variation of one (or
more) of the model parameters will induce fine-grained patterning in certain regions
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of the domain, or transition from one patterning mode to the next; in the following,
we construct continuum models which capture fine-grained pattern generation in re-
sponse to macroscale tissue stimulation, corresponding tospatial variation in feedback
strength. (Such formulations include spatially-uniform feedback as a special case, anal-
ysis of which will be especially instructive when considering pattern competition and
travelling-wave behaviour.) In a biological context, suchparameter variation might
correspond to differences in the sensitivity of the cells toDelta-Notch binding, leading
to the adoption of a particular programme of gene activationby a subset of the cell
population according to spatial position. Such environmental inhomogeneities are a
common feature of biological systems, such as in embryonic tissue growth. We note,
however, that the parameter values employed in the remainder of this work are chosen
to illustrate the interesting patterning behaviour exhibited by the model and investi-
gated in§2.2 and are not motivated by specific biology.

To capture the different facets of the system (1) in the period-three regime within
appropriate continuum representations, we consider in turn (a) the patterning bifurca-
tion from the homogeneous state, (b) the transition betweendifferent period three pat-
terning regimes and, (c) the behaviour for parameter valuesclose to the set for which
the separate bifurcation points collide leaving a single pitchfork bifurcation (see Fig-
ures 3 and 4(a,c)). As remarked earlier, since in the parameter regimeb > b∗, illustrated
in Figure 3(a), the bifurcation from the homogeneous state generating type (i) patterns
is sub-critical, the asymptotic behaviour derived in case (a) will not be reflected in the
observed solutions to (1). However, the simple model analysed here is ideally suited to
illustrate our methodology; the analysis holds for alternative signalling models whose
stability properties imply that the results are more immediately applicable. To construct
a continuum model capturing period three patterning phenomena in response to spatial
variations in feedback strength, a homogenisation processis required. To preserve the
local periodicity, we assume that the variation of the spatially non-uniform parameter is
slow compared to the variations of Delta and Notch activity:that is, we construct two-
scale models which capture fine-grained period-three pattering patterning phenomena.
This separation of scales (between ‘fast’ and ‘slow’ variation) allows the integration of
fine-grained (microscale) patterning within a macroscale framework.

j,l j+1,lj−1,l

j,l+1

j,l−1

j+1,l+1

j−1,l−1

δ

x = δ j

y̌ = δ l

ψa

ψc

ψb

Figure 6: The discrete labelling scheme and corresponding continuum coordinates em-
ployed for the multiscale analysis of pattern formation in an array of hexagonal cells.
The shading indicates cells with different levels of Notch and Delta activity, in which
the continuum variablesψ i(x̌, y̌,t), i = a,b,c are defined. The periodic unit for the
pattern of period 3 inj + l is highlighted.
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The continuum model is derived as follows. Considering an array of hexagonal
cells, we denote the distance between cell centres byδ ≪ 1, introduce slowly varying
continuum variables ˇx = δ j, y̌ = δ l and represent the levels of Delta and Notch activity
in the multiple-scales form:d j,l = d( j, l, x̌, y̌,t), n j,l = n( j, l, x̌, y̌,t), in which j, l repre-
sent the fast, and ˇx, y̌ the slow, spatial scales. The labelling scheme for hexagonal cells,
together with the periodic repeating unit for the period three pattern is illustrated in
Figure 6. Additionally, since adjacent cells differ significantly in their Delta and Notch
activity the patterning regimes, we write:

d( j, l, x̌, y̌,t) = da(x̌, y̌,t), n( j, l, x̌, y̌,t) = na(x̌, y̌,t) : ( j + l)mod3= 2, (3)

d( j, l, x̌, y̌,t) = db(x̌, y̌,t), n( j, l, x̌, y̌,t) = nb(x̌, y̌,t) : ( j + l)mod3= 0, (4)

d( j, l, x̌, y̌,t) = dc(x̌, y̌,t), n( j, l, x̌, y̌,t) = nc(x̌, y̌,t) : ( j + l)mod3= 1, (5)

and we will refer to the cells corresponding to equations (3)–(5) as types a–c. We
remark that since the discrete labelling scheme underpins our multiscale approach, we
are unable, as it stands, to accomodate cell division, whichwould require a global
relabelling; our analysis applies on the timescale of Delta-Notch mediated cell fate
determination, which is significantly exceeded by that of the cell cycle (Hartenstein &
Posokony, 1990).

Transforming to an orthogonal Cartesian coordinate system(x,y)= (x̌− y̌/2,
√

3y̌/2),

expanding in Taylor series and exploiting the periodicity,the spatial coupling termd
i

for each cell typei may be written:

d
i
=

1
2 ∑

q 6=i

dq +
δ 2

8
∇ ∑

q 6=i

dq +O(δ 4), i = a,b,c. (6)

Spatial variation in biochemical or biophysical conditions within the domain (lead-
ing to differences in feedback strength) is modelled by introducing slow spatial varia-
tion to the parametersk andh. For simplicity, we assumek = h and keep the remaining
parameters fixed; we assumek = h = k(x,y). We expand around the bifurcation point
under consideration (C ∗, Ca–Cd ; see Figures 3 and 4) via:

k(x,y;ε1) = k∗ + ε1k̂(x,y), (7)

di(x,y,t;ε2) = di∗ + ε2di
1(x,y,t)+ ε2

2di
2(x,y,t)+ · · · , (8)

ni(x,y,t;ε2) = ni∗ + ε2ni
1(x,y,t)+ ε2

2ni
2(x,y,t)+ · · · , (9)

wherei = a,b,c indicates expansions associated with each cell type,k = k∗ denotes the
relevant bifurcation point, at whichni∗, di∗ are the steady states associated with each
cell type, andε1(δ ), ε2(δ )≪ 1. Additionally, we rescale time according toτ = ε3(δ )t,
whereε3(δ ) ≪ 1 will be chosen such that we analyse the equations at the timescale on
which spatial coupling first appears.

We now pause to define some notation which will be of use in the following sec-
tions. We define linear operatorsL andM as follows:

L (η ,ξ ,ν) = g′(ν)η − ξ , M (η ,ξ ,ν) = ξ f ′(ν)−η , (10)

together with the averagesd
i
p for each cell typei at thepth asymptotic order:

d
i
p =

1
2 ∑

q 6=i

dq
p, i = a,b,c; p = 1,2, . . . (11)
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3.1.1 Emergence of patterns from the homogeneous steady state

In this section, we consider the generation of fine-grained patterns from the homoge-
neous steady state at the bifurcation pointC ∗ in the regimeb > b∗ as illustrated in
Figure 3(a). Employing the linear operators (10), the scalingsε1 = ε2 = ε3 = δ 2, the
averages (11) and noting that atC ∗, (ni∗,di∗) = (n∗,d∗) for i = a,b,c, the equations
governing Delta activity in each cell typei at each order are:

O(1) : 0 = g(n∗)−d∗, (12)

O(δ 2) : 0 = L (ni
1,d

i
1,n

∗)+ F1(n
∗), (13)

O(δ 4) :
1
λ

∂di
1

∂τ
= L (ni

2,d
i
2,n

∗)+
g′′(n∗)(ni

1)
2

2
+ G1(n

∗)ni
1 + F2(n

∗),

(14)

and Notch is governed by:

O(1) : 0 = f (d∗)−n∗, (15)

O(δ 2) : 0 = M

(
ni

1,d
i
1,d

∗
)

+ F̂1(d
∗), (16)

O(δ 4) :
∂ni

1

∂τ
= M

(
ni

2,d
i
2,d

∗
)

+
(d

i
1)

2

2
f ′′(d∗)+ Ĝ1(d

∗)d
i
1 + F̂2(d

∗)+
f ′(d∗)

4
∇2d

i
1.

(17)

The functionsFp, F̂p and Gp, Ĝp are theO(δ 2p) perturbations tog, f and g′, f ′,
expanded around the bifurcation point valuek∗, and defined by:

Fp = k̂
∂ pg
∂np , F̂p = k̂

∂ p f
∂d p , G1 = k̂

∂ 2g
∂n∂h

, Ĝ1 = k̂
∂ 2 f

∂d∂k
, (18)

these being evaluated atk = h = k∗, d = d∗ andn = n∗, and in view of the expansion
(7) depend on the spatial coordinatesx andy.

TheO(δ 2) linear system is of rank four and therefore has two levels of degeneracy,
reflecting the additional degree of freedom implied by the analysis of a periodic unit of
three cells (in comparison to that observed when analysing checkerboard patterns) in
which the different cell types may be freely interchanged. Noting that f ′(d∗)g′(n∗) =
−2 (see§2.2) andni∗ = n∗ for i = a,b,c, the combinations:

g′(n∗)M
(

ni
p,d

i
p,d

∗
)
−g′(n∗)M

(
na

p,d
a
p,d

∗
)

+L
(
ni

p,d
i
p,n

∗)−L
(
na

p,d
a
p,n

∗) , (19)

wherei = b,c andp = 1,2, . . ., are identically zero. These correspond to the two eigen-
vectors (with zero eigenvalue) of the linear system, based on which we make the ansatz:




d1

D1

d̃1



= A(x,τ)




−1
0
1



+ B(x,τ)




−1
1
0



+C(x,t), (20)

whereA andB are to be determined and, from (13), (16) we obtain:
C =

(
g′(n∗)F̂1(d∗)+ F1(n∗)

)
/3. We remark that through appropriate choice ofA, B,

all the types of possible period-three pattern discussed in§2.2 may be represented by
this ansatz, including the additional pattern configurations obtained under cyclic per-
mutation of the periodic unit.
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Employing the linear combinations (19) to eliminate theO(δ 2) perturbationsni
2,

di
2, equations (12)–(17) may be expressed as the following pairof coupled partial dif-

ferential equations forA(x,τ), B(x,τ):

Λ
∂η
∂τ

(A +2B) = α1
(
4γB +2γA−2AB−A2)+

(
β1 + ∇2)(A +2B), (21)

Λ
∂

∂τ
(2A + B) = α1

(
4γA +2γB−2AB−B2)+

(
β1 + ∇2)(2A + B), (22)

whereΛ, γ, α1 andβ1 are defined by:

Λ =
4(λ +1)

λ
, γ = g′(n∗)F̂1(d

∗)+ F1(n
∗), α1 =

g′(n∗) f ′′(d∗)

2
+

2g′′(n∗)

[g′(n∗)]2
, (23)

β1 =
4G1(n∗)
g′(n∗)

−2g′(n∗)Ĝ1(d
∗)− 4g′′(n∗)F1(n∗)

[g′(n∗)]2
−g′(n∗) f ′′(d∗)γ. (24)

We reiterate that, in view of equations (7) and (18),γ = γ(x,y) andβ1 = β1(x,y), while
Λ andα1 are constants. The corresponding Notch activity is given byequation (13).
As in the case of square cells (see O’Dea and King (2011)), equations (21) and (22)
demonstrate that, on the macroscale, the juxtacrine signalling interaction manifests it-
self as linear diffusion, with effective diffusivity 1/Λ, despite the short-range patterning
under consideration.

This continuum model differs from that derived in O’Dea and King (2011) (in
which a checkerboard patterning regime in square cells was considered) by the quadratic
(rather than cubic) form of the nonlinearity, due to the asymptotic scalings appropriate
to reflect the solution behaviour nearC ∗. Additionally, we have expressed our equa-
tions in a more general form to enable the wider array of period three modes to be
captured.

We note that the form of the continuum model is not crucially dependent on the
details of the underlying signalling system; additional interaction terms (such as those
of the formn jd j or n jd j as employed by Owen and Sherratt (1998) in a more complex
juxtacrine signalling model, accommodating ligand, free receptors and bound recep-
tors) do not materially affect the diffusive interaction orthe quadratic nonlinearity. As
noted above, since the bifurcation atC ∗ is subcritical, the behaviour captured by equa-
tions (21) and (22) will not be reflected in the observed solution behaviour; however,
the analysis presented here will apply to similar systems whose stability does not con-
form to that shown in Figure 3. For constant parameter values, the uniform steady
states of (21) and (22) are determined by solving a pair of coupled quadratic equa-
tions. (We highlight that these are “uniform” in the sense that they are constant for
their associated cell type, adjacent cells attaining different steady states.) The signs
and magnitudes of the parametersγ, α1 andβ1 in (21), (22) determine the existence
of such solutions, reflecting the stability properties of the underlying discrete system.
In the case investigated here, multiple steady-state solutions to (21), (22) exist on both
sides of the bifurcation point, reflecting its inability to differentiate between stable and
unstable states; in contrast, a supercritical transition,such as the pitchfork bifurcations
atCb, Cc, would imply a reduction in the number of real steady states as the bifurcation
point is traversed.

3.1.2 Transitions between patterned states

In this section, we derive a continuum model to capture the transition between period
three patterns of types (i) and (iii) or types (ii) and (iii) bifurcation points labelledCa–
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Cd , as illustrated in Figure 3. We note that, in contrast to the subcritical behaviour
analysed in§3.1.1, in this case, the transitions occur at supercriticalpitchfork-type
bifurcations; the continuum model we shall derive is therefore immediately applicable
to the dynamics of the underlying discrete system.

Adopting the notation employed in§3.1.1, the appropriate linear combinations in
this case are:

g′(ni∗)M
(

ni
p,d

i
p,d

i∗)−g′(na∗)M
(

na
p,d

a
p,d

a∗)
+L

(
ni

p,d
i
p,n

i∗)−L
(
na

p,d
a
p,n

a∗) ,
(25)

whereini = b,c andni∗, di∗ now denote the levels of Notch and Delta activity in each
cell type at the bifurcation point between pattern types, again denotedk∗ in each case.

Considering the bifurcation pointsCb, Cd at which the pattern has a ratio of two
upregulated cells to one downregulated cell (see Figure 3),it may be observed that the
downregulated state is an order of magnitude smaller than the upregulated state and we
therefore scale the downregulated state withδ . Figure 3 indicates that at the bifurca-
tionsCa, Cc, the steady states of Notch activity are of comparable order; however, the
corresponding up- and downregulated steady states of Deltaactivity display an order
of magnitude disparity (not shown) and a corresponding rescaling must therefore be
chosen when considering these bifurcations. We remark thatthis change in scalings is
also revealed from the asymptotic analysis.

In the more general case for which the downregulated steady-state value of Notch
activation is of the same order as the level of upregulation,the scaling employed in
§3.1.1 is appropriate. Considering a bifurcation of the formCb, Cd (with steady states
of comparable order), the calculation follows the same method as that outlined in§3.1.1
and we obtain:

Λ
∂

∂τ
(A +2B) = α1

(
4γB +2γA−2AB−A2)+

(
β1 + ∇2)(A +2B), (26)

Λ
∂

∂τ
(2A + B) = αA2 + β B2+ κAB + µA + νB + χ + ∇2 (2A + B), (27)

in which Λ, α1, γ andβ1 are defined by (23), (24) but evaluated at the new bifurcation
pointk∗, na∗, da∗ (corresponding to the upregulated Notch activation state). We remark
that, since in the case under consideration both cells of type a and b are in the upregu-

lated state,d
a∗

= d
b∗

= (da∗+dc∗)/2,d
c∗

= da∗. Application of the linear combination
(19) therefore results in the PDEs (26) and (21) having identical form. The parameters

α–χ are known functions of both up- and down-regulated steady states:ni∗, di∗, d
i∗

(i = a,c), but are too cumbersome to include here; these are includedin Appendix A
for completeness.

We now consider in detail the behaviour atCb, Cd under the configuration
(na∗,na∗,nc∗), wherenc∗ = δ n̂c∗ and the steady-statesna∗ and n̂c∗ areO(1). In this
case, at first order, the level of Notch activation in cells oftype a and b diverges at
the pitchfork bifurcationCb, the activity in type c cells remaining constant. Such be-
haviour corresponds to choosingA = 0 in equation (20). Here, the appropriate scaling
is ε1 = ε3 = δ 2 andε2 = δ so that spatial and temporal variation enters atO(δ 3). The
remaining two configurations obtained under cyclic permutation may be analysed in
a similar way and correspond toB = 0 andA = −B in equation (20) in each case.
We note that an equivalent derivation provides an equation governing the transition
between pattern types (ii) and (iii) atCa, Cc, but is omitted.

The equations atO(1), O(δ ) andO(δ 2) are of similar form to (12)–(17); the equa-

15



tions governing Notch and Delta activity in each cell type are as follows:

O(1) : 0 = g(ni∗)−di∗, 0 = f (d
i∗
)−ni∗ (28)

O(δ ) : 0 = L (ni
1,d

i
1,n

i∗), 0 = M (ni
1,d

i
1,d

i∗
), (29)

O(δ 2) : 0 = L (ni
2,d

i
2,n

i∗)+
g′′(n∗)

(
ni

1

)2

2
+ F1(n

i∗), (30)

0 = M (ni
2,d

i
2,d

i∗
)+

f ′′(d
i∗
)(d

i
1)

2

2
+ F̂1(d

i∗
), (31)

O(δ 3) :
1
λ

∂di
1

∂τ
= L (ni

3,d
i
3,n

i∗)+ ni
1ni

2g′′(ni∗)+
1
6

g′′′(ni∗)(ni
1)

3 + ni
1G1(n

i∗), (32)

∂n1

∂τ
= M (ni

3,d
i
3,d

i∗
)+ d

i
1d

i
2 f ′′(d

i∗
)+

1
6

f ′′′(d
i∗
)(d

i
1)

3

+ d
i
1Ĝ1(d

i∗
)+

f ′(d
i∗
)

3
∇2d

i
1, (33)

whereini = a,b,c andF1, F̂1, G1 andĜ1 are defined by (18) and are evaluated at the
appropriate bifurcation point.

Employing the ansatz (20), equations (29) yieldC = 0. TheO(δ 3) equations (32),
(33) may be reduced to a reaction-diffusion equation forB(x,t) as follows. The linear
combination (25) withi = b allows removal ofO(δ 3) perturbations,ni

3, di
3, while

O(δ 2) perturbations are eliminated in favour of those ofO(δ ) via equations (30), (31)
and the linear combination (25) withi = c. Lastly, we employ equation (29) to express
the equation in terms ofB only, obtaining:

Λ
∂B
∂τ

= α2B3 + β2B + ∇2B, (34)

whereΛ is defined by equation (23) andα2 andβ2(x,y) are defined:

α2 =
2g′′′(na∗)

3[g′(na∗)]3
− g′(na∗) f ′′′(d

a∗
)

12
−

[
g′(na∗) f ′′(d

a∗
)
]2

8

+
α1

8

(
g′(na∗) f ′′(d

a∗
)

4
− g′′(na∗)

[g′(na∗)]2

)
, (35)

β2 =
4G1(na∗)

g′(na∗)
− [g′(na∗)]2 f ′′(d

a∗
)F̂1(d

a∗
)−2g′(na∗)Ĝ1(d

a∗
)

+α1

(
F̂1(d

a∗
)+

f ′(d
a∗

)F1(na∗)

2

)
. (36)

Equation (34) is invariant under the transformationB → −B, reflecting the sym-
metric divergence of activity in cells of type a and b at the supercritical pitchfork bi-
furcationCb; the level of activity in cells of type c remains constant atO(δ ). The
continuum model (36) is therefore identical in form to the reaction-diffusion equation
derived in O’Dea and King (2011) when considering a period-two patterning regime in
square cells. We reiterate that the patterning mode under consideration and the asso-
ciated scalings, rather than the details of the underlying signalling model, result in the
form of the partial differential equation (34).
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For constantβ2 (i.e. k̂ = constant), the uniform steady states of (34) areB =
(0,±

√
−β2/α2); ‘uniform’ here means that they are spatially-constant in cells of type

a. Fork < k∗ we findβ2 > 0 and only the trivial solutionB = 0 exists, corresponding
to the maintenance of the type (i) heterogeneous steady state: the periodic unit remains
in the staten ∼ (na∗,na∗,δnc∗). As the feedback strength increases,β2 changes sign:
k > k∗, β2 6 0; in this regime non-trivial roots exist and the behaviour in the periodic
unit isn ∼ (na∗,na∗,0)+δ (±

√
−β2/α2,∓

√
−β2/α2, n̂c∗) corresponding to the emer-

gence of type (iii) patterns. Considering only the local value of the feedback strength
β2 = β2(x,y), we therefore expect the generation of patterned states to reflect the pitch-
fork bifurcation atk∗. For brevity, hereafter we will refer to this patterning behaviour
as that influenced by “local feedback strength”.

We note that a similar analysis may be performed at the bifurcation pointsCa, Cc

yielding a corresponding result.

3.1.3 Two parameter expansion

The above multiscale analyses have produced continuum models, based upon an un-
derlying discrete patterning system, for the emergence of (unstable) patterns from the
homogeneous steady state (§3.1.1) and the (stable) transitions between patterns of types
(i) and (ii) and types (ii) and (iii) (§3.1.2) in parameter regimes for which these pattern-
ing bifurcations are widely spaced.

Inspection of the model equations derived in§§3.1.1 and 3.1.2 reveals that the gen-
eration of, and transition between, period-three patternsis dependent onα1 (for clarity,
we emphasise thatα1 = α1(na∗,da∗,k∗,b), na∗ andda∗ being the steady states in cells
of type a at the bifurcation pointk∗ for a specific value ofb). The multiscale anal-
yses presented in§§3.1.1 and 3.1.2 correspond to the bifurcation structure illustrated
in Figure 3 for whichα1 > O(1). In the caseα1 = 0 (b ≈ 1.927), the five bifurca-
tions collapse onto one pitchfork-like patterning bifurcation generating stable type (ii)
and unstable type (i) patterns from the homogeneous steady state (see Figure 4(c)).
Here, we analyse the behaviour near the bifurcation atα1 = 0; inspired by Figure 4 we
consider:

b(x,y;ε4) = b∗ + ε4b̂(x,y) (37)

in addition to the expansions (7)–(9), in which(di∗,ni∗) = (d∗,n∗) denote the homo-
geneous steady-state values of Delta and Notch activity atb∗, k∗, the bifurcation point
values at whichα1 = 0.

In this regime, the model (21) and (22) breaks down, providing only the trivial
steady state; instead, a continuum model for period three patterns being generated from
the homogeneous steady state is obtained by choosingε1 = ε3 = ε4 = δ 2 andε2 = δ
and spatial and temporal variation enters atO(δ 3) as in§3.1.2. The equations at each

order are identical to (28)–(33) withf and its derivatives evaluated atd
i∗

= d∗; here,
F1, F̂1, G1, Ĝ1 are theO(δ 2) perturbations tof , g and f ′, g′ expanded aroundb∗, k∗.

As in the previous analysis of pattern emergence from the homogeneous steady
state, the linear combinations (19) enable elimination ofO(δ 3) perturbations (ni

3, di
3)

from (32) and (33). Equations (31) allowO(δ 2) perturbations to be removed from
the resulting pair of equations in favour of those ofO(δ ); employing the ansatz (20)
with C = 0, (28)–(33) may then be expressed as the following pair of coupled partial
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differential equations forA(x,τ), B(x,τ):

λ
∂

∂τ
(A +2B) = α2

(
A3 +3A2B +3AB2+2B3)+

(
β2 + ∇2)(A +2B), (38)

λ
∂

∂τ
(2A + B) = α2

(
B3 +3A2B +3AB2+2A3)+

(
β2 + ∇2)(2A + B), (39)

whereα2 andβ2 are defined by (36) and evaluated atα1 = 0, d
a∗

= d∗. The corre-
sponding Notch activity is given by equation (13).

The analyses presented in§§3.1.1 and 3.1.2 describe the behaviour near the indi-
vidual bifurcation pointsC ∗ or Ca–Cd ; above, via the isolation of the combination
α1 which dictates the bifurcation structure of the system (except in the special case
for which the downregulation of Notch activity in one cell isextreme), we have de-
rived a more general formulation which captures the generation of the five bifurcation
points illustrated in Figure 3. Furthermore, the model corresponding to the structure
illustrated in Figure 4(c) may be recovered by settingb̂ = 0.

We remark that the nonlinearities in the model (38), (39) areof a different form to
those in the models (21), (22) and (26), (27), obtained by analysing pattern generation
in the regimeα1 > O(1) for steady states of comparable order. However, by consider-
ing the matching between the inner (in parameter space) formulation (38) and (39) and
the outer formulations (21), (22) and (26), (27)2, it can be shown that these models are
consistent in the limitŝb → ∞, b → b∗. This calculation is summarised in Appendix B
for completeness.

3.1.4 Summary

We have employed a multiscale analysis to derive continuum models based upon the
discrete Delta-Notch signalling model that describe both the emergence of period three
patterns from the homogeneous steady state and the transition between two types of
period-three pattern in appropriate parameter regimes.

In the former case, the bifurcation from the homogeneous state generating type (i)
patterns is sub-critical, and so the asymptotic behaviour derived will not be reflected
in the observed solutions to (1). However, the analysis contained herein serves to il-
lustrate our methodology; similar continuum models may be derived for alternative
signalling systems whose stability properties imply that the results are more immedi-
ately applicable. On considering the transition between patterned states, two distinct
regimes were identified. In the case for which the heterogeneous steady states of Delta
and Notch activation are of comparable order, the generation of patterns from the ho-
mogeneous state and the transition between patterning modes are governed by models
of a similar form. In each case we obtain a pair of coupled reaction-diffusion equations
with quadratic nonlinearity: equations (21), (22), (26) and (27). This deviates from the
equation derived in O’Dea and King (2011), in which a cubic nonlinearity is obtained.
This disparity is due to the asymptotic scalings required tocapture solution behaviour
near the bifurcation points in the multiscale analysis. An exception is the transition be-
tween patterning modes in parameter regimes for which the downregulation in one of
the three cells is extreme (the transition at the pitchfork bifurcationsCa or Cd shown in
Figure 3). Here, since the level of activation in the downregulated cell remains constant
(to first order), the resulting continuum model (34) is identical in form to that derived

2We note that the outer pattern transition model (34) is not applicable at the edge of the inner layer since
in this regime the steady states are of comparable order.
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in O’Dea and King (2011) in which the symmetric divergence ofa periodic unit of two
cells at a pitchfork bifurcation was considered.

The model equations (21), (22) and (26), (27) are expressed in a more general form
than that in O’Dea and King (2011), leading to a system of PDEsin place of the single
PDE obtained in O’Dea and King (2011). This reflects the more complex pattern form-
ing behaviour exhibited in a hexagonal mesh. In the case of checkerboard patterns, the
pattern-forming bifurcation is of pitchfork type and the possible pattern configurations
are equivalent up to a phase shift of a single cell. The asymptotic behaviour is therefore
captured by one PDE (with cubic nonlinearity) and the Notch activation in alternate
cells (n1, n2, say) diverges symmetrically from the bifurcation point; the alternative
pattern therefore displays the corresponding, but inverse, behaviour,viz: ±n1 = ∓n2.
In the case of patterns of period three, the various pattern configurations associated
with each mode mean that such a symmetry is not sufficient to capture the entire be-
haviour. A second PDE is required to provide an additional degree of freedom and
these patterns may then be captured via suitable choice of the slowly-varying functions
A andB. In (34), however, due to the specifics of the problem at hand,we are led to
consider the case for whichA = C = 0 and the resulting single equation models the
transition from type (i) patterns in the configuration (na∗,na∗,δ n̂c∗) to corresponding
patterns of type (iii) only. The return to a single PDE and cubic nonlinearity obtained
in this case reflects that the third cell in the periodic unit remains constant to first or-
der, the remaining two cells diverging symmetrically, as isthe case for checkerboard
patterns.

Figure 4 reveals that the bifurcation structure is controlled by the feedback parame-
ter b, reflected in the appearance of the combinationα1 in the asymptotic analysis; the
five bifurcations illustrated in Figure 3 collapse onto a single supercritical pitchfork-
like bifurcation at a critical valueb∗ (corresponding toα1 = 0). Inspired by this, we
performed a two-parameter expansion, constructing a continuum model for the unfold-
ing bifurcation atk∗, b∗. In this case, the second order equations become degenerate
and the resulting reaction-diffusion equation has a cubic nonlinearity as in O’Dea and
King (2011), reflecting that the behaviour in two of the threecells is identical, track-
ing the upper solution branch of the pitchfork. The remaining cell follows the lower
branch; the alternative patterns are obtained by invertingthis behaviour. However,
a system of PDEs is nevertheless obtained, reflecting the additional possible pattern
configurations. By considering matching between this formulation and the preceding
analyses in appropriate limits, we confirmed that the various continuum limits are con-
sistent and that the model derived for the behaviour nearb∗ contains the other models
as limit cases.

4 Numerical results

4.1 Steady states

As noted above, the continuum model (21), (22) is unable to predict the observed be-
haviour of the discrete model (1) since the period three patterns branch subcritically
from the homogeneous steady state atC . In place of time-dependent numerical sim-
ulations of (1), we therefore compare the unstable steady states of (1) nearC with
those of (21) and (22) to demonstrate that our multiscale analysis does in fact reflect
the (unstable) behaviour of the underlying system near the bifurcation point. Figure
7(a) shows how the steady state levels of Notch activity compare to the bifurcation
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behaviour of the nonlinear model (1) as the parameterk is varied; Figure 7(b) shows
this in more detail. Clearly, the steady states of the continuum model form a good
approximation to the (unstable) underlying discrete behaviour close to the bifurcation
point; further from the bifurcation point, the transcritical-type behaviour predicted by
the continuum limit diverges from the nonlinear model.
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Figure 7: (a) Comparison of the steady states of Notch activity of the nonlinear system
(1) near the bifurcation pointC (see Figure 3) with those of the continuum approxima-
tion (21), (22); (b) the comparison in more detail. The stable steady state is indicated
by a solid line, unstable nonlinear steady states by dotted lines. Parameter values as in
Figure 2 exceptk = h as indicated.

4.2 Simulations

To illustrate the dynamic behaviour of our continuum formulations, we now present nu-
merical solutions of (34) on the domain 06 x 6 L, 06 y 6 L and compare these to cor-
responding numerical simulations of the discrete system (1). These simulations capture
the transition between type (i) and type (iii) patterns. We choosêk(x,y) = 2x/L−1 to
demonstrate how spatial variation in feedback strength dictates the emergence of fine-
grained patterning in the domain. As noted in§3.1.2, the uniform steady steady states
of (34) are (0,±

√
−β2/α2). Considering only the local value of the feedback strength

β2 = β2(x,y), we therefore expect the generation of patterned states to reflect the pitch-
fork bifurcation atk∗. In addition to the comparison with the underlying discretemodel,
in the following, we demonstrate how solutions to (34) with spatially-varying feedback
differ from the pitchfork bifurcation behaviour that arises from considering only this
‘local feedback’ strength. Simulations of (38) and (39) capture the emergence of stable
type (ii) patterns from the homogeneous steady state; whilethe specifics of the pattern
transition represented by (38) and (39) are significantly different to those described by
(34), the behaviour of the relevant variables at first order is qualitatively similar (two of
the cells following the upper solution branch of the pitchfork-like bifurcation, the third
cell tracking the lower) and simulations are therefore omitted for brevity.

Equation (34) was solved by discretising on a uniform spatial grid and employing
the initial value problem solverode15s in MATLAB; in the following simulations
we choose the grid spacing∆x, ∆y as∆x = ∆y = 10−4. We note, however, that the
grid spacing is not prohibited from exceeding significantlythe diameter of a single cell
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since the cell-scale variation has been systematically averaged out. Since we expect
macroscale variation over the domain due to the chosen form of k̂(x,y), we impose
no-flux conditions atx = 0,L in place of a macroscale periodic domain imposed in the
discrete simulations shown in Figure 2.

In Figure 8(a), the steady-state pattern in a 19×19 section of a small 2D array of
hexagonal cells is shown, obtained from simulation of the discrete system (1) indicating
the transition from one patterning mode to the next. So that patterning effects are
evident on this small domain, we chooseδ = 0.5, L = 10.5. In Figure 8(b) the steady-
state value of the level of Notch activation in cells of type aand b as predicted by (34)
are compared to a corresponding simulations of (1) in an array of 900×900 hexagonal
cells (L = 9, δ = 0.01), demonstrating that a smooth transition to from type (i)to type
(iii) patterning is obtained. In contrast, considering only the local feedback strength
(see§3.1.2) predicts a pitchfork bifurcation from spatial homogeneity to patterning;
far from the bifurcationk∗, the local feedback approximation shows good quantitative
agreement with the numerical simulations.
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Figure 8: (a) The steady state level of Delta activity predicted by the discrete model
(1) in a section of a two-dimensional array (δ = 0.5, L = 10.5), and (b) a comparison
between the levels of Delta activity indicated by the discrete and homogenised models
in an array of 900×900 cells (δ = 0.01,L = 9) along the liney = 4.5. The dotted line
indicates the pitchfork transition arising from considering ‘local feedback’ (see text)
only. k̂(x,y) = 2x/L−1, ∆x = 1×10−4 = ∆y, other parameters as in Figure 2.

4.3 Pattern invasion

4.3.1 Travelling waves

In this discrete model, spatial patterns in Delta and Notch activation can be generated
by a modulated travelling wave, behind which a regular pattern forms. Comparison
between the wave speed of pattern invasion predicted by our continuum models and
that obtained from simulation of the discrete system provides a quantitative descrip-
tion of the accuracy of the continuum approximation and an indication of its range of
applicability in parameter space. Furthermore, such phenomena are also observedin
vivo; for example, the morphogenetic furrow in the retina ofDrosophila, behind which
a regular pattern of photoreceptors surrounded by support and pigment cells is created
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(Owen, 2002; Plahte and Øyehaug, 2007).
Travelling-wave solutions to (34) may be constructed by considering a type (iii)

pattern-forming wave invading the unstable type (i) state on an infinite domain. As
noted in O’Dea and King (2011), while linear propagation front travelling-wave so-
lutions of the formB(x + vt) may be constructed, these correspond to ‘pushed’ wave
fronts. Equations (1) and (34) describe ‘pulled’ wave fronts (Hadeler and Rothe, 1975;
Stokes, 1976; Rothe, 1981; Plahte, 2001), whose minimum wavespeed may be calcu-
lated by analysing the behaviour at the leading edge of the wave via:

B(x,t) ∼ δek(x−vt). (40)

The wavenumber in each coordinate directionk = (kx,ky) and the minimum speed
v are determined from the dispersion relation obtained from (34) together with the
corresponding repeated root condition. Considering wavestravelling in the direction
y = 0, we obtainv = 2

√
β2/Λ.

Pattern-forming travelling waves may be induced in simulations of the discrete and
continuous models through choice of suitable initial data;the following simulation cor-
responds to an initial state consisting of stable type (iii)pattern in the region 0< y < L,
0< x < L/30 and unstable type (i) in the remainder. We chooseL = 100,δ = 0.05 and,
as in§4.2, no-flux conditions are applied atx = 0,L in place of periodicity. Figure 9(a)
shows the position of the midpoint (defined as the half-maximal value of Delta activa-
tion in cells of type a) of a modulated travelling wave of a type (iii) pattern invading a
region of unstable type (i) pattern obtained from numericalsimulation of (1) and (34),
indicating that the numerical solution of the homogenised model faithfully reproduces
the behaviour of the underlying discrete system. While providing a good qualitative ap-
proximation, the ‘linearly-selected’ wavespeed deviatesfrom this observed behaviour;
analysing travelling waves closer to the bifurcation pointreduces this deviation: Fig-
ure 9(b) indicates how the speed of the invading wave predicted by the discrete and
continuous systems varies as a function ofδ . In these simulations, the wavespeed was
calculated in the central part of the domain to minimise boundary effects. Clearly,
the minimum wavespeed predicted by the continuum model provides an excellent ap-
proximation to the underlying discrete behaviour, even forparameter values relatively
far from the bifurcation point; this approximation improves as the bifurcation point is
approached.

4.3.2 Pattern competition

In each of the three patterning regimes depicted in Figure 3,more than one period-three
heterogeneous state is stable: there are three possible type (i) and type (ii) patterns, and
six type (iii) pattern configurations. Since, in each case, the pattern configurations are
equivalent (up to a suitable permutation of the periodic unit) and equally stable,a pri-
ori, neither has the propensity to invade the other: In Figure 10, we demonstrate how
the system (1) evolves from an initial state containing morethan one type of stable pat-
tern configuration. Figure 10(a) illustrates that two type (i) patterns may coexist stably,
with a smooth transition region in between. This behaviour is observed irrespective of
the proportion of the domain occupied. In contrast, Figure 10(b) indicates the evolution
of the system from an initial state comprising one stable type (iii) pattern enclosing an-
other, showing that these patterns may invade leading to a state where only the pattern
which initially occupies the majority of the domain exists.In this regime, the multi-
scale analysis outlined in§3.1.2 applies and comparison with the homogenised model
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Figure 9: (a) The position of the midpoint and (b) the speed asa function ofδ (k =
k∗ + δ 2), of the modulated travelling wave of Delta/Notch activitypredicted by the
linearly-selected minimum wavespeedv = 2

√
β2/Λ and simulations of the discrete

and continuum systems (1) and (34). The domain is of sideL = 100,(δ = 0.05) and
all parameters are as in Figure 8 except, in (b),δ as stated.

may be performed; as demonstrated in O’Dea and King (2011) the initially (approxi-
mately) square enclosed region becomes circular as it is invaded as expected from the
corresponding continuum system (figure omitted for concision). Referring to Figure
3(b), the patterns shown in 10(b) are type (iii) patterns in (3,2,1) and (2,3,1) config-
uration which lie on the same solution curve emanating from the associated type (i)
pattern (+,+,−) configuration. The remaining two matching configurations (2,1,3)
and (3,1,2) which branch from the bifurcation pointCb also display similar invasive
behaviour; all other competing pattern configurations coexist stably in the domain with
smooth transitions between patterning states (cf. Figure 10(a); omitted for concision).

The non-invasive behaviour displayed by the discrete modelis termed “pinning”
and illustrates an interesting feature of such patterning systems in which multiple
modes are stable: a minority of patterning modes display invasive behaviour, the re-
mainder are able to pin, forming discrete regions of stable pattern. Such invasive be-
haviour is exhibited only by ‘compatible’ patterning modes, such as those highlighted
in Figures 3(b,c). These correspond to the symmetrical pairs of pattern configurations,
reflecting the pitchfork structure of the pattern-generating bifurcation; the remaining
configurations are not invasive. In view of this, the longer the characteristic wave-
length of the pattern under consideration, the more pathological this pinning behaviour
will be, since permutation of the periodic unit implies a larger number of possible con-
figurations. Pinning of patterns can therefore be expected to occur even for parameter
values very near the bifurcation point, for which behaviourmore appropriate to a con-
tinuum description would be anticipated. Far from the bifurcation point, strong discrete
effects may prevent pattern invasion, and pinned pattern fronts are generally observed
even for ‘compatible’ patterns. Pinning is exhibited in therelated juxtacrine signalling
model of Owen and Sherratt (1998) and will be discussed in a subsequent publication.
The corresponding continuum limit is unable to capture suchbehaviour, its description
being restricted to the relatively few compatible pattern configurations emanating from
the bifurcation point; continuum models of patterning systems with a wide range of
patterning modes are therefore severely restricted in the range of patterning behaviour
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they are able to capture.
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Figure 10: (a) The evolution of the level of Delta activationalong the linej = 100 in
a 210×210 array of cells labelled (j, l) predicted by the discrete system (1) in type
a and b (dashed line) and C (solid line) cells starting from aninitial state compris-
ing a (+,+,−) configuration type (i) pattern (l < 105) and a (−,+,+) configuration
(l > 105) att = 0,1×106. Parameter values:k = k∗− δ 2, δ = 0.1. (b) The evolution
of the level of Delta activation predicted by the discrete system (1) and the continuum
model (34) in type a (dashed line) and b (solid line) cells att = (0,5,2000,1×106) in
an array of 210×210 cells (δ = 0.01,L = 2.1) along the liney = 1 from an initial state
comprising a (3,2,1) configuration type (iii) pattern enclosing a (2,3,1) configuration
(k = k∗ + δ 2). Here, the continuum model solutions are indicated by circles. In (b) the
Delta evolution in the remaining cell is omitted for clarity(the extreme Delta upregula-
tion in type c cells renders the graphs unclear). Except as stated, all model parameters
are as in Figure 2.

5 Discussion

In this paper, we have examined thoroughly the range of fine-grained (period-three)
patterns formed in an array of hexagonal cells which exhibitintercellular signalling be-
haviour governed by the generic Delta-Notch signalling model of Collier et al (1996).
This model takes the form of a pair of ODEs, representing the activation of juxtacrine
(membrane-bound)signalling molecules and their receptors in each cell; a key assump-
tion is that receipt of inhibition reduces the ability of a cell to inhibit its neighbours.
For sufficiently strong feedback, this negative feedback loop is able to amplify differ-
ences in Notch activation between cells, the level of which determines the cell’s fate
(low levels lead to the progression of cells to the primary fate, whilst high levels rele-
gate the cell to the secondary fate) and is therefore an important cell fate regulator in
densely-packed tissues.

We employ the method outlined in O’Dea and King (2011) to derive continuum
models based upon the underlying discrete model which are capable of describing the
fine-grained patterning which arises under particular assumptions on the model pa-
rameters associated with signalling feedback strength. Ithas previously been thought
that the short spatial scale of oscillation of these patterns necessitates analysis via dis-
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crete methods; however, by considering period-two (checkerboard) patterning in square
cells, in O’Dea and King (2011) we demonstrated that such microscale variation may
be accommodated within models derived via the straightforward assumption of slow
variation and judicious choice of variables, exploiting the local periodicity displayed
in specific parameter regimes. The resulting continuum model demonstrates that this
interaction may be represented as a diffusive process even in a fine-grained patterning
regime.

Inspired by the fine-grained patterns observed in early development of some tis-
sues, and the discrete analysis of Webb and Owen (2004) whichdemonstrated that cell
shape has a strong influence on the patterns produced in cell signalling models and
the morphology of certain epithelial cell types, we extend our previous work to analyse
fine-grained patterns in an array of hexagonal cells. In contrast to the checkerboard pat-
terns analysed in O’Dea and King (2011) (which, although theperiodic unit contains
four cells, are equivalent to period-two patterns in a one-dimensional string), here, fine-
grained patterning corresponds to a wavelength of three cell lengths in each direction
(and the periodic unit therefore contains three cells). While still fine-grained in nature,
the increased pattern wavelength leads to a far richer pattern-generating bifurcation
structure than that investigated in O’Dea and King (2011) and we are led to consider
separate continuum models for the generation of patterns from the homogeneous state
and the transition between patterning modes. Via a two-parameter expansion, we addi-
tionally derive a more general formulation capturing the emergence of the bifurcation
structure.

The continuum model derived in O’Dea and King (2011) took theform of a single
reaction-diffusion equation with cubic nonlinearity (algebraic formulae providing the
three remaining solutions), the juxtacrine interaction manifesting itself as linear dif-
fusion. In this case, due to the symmetry of the two possible pattern configurations,
the entire checkerboard patterning behaviour of the systemmay be represented by one
such equation; here, the form of the continuum model is determined by the pattern-
ing regime (and associated scalings) that we wish to capture. The crucial difference
between the continuum formulations obtained in square and hexagonal geometries is
that, since the various period-three pattern configurations in hexagons conform to a
more complex symmetry than checkerboard patterns, an additional degree of freedom
is necessary, resulting in a pair of coupled reaction-diffusion equations.

In the case for which the bifurcation points are widely spaced (α1 > O(1)), the
nonlinearities in the systems of PDEs representing both generation of patterns from
the homogeneous steady state and transition between patterning modes are quadratic
rather than cubic. A notable exception is equation (34) which applies to the specific
case where downregulation in one of the cells is extreme; here, we obtain a model of
identical form to that derived in O’Dea and King (2011), reflecting the fact that the third
cell in the periodic unit remains constant to first order, theremaining two cells diverging
symmetrically as is the case for checkerboard patterns. A cubic nonlinearity is also
obtained in the parameter regime for which 06 α1 ≪ 1 in which the five bifurcation
points shown in Figure 3 collide to leave a single pitchfork bifurcation generating type
(i) and (iii) patterns from the homogeneous state; however,in this case a system of
PDEs is nevertheless required to capture the various possible pattern configurations.

We remark that the continuum formulations are general: the form of the nonlinear-
ity is influenced by the required asymptotic scalings ratherthan the specific details of
the signalling model under consideration. Ongoing analysis of period two patterning
phenomena in a more complex juxtacrine signalling framework, modelling explicitly
the number of ligand molecules and free and bound receptors on each cell results in a
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continuum model of the form presented in O’Dea and King (2011). It is important to
note that due to the bifurcation structure of the specific signalling model under consid-
eration (see Figure 3), the continuum representation (21) and (22) of pattern generation
from the homogeneous steady state in the regimeα1 > O(1) is not reflected in the
observed solution behaviour; however, such a model will apply in general to similar
signalling systems whose stability properties imply that this analysis is more immedi-
ately applicable.

The ability of our formulation to capture the underlying discrete dynamics is illus-
trated via comparison between the nonlinear steady states of the continuum and discrete
models (in the case of equations (21) and (22) for the reasonsoutlined above) and be-
tween time-dependent numerical solution of the continuum model and simulations of
the corresponding discrete system in a variety of scenarios. For concision we present
time-dependent simulations of the transition model (34) only; corresponding behaviour
is observed in solutions to the remaining continuum equations (26), (27), (38) and (39)
in appropriate parameter regimes.

We demonstrate firstly that the steady-states of (21) and (22) provide a good ap-
proximation to the bifurcation behaviour of the nonlinear model (1) for parameter val-
ues close to the bifurcation point. Further from the bifurcation point, the nonlinear
behaviour rapidly diverges from the transcritical-type behaviour predicted by the con-
tinuum limit. Secondly, we consider the time-dependent transition between patterns of
types (i) and (iii). We demonstrate that under slow variation of parameters associated
with feedback strength, the continuum model faithfully reproduces the transition be-
tween patterning types demonstrated by the underlying discrete system. We also com-
pare the speed of propagation of travelling waves of stable type (iii) patterns invading
a region of unstable type (i) patterns, demonstrating excellent qualitative agreement
between numerical solution of, and the speed of a linearly-selected travelling-wave so-
lution to, our homogenised model and the behaviour of the underlying discrete system,
even for parameter values far from the bifurcation point.

Lastly, we investigate the competition between the multiple patterning modes. We
show that pairs of ‘compatible’ type (iii) patterns exhibitinvasive behaviour, the sys-
tem evolving to contain the pattern configuration initiallyoccupying the larger part of
the domain. These compatible modes are those pattern configurations which reflect the
symmetry of the underlying bifurcation structure. Competition between the remaining
patterning modes results in pinned behaviour in which the system supports multiple
stable patterning regions with a smooth transition region in between. Such behaviour
is not reflected in the continuum description of the patterning system, which highlights
a limitation of the ability of continuum models of the type presented herein to capture
patterning behaviour in systems with a wide range of stable modes. We remark that
such shortcomings are likely to be more pathological in longer-range patterning sys-
tems in which a wider range of pattern configurations exist for each patterning mode.
In addition, the dynamics of such discrete systems may be strongly influenced by the
underlying lattice geometry (Cahn et al, 1998), a feature not captured in the contin-
uum representations presented here. A subsequent publication will investigate lattice-
induced anisotropy in discrete diffusion and cell signalling systems. We remark that the
stable “pinned” patterning behaviour highlighted here maybe interpreted biologically
in terms of a stem cell niche, as it corresponds to the constraining of cells of a dis-
tinct phenotype to a distinct, fixed region. As such, furtherinvestigations into pinning
phenomena in discrete systems may have implications cell differentiation research.

The aim of this work was to develop continuum representations of the discrete pat-
terning phenomena arising from models of intercellular signalling. Such an approach
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enables the integration of important microscale behaviourinto tissue-scale models. The
specific intercellular signalling model analysed in this work was chosen in large part
for illustrative purposes, its relative simplicity admitting analysis; however, the mathe-
matical techniques employed here may be applied to more elaborate spatially-discrete
signalling models with little difficulty, enabling integration of discrete cell-signalling
mechanisms into tissue-scale models in a wide variety of scenarios. Our methodology
is, however, limited in two important ways. Firstly, it is unable to account for large
microscale stochastic noise in cell signalling activity, due to its reliance on a separation
of scales between cell signalling variation and feedback strength. Our analysis there-
fore applies only in those cases for which the noise is sufficiently small to be averaged
out on the macroscale, or has no affect on the overall stability of patterns (see Rudge
and Burrage (2008)). Secondly, although our methodology can be extended to reflect
cell growth or domain deformation (see,e.g., Fozardet al. (2009)), we are unable,
as it stands, to accommodate cell division, which may require global relabelling of
cells. Both of these phenomena may be modelled with ease within an individual-based
model and their inclusion in continuum models poses interesting challenges for fu-
ture work. Other biologically-relevant extensions include investigations of continuum
models capable of capturing multi-mode patterning states.Additionally, the patterns
typically observed in biological systems have approximateshort-range periodicity with
defects; capturing such phenomena will provide many interesting mathematical chal-
lenges and is integral to the development of relevant continuum models of cell sig-
nalling behaviour.
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A Patterned state transition

Here, we present, for completeness, the form of the parametersα–χ that appear in the
continuum representation of (1) when considering the transition between period-three
patterns of types (i) and (iii) or types (ii) and (iii) in parameter regimes for which the
steady-state levels of upregulated and downregulated Notch activation are of compara-
ble order. As noted in§3.1.2 since, at the bifurcation point, both cells of type a and b are
in the upregulated state (na∗), the first of the two PDEs (26) and (27), which comprise
the continuum model takes an identical form to that obtainedwhen analysing pattern
generation from the homogeneous state. However, in cells oftype c, Notch activation
is downregulated (nc∗) leading to the following more complex coefficientsα–χ in the
remaining PDE:
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α = α1c −α1a, β = −α1a, κ = 2α1a, (41)

µ = g′cF̂1c
(
α1c −g′c f ′′c

)
+ g′aF̂1a

(
α1a −g′a f ′′a

)
−2

(
g′cĜ1c + g′aĜ1a +

2G1c

g′c
+

2G1a

g′a

)
,(42)

χ =
2g′′c
g′2c

(
F̂2

1c +
γ2

c

9
+

4γc

3

)
− 2g′′a

g′2a

(
F̂2

1a +
γ2

a

9
+

4γa

3

)
+

2g′c f ′′c γ2
c

9
− 2g′a f ′′a γ2

a

9
(43)

+4

(
g′cĜ1c −g′aĜ1a +

G1c

g′c
− G1a

g′a

)
.

The functionsfi, gi, α1i, γi, F1i, G1i etc. are defined by equations (2), (23) and (24),
the additional subscript indicating the cell type on which the functions are evaluated;

for instance:α1i = α1(ni∗,d
i∗
).

B Matching between the asymptotic formulations

In this appendix, we consider asymptotic matching between the “inner” formulation
(38), (39) for which 06 α1 ≪ 1, and the “outer” formulations (21), (22) and (26),
(27), for whichα1 > O(1).

Denoting the outer solution with carets and returning to thenotation (8) in favour
of the functionsA, B andC for clarity, we match between the different formulations
via:

d = d∗ + D† + δ 2D†′ + δ 2d†
1, (44)

d̂ = d̂∗ + D̂† + δ 2D̂
†′

+ δ 2d̂†
1, (45)

whered∗ andd̂∗ are the inner and outer steady states andD†, D†′, D̂† andD̂
†′

are cho-
sen to ensure that both the inner and outer solutions match tothe appropriate steady
state at the boundary layer edge separating the inner and outer formulations. In the

homogeneous case,̂d∗ = d̂∗ and D̂
†′

= D†′ = 0. When considering an outer expan-
sion around the heterogeneous stateCa in the configuration̂d

∗
= (d̂a∗, d̂a∗, d̂c∗), we

setD̂
†′

= (0,0,D̂†′) and similarly forD†′. Corresponding forms are chosen for the re-
maining patterning configurations atCa or expansion around the heterogeneous state
atCc.

Matching to the homogeneous outer solution, in the limitsb̂ → ∞ andb → b∗ and
examining the equations at each order, the nonlinearities in (21), (22) are replaced by
terms of the following form:

α†
(

d†2
1 −da†2

1

)
+ β †

(
d†

1−da†
1

)
. (46)

The coefficientsα† andβ † are known functions of the expansion ofα1 andβ1 in the
limit b→ b∗, D†, d̂∗ andd∗; similarly,D† is a known function of the model parameters.
These are omitted for brevity. The corresponding nonlinearities in (38), (39) have an
identical form.

In the case of the heterogeneous steady state the nonlinear term in (26) is identical
to (46); the nonlinearity in (27) has the form:

a1dc†
1

2−b1da†
1

2
+ c1dc†

1 − e1da†
1 + f1dc†

1 da†
1 + g1, (47)
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in which a1– f1 are functions of the expansions ofα1, β1, ˆda∗, ˆdc∗ andd∗ independent
of D̂†′ = a2dc†

1 − b2da†
1 + g2 (in which a2, b2 andg2 are similarly dependent on the

steady states and model parameters) which are too long to include here. Corresponding
nonlinear terms are obtained from (38) and (39) in the limitb̂ → ∞.
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