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Abstract

Intercellular signalling is key in determining cell fate. dlosely packed tissues
such as epithelia, juxtacrine signalling is thought to beegimanism for the gener-
ation of fine-grained spatial patterns in cell differeritiatcommonly observed in
early development.

Theoretical studies of such signalling processes haverstimat negative feed-
back between receptor activation and ligand productiorr@ébast mechanism for
fine-grained pattern generation and that cell shape is aartaopt factor in the re-
sulting pattern type. It has previously been assumed tleéit gatterns can be anal-
ysed only with discrete models since significant variatioouss over a lengthscale
concomitant with an individual cell; however, considerageneric juxtacrine sig-
nalling model in square cells, in O’'Dea & KingM{ltiscale analysis of pattern
formation via intercellular signalling, Accepted inMath. Biosci.), a systematic
method for the derivation of a continuum model capturinghgpitenomena due to
variations in a model parameter associated with signaftéeglback strength was
presented. Here, we extend this work to derive continuumetsodf the more
complex fine-grained patterning in hexagonal cells, coiesitng individual mod-
els for the generation of patterns from the homogeneous atat for the transi-
tion between patterning modes. In addition, by considepatjerning behaviour
under the influence of simultaneous variation of feedbadlarpaters, we con-
struct a more general continuum representation, captuhegmergence of the
patterning bifurcation structure. Comparison with theadtestate and dynamic
behaviour of the underlying discrete system is made; iniqdar, we consider
pattern-generating travelling waves and the competitietwben various stable
patterning modes, through which we highlight an importagitaiency in the abil-
ity of continuum representations to accommodate certaiauhjcs associated with
discrete systems.

1 Introduction

The derivation of continuum models which represent undglyliscrete phenomena
is emerging as an important part of mathematical biologyegration between sub-
cellular, cellular and tissue-level behaviour is cruc@luinderstanding tissue growth



and mechanics with self-evident application to, for ins&im vitro tissue engineering
or the understanding of tumour growth and invasion.

It is well known that cell-signalling mechanisms regulaiffedentiation, cell-fate
determination and, ultimately, tissue and organ developm®uch regulation is me-
diated by the production, transport and binding of intdutat signalling molecules,
which may be free to diffuse throughout the tissue or may behared in the cell
membrane. In the latter case, cell-signalling moleculeg niad only to directly adja-
cent cells; such a juxtacrine signalling mechanism is floeesof particular interest in
closely packed structures such as epithelia.

Lateral inhibition is a juxtacrine pattern-forming mecksam employed by devel-
oping tissues to create fine-grained patterns of cell diffgation, in which adjacent
or nearby cells diverge to achieve differing cell fates.sliiechanism is controlled by
a negative feedback loop: receipt of inhibition reducesabidity of a cell to inhibit
others, leading to the amplification of differences betweelfs. This mechanism is
evolutionarily conserved and is observed in insects, nedeatvorms and vertebrates,
in all of which the transmembrane proteins Notch and Deltéh@r homologues) have
been identified as mediators of the interaction (see Cdlied (1996) and biological
references therein). Well studied examples of such finergdgpatterns include com-
pound eye and nervous tissue development in insects, subke &sit fly, Drosophila
(Haddon, 1998; Appel et al, 2001; Carthew, 2007). Within toatext of regener-
ative medicine, Delta-Notch signalling has been shown tulege cell fate in stem
cell clusters (Lowell et al, 2000). While other ligand-rpt interaction-mediated
cell signalling mechanisms have been characteriegdthe binding of cyclic AMP
to Dictyostelium cells (Martiel and Goldbeter, 1987; Dallon and Othmer, )9@7d
Transforming Growth Factos- and Epidermal Growth Factor binding in keratinocytes
(Clark et al, 1985; Coffey et al, 1987), here we consider tie#-studied Delta-Notch
signalling interaction, which provides an ideal model systo illustrate our method-
ology.

Inspired by the microscopic, contact-dependent naturbejuxtacrine signalling
mechanism and the short-range patterns often observeskimetidevelopment, many
authors have used a discrete mathematical formulationgsiigate the pattern-forming
potential of such signalling mechanisms. The first suchystuals presented by Col-
lier et al (1996), in which Delta-Notch binding was consigtkrLateral inhibition was
shown robustly to produce fine-grained patterns of the kinskoved in early devel-
opment, provided that the feedback strength was suffigiesitbng. The model was
formulated in terms of ordinary differential equations (EX) representing Delta and
Notch activity on individual cells. Many other relativelgaent studies have considered
a discrete representation of juxtacrine signalling. Oweah Sherratt (1998) analysed
a more complicated model, considering explicitly the nuralzé ligand and free and
bound receptors on each cell. Lateral induction (positaedback between ligand-
receptor binding and subsequent ligand production) wasracwdated and the range
over which juxtacrine signals may be transmitted was stljdigearing and Sherratt
(2001) performed a comprehensive nonlinear analysis sfrttadel, highlighting that
linear analysis alone is unable to predict the model’s biglafor large numbers of
cells. Webb and Owen (2004) extended this model, consigénamdynamics of ligand
and free and bound receptors in systems of varying geomsttings and square or
hexagonal arrays), showing that lateral inhibition cardpice patterns with a length-
scale of many cell diameters and that cell shape is a cruetalchining factor in the
patterns produced.

Such discrete approaches necessitate intensive numstuch), especially when



linear analysis cannot predict the patterns formed. Exterstudy of pattern forma-
tion has also been undertaken within continuum formulatioBontinuous reaction-
diffusion models have formed the basis of many models ofolgichl pattern forma-
tion since the study of Turing (1952) in which it was shownt tieaction and diffusion
of chemicals can produce heterogeneous distributions ehaal concentration that
consequently determine cell fate (we remark that TurinG2)@mployed both discrete
and continuous analyses, however). In these models, kpatiarns of morphogens
are assumed to induce cells to differentiate. ExamplesidecKauffman et al (1978),
in which segmentation ddrosophilawas considered, and Varea et al (1997), who con-
sidered a Turing system on a growing domain to model the foomaf skin patterns
in fish. An alternative continuum approach is known as mecblemical modelling in
which the patterns in biological tissue are dictated by raedal laws applied to cells
and their environment, reflecting, for instance, tissueodetion or cell migration
(see, for example, Murray et al (1988)). Here, pattern fdimnaand morphogenesis
take place simultaneously and the system may thereforstadjaxternal disturbances,
an important feature of embryonic pattern formation.

Discrete models are able to reflect the inherently discratera of cell population
behaviour, capturing explicitly the interactions betweaedividual cells, cell move-
ment or short-range patterning. Appropriate continuum eedf such phenomena
facilitate their incorporation into tissue-scale modsdliand, in addition, may admit
analytic progress or simpler numerical analysis. For tmeasons, multiscale (or ho-
mogenisation) techniques have been employed to derivéencmm models directly
from underlying discrete systems, enabling some of theserete effects to be in-
corporated into tissue-scale models in a mathematicadigipe way. The method of
multiple scale expansions for partial differential eqoas is well-developed (see, for
example, Kevorkian and Cole (1996)) and widely used to @ariedels for a variety of
physical and biological problems. In a biological contesxtch techniques have been
employed by €g.) Turner et al (2004) and Fozard et al (2009) to represenhinvi
continuum formulation, the collective motion of adherepitieelial cells.

It has typically been assumed that the analysis of cell diggamechanisms de-
mands a discrete approach, especially when considerirtgaetiependent juxtacrine
signalling processes (Wearing et al, 2000; Plahte and @glt2907) and short-range
patterning (Roussel and Roussel, 2004); however, in owique work (O’'Dea and
King, 2011), we have shown how a multiscale method may be @mpglto analyse
the fine-grained patterns of period two (in each coordinatetion) generated by the
discrete model of Collier et al (1996) in an array of squaiésaeithin a continuum
formulation. The resulting reduced model, which takes trenfof a semilinear par-
tial differential equation (PDE), demonstrates that onrtecroscale the interaction
between adjacent cells manifests itself as a diffusive ggsdespite the short-range
variation in signal concentration. Travelling wave anayshowed excellent quantita-
tive agreement between the continuum formulation and tledying discrete model.

Square cells were considered in O’'Dea and King (2011) asitéal igeometry with
which to illustrate the methodology. However, Webb and O¢&004) have demon-
strated that cell shape is a determining factor in the patteroduced by cell signalling
systems; furthermore, relevant biological structurehiagthe simple squamous ep-
ithelium are not necessarily well-approximated by squatis,cand can display hexag-
onal morphology of striking regularitye(g. squamous epithelial cells; the hexagonal
configuration is, of course, one of minimal surface energyseen in soap films, for
example). An example of such cell shapes is given in Figuiashired by this, in this
paper, we extend our previous work to consider the fine-grhpatterning behaviour



in an array of hexagonal cells. Such investigations areetbeg biologically relevant
as well as revealing important mathematical insight; whil¢he cell signalling sys-

tems under consideration, cells may not form exactly hemabarrays, our caricature
enables the derivation of a continuum model amenable tysisalhich, nevertheless,
reflects microscale complexity of biological relevance. NMige further that, Webb and
Owen (2004) show that small random perturbations of celhgoy do not prohibit

the formation of regular patterns; we therefore expect thaitative features of our
results to apply to the non-uniform case.

In one-dimensional strings (or arrays of square cells)-direened patterning cor-
responds to patterns with a period of two cell lengths (irhezmordinate direction),
whilst hexagonal cells imply patterns of period three intedoection; though still
fine-grained in nature, the increased number of possibtenmittg modes results in a
significant increase in mathematical complexity. Concirtg on patterns of period
three cell lengths, we construct individual continuum rmsdier the generation of pat-
terns from the homogeneous state and the transition bettheevarious patterning
modes in response to variation of a parameter associatbdf@atback strength. In
addition, via a two-parameter expansion, we construct a&rgeneral continuum rep-
resentation of this system, capturing the emergence of thigre bifurcation structure
from a single pitchfork-like bifurcation. The resultingr@@muum models allow repre-
sentation of the generation oficroscale patterns in a tissue in responsenacroscale
variation in cell signalling€.g. that induced by tissue-level chemical or physical stim-
ulation). Via comparison with both the steady-state anddgheamic behaviour of the
underlying discrete system, we show that the continuum teddighfully represent the
fine-grained patterning behaviour displayed by the discsggnalling model. Quanti-
tative comparison is made by analysing the travelling-weeleaviour; specifically, the
speed of a ‘linearly-selected’ pattern-generating wavading an unstable patterned
state is considered, providing an indication of the rangapmlicability of our contin-
uum formulations. In addition, we consider in detail the patition between various
stable patterning modes, revealing important insight fhéoability of continuum rep-
resentations to accommodate such discrete dynamics.

Figure 1: A surface view of a typical epithelium, displayiagegular polygonal mor-
phology. Image courtesy of Martin Nelson (Wolfson Centre $tem Cells, Tissue
Engineering and Modelling; Centre for Biomolecular Sciendniversity of Notting-
ham; UK).

In §2, the model of Collier et al (1996) is summarised and itsqukttiree patterning
behaviour examined. I§8, a continuum formulation for period three pattern gerienat
by Delta-Notch signalling in hexagonal cells based on thidarlying discrete system



is derived. Solution of this model is compared to numerigalgations of the discrete
system ing4, illustrating the generation of patterns under spatigbti@n of feedback
strength, and pattern competition and travelling-wavealigtur in the case of uniform
feedback. In§5 our findings are summarised, together with suggestion$utore
research.

2 Pattern formation in a discrete Delta-Notch intercel-
lular signalling model

2.1 Formulation

In Collier et al (1996), the feedback between the binding ofembrane-bound sig-
nalling protein, Delta, to its receptor, Notch, and subseqDelta expression was
considered. The crucial aspect of the feedback loop is thaated Delta expression in
a cell downregulates Delta expression in its neighboursheaeceptor, Notch. This
mechanism, known as lateral inhibition, is a fundamentiifate control mechanism
(Mitsiadis et al, 1999), creating fine-grained patternseémedoping tissues which de-
termine subsequent cell development. The key postulateeddelta-Notch signalling
model is that the level of activated Notch in a cell determiite fate: low levels lead
to the adoption of default (primary) fate, whilst high leveklegate the cell to the
secondary fate. In the specific case of nervous tissurasophila, the primary fate
corresponds to the adoption of a neural phenotype, the dacpfate being the main-
tenance of the epidermal phenotype (Lehmann et al, 1983pGsi@rtega, 1993). The
model is formulated in terms of Delta and Notch “activityfigtdetails of the signalling
pathways, as well as cell division, are neglected for sicitgli

The model comprises a pair of ordinary differential equatithat govern the levels
of Delta dj) and Notch ;) activity in each cell {). In dimensionless terms these are
(Collier et al, 1996):

dj = A (g(nj) —dj), (1a)

hj:f(dj)—nj, (lb)

where dots denote differentiation with respect to time arid the ratio of the decay
rates of Delta and Notch activity. We remark that a singlesstipt is used to denote
each cell for simplicity; however, generalisation to highpatial dimensions is trivial.
In (1), f(d;) andg(n;) are feedback functions representing the coupling betwejer a
cent cells and the inhibitory effect of Delta-Notch bindingspectively anaj denotes

the mean level of Delta activity in the cells surrounding celj:

ok 1 - 1}
a+ gk’ 9(9) 1+ boh’ di N i; o 2)

The positive parameteis h, a andb determine the feedback strength. Detail of the
biological meaning of the exponents together with exampiepules is given in Webb
and Owen (2004).

In vivo, Delta-Notch binding and the resulting Delta productioa dependent on
the cell’'s biochemical and biophysical environment. Eipental evidence suggests
that environmental inhomogeneities are significant, wipidvides motivation for the
consideration of microscale patterning in response to as&ale variation in tissue
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stimulation, leading us to include spatial variation in ffe@ameters associated with
the feedback function$ andg. For constant feedback strength Collier et al (1996),
Plahte (2001) and Plahte and @yehaug (2007) remark thatkingtfeature of the
Delta-Notch model is the robustness of the fine-grainedep@tt Webb and Owen
(2004) have demonstrated that cell shape is an importawotfiathe patterns produced
in cell-signalling models; furthermore, certain epithétells are not necessarily well-
approximated by square cells (see Figure 1). In view of theasiderations, below, we
extend our previous work (O’Dea and King, 2011) to invesdhe emergence of fine-
grained patterning modes in hexagonal cells in responseartation in the parameters
associated with the feedback strength.

2.2 Patterning and stability

By linear and bifurcation analysis we now determine the pester regimes for which
fine-grained spatial patterning will be produced by this eloth arrays of square cells,
fine-grained patterning corresponds to patterns with agerf two cell lengths in each
direction (and the periodic unit therefore contains fodlsgeln contrast, the shortest
wavelength pattern which fits onto a discrete hexagonal nsesfiperiod three in each
direction (the periodic unit containing three cells), esponding to the dominant fine-
grained patterning mode discussegMl. In each case, in what follows, we will refer
to these as patterns of period two and three, respectivalg tb the local nature of
the juxtacrine signalling mechanism, considering pati@fiDelta and Notch activity
in such a periodic unit provides insights into more extemsivrays and the results
obtained are crucial to the subsequent multiscale analyBiee system (1) reduces
to a system of six coupled equations to which the solutioese#ther homogeneous
or patterned with a wavelength of three cells. We remark thatiew of (2), in the
period-three regime the connectivity of the periodic netwie identical both in arrays
of hexagonal cells and in one-dimensional strings. For tivpgses of the following
patterning and stability analysis, we therefore persi# tie single index to indicate
each of the three cells in the periodic unit.

Via linear analysis of (1) it is straightforward to show thia¢ homogeneous state
is unstable and period three patterns exist {8*)d'(n*) < —2, where(n*,d*) are the
homogeneous steady states satisfyiher g(n*),n* = f(g(n*)) and’ denotes differen-
tiation (Collier et al, 1996). Furthermore, the period thpattern is the fastest growing
mode from the uniform state. Similarly, period three stestdyesn;, dj (j = 1,2,3)

become unstable to period three perturbatiorfé(ﬁ]-‘)g’(n]-‘) <=2, whereaT denotes
the weighted sum of neighbouring steady-state values d@kefin€2).

The transition from parameter regimes in which the homogessteady state is
stable (so that adjacent cells exhibit identical levels otdd activation and thereby
attain identical cell fates) to that in which stable hetemgpus states emerge leads to
the generation of fine-grained patterns of Delta and Notecbhgudation (so that nearby
cells diverge to different fates). We remark that since ipdstulated that the level
of Notch activity determines its fate, in the following, wéllwise the terms “up-" or
“down-regulated” to refer to the level of Notch activatiandach cell.

Bifurcation analysis indicates that the system admitsetllistinct pattern types of
period three: (i) a ratio of two identically up-regulatedig@o one down-regulated,

1plahte (2001) suggested that the feedback structure of daelriil) fundamentally favours this pattern,
independent of the specific feedback functidrendg: the apparent negative feedback loop actually consists
of a sequence of interlaced positive loops and negativesimpre detail is given in Plahte (2001)) that drive
Delta and Notch activity into alternate extreme statediligad by the negative loops.



(i) a ratio of two identically down-regulated cells to onp-tegulated and (iii) one
up-regulated cell, one down-regulated and one intermediathe following, we shall
refer to these patterns as type (i), (ii) and (iii) for clprit Figure 2 shows typical
numerical simulations displaying period three patternypé (i) and (iii).

@ (b)

Figure 2: Typical numerical simulations showing the levid\lotch activity in a 10«10
section of a two-dimensional periodic array of hexagonhs$déustrating the steady-
state type (i) and (iii) patterning modes. Parameter valdes1,a=0.1,b= 100 and
(a)k=h =2, corresponding to type (i); (= h = 4.25, corresponding to type (ii).

In the three cell system under consideration the variousrapermutations mean
that types (i) and (ii) comprise three patterns each, whyjs (iii) contains six pattern
configurations. Figure 3 shows the transition from one paittg mode to the next
under variation of the exponenitsandh which govern the feedback strength in the
signalling model (similar bifurcation behaviour is obsstvunder variation ok or h
alone), indicating that there is a distinct range of par@mspace in which each of
the three types of pattern is stable, and that type (i) angéiterns are stable for a
significantly larger portion of parameter space than thdggpe (iii). We highlight
that ‘stability’ as indicated in Figure 3 refers to stalyilif period three patterns within
the three-cell periodic unit. The various pattern configjores within each pattern type
are highlighted on the relevant curves; Figures 3(b) andhioyv the configurations in
detail. The solution branches indicate the level of Notctivaton in each cell. For
instance, in the type (i) patterning regime, referring tpure 3(a), if the level of Notch
activation in a cell follows the lower solution branch matkeith circles, the remaining
pair of cells follow the upper branch (marked with diamondSimilarly, in the type
(i) regime, if the level of activation in a cell tracks thepgr branch (filled circles),
the remaining cells track the lower branch (marked with seg)a in between these
parameter ranges, type (iii) patterns are observed. Lagfyemark that the bifurca-
tion structure is significantly more complex than that agged with the generation
of period two patterns (in each coordinate direction) inasgLcells (O’'Dea and King
(2011)). It is important to note, however, that O’'Dea andd<{@011) considered the
specific case of checkerboard patterns, for which the aisatgsresponds exactly to
that in a one-dimensional string of cells. In the case forclwhhe periodic unit con-
tains four distinct levels of upregulation (only two exist theckerboard patterns) the
behaviour is likely to be more complex.

Figure 3(a) indicates that type (i) patterns branch fromhbmogeneous steady



state subcritically; patterns containing three distiretels of upregulation (type (iii)
patterns) and type (ii) patterns are created at subseqifartdiions labelleds;—%4.
The bifurcation point&3, 6 and%;, ¢4 form solution pairs: the Notch activity in two
of the three cells diverges from the supercritical bifuiaad at4;, and%.; the remain-
ing cell increases or decreases from its bifurcation pahie®s, or %y via the relevant
solution branch. The pitchfork bifurcations@s and%. imply that patterns with three
distinct levels of Notch activation are generated from t{iper type (ii) patterns by
the local, symmetric divergence of two of the three cellggueé 4(a) illustrates how
this bifurcation structure changes under variation of titekitory feedback function
parameteb, demonstrating that the five bifurcations shown in FigurelBpse onto a
single patterning bifurcation from the homogeneous stetate ad is reduced. Addi-
tionally shown are the resulting pattern-forming bifuioas obtained under variation
of k, h for values ofb at which the bifurcations collapse onto a subcritical kiftion

(Figure 4(b)) and a supercritical pitchfork-like bifurgat (Figure 4(c)). Here, only
stable type (ii) and unstable type (i) patterns exist.
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Figure 3: (a) Bifurcation diagram showing the level of Nogattivation for the system
(1) in a three cell system with periodic boundary conditiomsler variation of the
parameter& andh. The stable homogeneous steady state, and various per@al th
patterns, are identified via different line styles; the esponding unstable states are
represented by dotted lines (the unstable homogeneoasstaticated by a dot-dash
line for clarity). The various solution branches indicdte tevel of Notch activation
in each of the three cells; see text. Bifurcations at whicttepas are created from
the homogeneous state and between different pattern typedeaoteds™ and ¢a—
%4, respectively. The homogeneous steady state is demdiefdr type (i) and (ii)
patterns, up- and down-regulated cells are denotéchhd ‘—’; type (iii) is denoted
(1:1:1). Panes (b) and (c) show in more detail the behaviour nearrtireeh points
‘6, and 6. at which the transition from types (i) and (ii) to type (iiipfterns occurs.
The different type (iii) steady states are labelle@,B to denote increasing levels of

Notch upregulation in each cell. Asterisks denote typ silutions with associated
type (i) or (ii) patterns.

The patterns shown in Figure 2 are robust, being generatedritndom initial data
as well as appropriate periodic or near-periodic initialditions for a wide range of pa-
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Figure 4. (a) Bifurcation diagram showing the positionstd bifurcation pointg™
and 6, ¢—%¢y (see Figure 3) under variation of the parameteendk, h. For the
particular valuea= 0.1 chosen here, the five bifurcations coalesd® at 1.927. Panes
(b) and (c) illustrate the change in bifurcation structweiflustrative values ob at
which only unstable type (i) and stable type (ii) patternsiexn each case the upper
branch indicates the steady-state values of two of the tek®and the lower branch,
the remaining cell. In (bb =1 and (c)b = b*; solid and dotted lines indicate stable
and unstable branches, respectively. The structure £0400 is shown in Figure 3.

rameter values. We remark that longer-range patterns (mfgogreater than three) may
be generated in this array of hexagonal cells by appropectadéce of periodic initial
conditions and domain size. We note that these patterngabie 40 periodic or ape-
riodic perturbations but that their domain of attractiorsisall and therefore are only
observed for suitable initial data. Numerical simulatiafig1) indicate that regions
of these longer-range patterns form stable patternedtilistbns when competed with
period-three patterns and, additionally, are able to iavidig unstable homogeneous
steady-state (invasive or competitive behaviour is gaednaa initial data comprising
a region of stable longer-range patterning adjacent to tistable homogeneous state
or stable period-three pattern in the remainder of the donaiowever, the introduc-
tion of random noise to periodic initial data, which is nateif a steady state of (1),
seems always to result in the emergence of the dominantthriee patterning mode;
similarly, an initial state comprising a region of unstapégiod-three pattern adjacent
to a region of stable longer-range pattern, leads to thesiomaof the unstable state
with the corresponding stable period-three, rather thag-l@nge, pattern (though the
region of stable longer-range pattern remains). Figureg{aws an illustrative stable
pattern configuration obtained by competition of stablequethree and period-five
patterns; Figure 5(b) shows the modulated travelling wédiyedod-five pattern invad-
ing the unstable homogeneous state. Lastly, we note thaatiye of patterns formed
is limited by the hexagonal mesh; in particular, patternevah period in each coordi-
nate direction are prohibited (though we remark that stripetterns of arbitrary period
are, of course, permitted).

To summarise, the signalling model of Collier et al (1996)pthys robust fine-
grained patterning, consistent with those patterns obskirvrelevant biological sig-
nalling systems. In square cells, consideration of suctepet leads to the investiga-
tion of checkerboard-type patterns with period of two cefidths in each coordinate
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Figure 5: Numerical simulations of (1) performed in ax@D hexagonal mesh illus-
trating the behaviour of longer-range patterns. (a) A staioinfiguration comprising

a stable period three pattern of type (iii) (left) adjacenatstable period five (right)
Notch activation pattern. (b) The modulated wave of pefigdNotch activation trav-
elling through the hexagonal meshl( and invading the unstable homogeneous steady
state at successive times: 0,10,25 along the liné = 30. Initial conditions comprise
the domain split equally between the unstable homogendates(p < 30) and stable
period-five patternj(> 30). All parameter values as in Figure 2(b).

direction. In hexagonal cells, the fine-grained pattermiugle corresponds to patterns
of period three in each direction. Collier et al (1996) idiéed these patterns as the
fastest-growing mode a via linear analysis. The result$aioed in this section show
that the generation of fine-grained patterns in hexagor esignificantly more
complex than their checkerboard counterparts in squats. céle have isolated the
three possible types of fine-grained pattern, demonstth&drobustness via numeri-
cal simulation and shown how the bifurcation structureasrinder variation of certain
feedback parameters. Such information will prove crudatfie following multiscale
analyses. In addition, via numerical simulations of (1) vagéishown that patterns of
wavelength greater than three may be produced by this mthaelgh these patterns
have small domains of attraction and are therefore only rebsgefor suitable initial
data, further exemplifying the dominance of the fine-grdimeadel.

In the following sections, we employ a multiscale analysisdnstruct continuum
models of the period-three patterning behaviour for patamalues near the pattern-
ing bifurcation points investigated above.

3 Multiscale analyses of Delta and Notch activity in an
array of hexagonal cells

3.1 Mode formulation

In this section, we employ a multiscale method to deriveicomim models based upon
the discrete system (1) that capture the period-threerpattephenomena described
in §2.2. Figures 3-2 imply that introducing appropriate spatiation of one (or
more) of the model parameters will induce fine-grained paittg in certain regions
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of the domain, or transition from one patterning mode to taetnin the following,
we construct continuum models which capture fine-graingégepageneration in re-
sponse to macroscale tissue stimulation, correspondisygtial variation in feedback
strength. (Such formulations include spatially-unifoeadback as a special case, anal-
ysis of which will be especially instructive when considripattern competition and
travelling-wave behaviour.) In a biological context, symrameter variation might
correspond to differences in the sensitivity of the cellB#&ita-Notch binding, leading
to the adoption of a particular programme of gene activaltipra subset of the cell
population according to spatial position. Such environtaeinhomogeneities are a
common feature of biological systems, such as in embrydssa¢ growth. We note,
however, that the parameter values employed in the remairfidieis work are chosen
to illustrate the interesting patterning behaviour exieibiby the model and investi-
gated in§2.2 and are not motivated by specific biology.

To capture the different facets of the system (1) in the pktimee regime within
appropriate continuum representations, we consider m(irthe patterning bifurca-
tion from the homogeneous state, (b) the transition betwldésrent period three pat-
terning regimes and, (c) the behaviour for parameter valloss to the set for which
the separate bifurcation points collide leaving a singtehfork bifurcation (see Fig-
ures 3 and 4(a,c)). As remarked earlier, since in the paexmegimeb > b*, illustrated
in Figure 3(a), the bifurcation from the homogeneous stateegating type (i) patterns
is sub-critical, the asymptotic behaviour derived in cagen(ll not be reflected in the
observed solutions to (1). However, the simple model aealy®re is ideally suited to
illustrate our methodology; the analysis holds for altéixasignalling models whose
stability properties imply that the results are more imraggly applicable. To construct
a continuum model capturing period three patterning phemanin response to spatial
variations in feedback strength, a homogenisation praseesjuired. To preserve the
local periodicity, we assume that the variation of the gpigthon-uniform parameter is
slow compared to the variations of Delta and Notch activitygt is, we construct two-
scale models which capture fine-grained period-threenadgtpatterning phenomena.
This separation of scales (between ‘fast’ and ‘slow’ véoiat allows the integration of
fine-grained (microscale) patterning within a macroscamework.

Figure 6: The discrete labelling scheme and correspondintirmium coordinates em-
ployed for the multiscale analysis of pattern formationiinaaray of hexagonal cells.
The shading indicates cells with different levels of Notcll ®elta activity, in which
the continuum variableg/ (X,¥,t), i = a,b,c are defined. The periodic unit for the
pattern of period 3 irj + I is highlighted.
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The continuum model is derived as follows. Considering aayaof hexagonal
cells, we denote the distance between cell centre® &y1, introduce slowly varying
continuum variableg = &j, y= 4l and represent the levels of Delta and Notch activity
in the multiple-scales formd; | = d(j,l,X,y,t), n;; =n(j,1,X,y,t), in which j,| repre-
sent the fast, ankl y the slow, spatial scales. The labelling scheme for hexdgetia,
together with the periodic repeating unit for the periocethpattern is illustrated in
Figure 6. Additionally, since adjacent cells differ sigaifitly in their Delta and Notch
activity the patterning regimes, we write:

d(j,1.%¥,t) = d*(%,¥,t), n(j,L.%y,t) =X ¥,t): (j+1)mod3=2, (3)
d(j,1, %yt =% ¥.t), n(j,L, %yt =n"(Xy,t): (j+1)mod3=0, (4)
d(j,1.%y,t) =d°(%,¥,t),  n(j,L%y,t) =n°(%y,t):  (j+1)mod3=1, (5)

and we will refer to the cells corresponding to equations(8) as types a—c. We
remark that since the discrete labelling scheme underpinmaltiscale approach, we
are unable, as it stands, to accomodate cell division, wivotld require a global
relabelling; our analysis applies on the timescale of DRlbach mediated cell fate
determination, which is significantly exceeded by that ef¢kll cycle (Hartenstein &
Posokony, 1990).

Transforming to an orthogonal Cartesian coordinate syéeyi = (X—y/2,/3y/ 2),
expanding in Taylor series and exploiting the periodiditg spatial coupling terrd
for each cell type may be written:

i 1 52 P
d==5d"+—=0%Yd¥+ (5%, i=ab,c. (6)

Spatial variation in biochemical or biophysical conditomithin the domain (lead-
ing to differences in feedback strength) is modelled byoidticing slow spatial varia-
tion to the parameteiksandh. For simplicity, we assumle= h and keep the remaining
parameters fixed; we assurke- h = k(x,y). We expand around the bifurcation point
under consideratior{*, ¥a—%q; see Figures 3 and 4) via:

K(x,y;€1) = K" + &1k(x, ), ©)
dl (Xa y,t, 82) = dl* + £2d5.(x7 Y, ) + €2d2(X Y, ) 5 (8)
n'(x,y,t; &) = n" + &Ny (X, y,t )+52n2(x,y, Y, 9)

wherei = a, b, cindicates expansions associated with each cell typelk” denotes the
relevant bifurcation point, at which*, d'* are the steady states associated with each
cell type, and1(0), £(0) < 1. Additionally, we rescale time accordingte= £3(0)t,
whereez(d) < 1 will be chosen such that we analyse the equations at thedateon
which spatial coupling first appears.

We now pause to define some notation which will be of use in dfleviing sec-
tions. We define linear operatag and.# as follows:

j(naéav):g/(v)n_fv%(nvévv)sz/(v)_nv (10)

together with the averagé% for each cell type at thep" asymptotic order:

p de, i=ab,c p=12,. (11)
24
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3.1.1 Emergence of patternsfrom the homogeneous steady state

In this section, we consider the generation of fine-grairetepns from the homoge-
neous steady state at the bifurcation pdititin the regimeb > b* as illustrated in
Figure 3(a). Employing the linear operators (10), the sgale; = & = &3 = 82, the
averages (11) and noting that@t, (n'*,d™*) = (n*,d*) for i = a,b,c, the equations
governing Delta activity in each cell typet each order are:

6(1): 0=g(n')—d", (12)
0(8%) : 0= Z(n},dy,n*) + Fy(n"), (13)
i o () (Al )2 .
0(6% 00— 2 (0 dy ) + SO | Gy + Foln),
(14)
and Notch is governed by:

6(1): 0= f(d*)—n", (15)
0(8%): 0= (1, d") + Fa(@”), (16)
o O N (@)% e e e ) o
05 ).F_,///(nz,dz,d )+7f (0) + Ga(d")y + Fo(d") + —— 70y,

(17)

The functionsFp, Fp and Gp, Gy are the(5%P) perturbations tay, f andg/, f,
expanded around the bifurcation point vakieand defined by:

~0Pg - QPf ~0%g . . 0°f

(18)
these being evaluated lat= h = k*, d = d* andn = n*, and in view of the expansion
(7) depend on the spatial coordinakesndy.

The 0 (5?) linear system is of rank four and therefore has two levelsgiaeracy,
reflecting the additional degree of freedom implied by thalgsis of a periodic unit of
three cells (in comparison to that observed when analydieglerboard patterns) in
which the different cell types may be freely interchangedtity thatf’(d*)g'(n*) =
—2 (se€§2.2) andn* = n* for i = a,b, ¢, the combinations:

o (n*) (W, @, d") — g/ ().t (1, A 0) 2 (i *) — 2 (0, d3,0) . (29)

wherei =b,candp=1,2,..., are identically zero. These correspond to the two eigen-
vectors (with zero eigenvalue) of the linear system, basedhich we make the ansatz:

d —1 -1
(Dl) =A(X,T) ( 0) +B(x,T) ( 1) +C(x,t), (20)
d; 1 0

whereA andB are to be determined and, from (13), (16) we obtain:

C = (g/(n*)F1(d*) + Fo(n*)) /3. We remark that through appropriate choicefoB,
all the types of possible period-three pattern discussé@.id may be represented by
this ansatz, including the additional pattern configuratiobtained under cyclic per-
mutation of the periodic unit.
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~ Employing the linear combinations (19) to eliminate #652) perturbationsi,
5, equations (12)—(17) may be expressed as the followinggb@ioupled partial dif-
ferential equations fol(x, T), B(x, T):

an

Ny (A+2B) = a1 (4yB+2yA—2AB—A%) + (B + 0%) (A+2B),  (21)
/\% (2A+B) = a1 (4yA+2yB—2AB—B?) + (B1+ %) (2A+B),  (22)
where/\, y, a; andf; are defined by:
_AAHY) e o g - ) f7(dY) 29"
A= A , Y=40 (n )Fl(d )+Fl(n )’ a; = 2 + [g/(n*)]zv (23)
:4G1(I’]*) — 20 (VG (d* _4gll(n*)|:l(n*) o () (d*
B rIC) 29 (n*)Gy(d”) (P g (n)Fi(d")y. (24)

We reiterate that, in view of equations (7) and (18% y(x,y) andf1 = B1(x,y), while

N\ andaj are constants. The corresponding Notch activity is giveedpyation (13).
As in the case of square cells (see O'Dea and King (2011)gteqns (21) and (22)
demonstrate that, on the macroscale, the juxtacrine siggahteraction manifests it-
self as linear diffusion, with effective diffusivity//\, despite the short-range patterning
under consideration.

This continuum model differs from that derived in O’'Dea anphd< (2011) (in
which a checkerboard patterning regime in square cells aresidered) by the quadratic
(rather than cubic) form of the nonlinearity, due to the agtotic scalings appropriate
to reflect the solution behaviour nedi. Additionally, we have expressed our equa-
tions in a more general form to enable the wider array of getiwee modes to be
captured.

We note that the form of the continuum model is not crucialypendent on the
details of the underlying signalling system; additionaénaction terms (such as those
of the formn;d; or njd; as employed by Owen and Sherratt (1998) in a more complex
juxtacrine signalling model, accommodating ligand, freeeptors and bound recep-
tors) do not materially affect the diffusive interactiontbe quadratic nonlinearity. As
noted above, since the bifurcatiorf&t is subcritical, the behaviour captured by equa-
tions (21) and (22) will not be reflected in the observed sotubehaviour; however,
the analysis presented here will apply to similar systemssetstability does not con-
form to that shown in Figure 3. For constant parameter valties uniform steady
states of (21) and (22) are determined by solving a pair oplmlquadratic equa-
tions. (We highlight that these are “uniform” in the sensattthey are constant for
their associated cell type, adjacent cells attaining thffie steady states.) The signs
and magnitudes of the parametgrsa; andf; in (21), (22) determine the existence
of such solutions, reflecting the stability properties & tmderlying discrete system.
In the case investigated here, multiple steady-stateieahito (21), (22) exist on both
sides of the bifurcation point, reflecting its inability tdfdrentiate between stable and
unstable states; in contrast, a supercritical transisanh as the pitchfork bifurcations
at%é,, %, would imply a reduction in the number of real steady stasdba bifurcation
point is traversed.

3.1.2 Transitionsbetween patterned states

In this section, we derive a continuum model to capture taesition between period
three patterns of types (i) and (iii) or types (ii) and (iiijurcation points labelled,—
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%y, as illustrated in Figure 3. We note that, in contrast to thiecstical behaviour
analysed in§3.1.1, in this case, the transitions occur at supercrifii@hfork-type
bifurcations; the continuum model we shall derive is thereimmediately applicable
to the dynamics of the underlying discrete system.

Adopting the notation employed §8.1.1, the appropriate linear combinations in
this case are:

g’(ni*)//(nip,a'p,a'*) — g'(na*)/z(ng,a,i,aa*) +.2 (N, dp,n'"™) — 2 (3, d3, n*) |

(25)
whereini = b,c andn'*, d* now denote the levels of Notch and Delta activity in each
cell type at the bifurcation point between pattern typesjragenoted® in each case.

Considering the bifurcation point&,, 44 at which the pattern has a ratio of two
upregulated cells to one downregulated cell (see Figurié@gy be observed that the
downregulated state is an order of magnitude smaller tranghegulated state and we
therefore scale the downregulated state withFigure 3 indicates that at the bifurca-
tions %,, %, the steady states of Notch activity are of comparable orasvever, the
corresponding up- and downregulated steady states of Belitaty display an order
of magnitude disparity (not shown) and a correspondingalesg must therefore be
chosen when considering these bifurcations. We remarkhisathange in scalings is
also revealed from the asymptotic analysis.

In the more general case for which the downregulated ststatg-value of Notch
activation is of the same order as the level of upregulatioa,scaling employed in
63.1.1 is appropriate. Considering a bifurcation of the féfgm%y (with steady states
of comparable order), the calculation follows the same webtts that outlined i§3.1.1
and we obtain:

7}

A= (A+2B)=a (4yB+2yA—2AB—A?) + (B + %) (A+2B),  (26)

/\%(ZAJFB):aA2+BBZ+KAB+uA+vB+X+ 02 (2A+B), (27)

in which A, ai, y and; are defined by (23), (24) but evaluated at the new bifurcation
pointk*, n®, d® (corresponding to the upregulated Notch activation st&t&)remark
that, since in the case under consideration both cells @& &and b are in the upregu-

lated stateg™ = d™* = (d® +d)/2,d" = d®. Application of the linear combination
(19) therefore results in the PDEs (26) and (21) having idahtorm. The parameters
a—x are known functions of both up- and down-regulated steaahestn', d'*, d”
(i = a,c), but are too cumbersome to include here; these are inclind&égpendix A
for completeness.

We now consider in detail the behaviourdt, 4 under the configuration
(n®,n?* n®), wheren® = dA® and the steady-stated* andri® are ¢'(1). In this
case, at first order, the level of Notch activation in cellgygfe a and b diverges at
the pitchfork bifurcatiori4y, the activity in type ¢ cells remaining constant. Such be-
haviour corresponds to choosiAg= 0 in equation (20). Here, the appropriate scaling
is £, = &3 = &2 and&, = & so that spatial and temporal variation enter§é¢§3). The
remaining two configurations obtained under cyclic perriotemay be analysed in
a similar way and correspond ®= 0 andA = —B in equation (20) in each case.
We note that an equivalent derivation provides an equataveiging the transition
between pattern types (ii) and (iii) &, %, but is omitted.

The equations af (1), €(6) and'(6?) are of similar form to (12)—(17); the equa-
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tions governing Notch and Delta activity in each cell type as follows:

6(1): 0=g(n™)—d*, 0=f(d")—n"* (28)
6(8): 0=2(n,di.n*),  0=.#(n,d.d"), (29)
2 i ik gll(n*)(nil)z i
0(6%):0=2(n,,d5,n )+f+ﬁ(n ); (30)
L, Y RY: A —ix
0= a(rydyd™) + AN g ). (31)
3. 10d} i i Doy L e NS i
oo )'XW:g(nl%d&n ) +ninyg (n )+69 (n")(n)°+nG1(n), (32)
R o T @)+ @) + g1 @ @
. . 7 % .
+d,6.@) + % 02dy, (33)

whereini = a,b,c andF;, F;, G; andG; are defined by (18) and are evaluated at the
appropriate bifurcation point.

Employing the ansatz (20), equations (29) yi€le- 0. The(6°) equations (32),
(33) may be reduced to a reaction-diffusion equatiorBiog;t) as follows. The linear
combination (25) withi = b allows removal of¢'(5%) perturbationsng, d‘3, while
0(6?) perturbations are eliminated in favour of thosex(®) via equations (30), (31)
and the linear combination (25) with= c. Lastly, we employ equation (29) to express
the equation in terms d only, obtaining:

/\% = B3+ 3,B+ %B, (34)

whereA is defined by equation (23) arg andf,(x,y) are defined:

Zg///(na*) B g/(na*)f///(aa*) - {g’(na*) f”(aa*)}
- 3[g () 12 8
_|_ﬂ <g/(na*)f//(aa*) g’ (n?) >, (35)

8 4 )P
. 4G1(na*)

P =gy

+ao1 (ﬁl(aa*wrw) . (36)

—[g(n®)]2£"(d*)Fy(d™) —2g/ (n*) Gy (d™)

2

Equation (34) is invariant under the transformat®nr- —B, reflecting the sym-
metric divergence of activity in cells of type a and b at thpesgritical pitchfork bi-
furcation %},; the level of activity in cells of type ¢ remains constant/&(d). The
continuum model (36) is therefore identical in form to thaation-diffusion equation
derived in O’Dea and King (2011) when considering a period-{patterning regime in
square cells. We reiterate that the patterning mode undaigeration and the asso-
ciated scalings, rather than the details of the underlyigigadling model, result in the
form of the partial differential equation (34).
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For constantB, (i.e. k= constant), the uniform steady states of (34) Bre-
(0,++/—PB2/a2); ‘uniform’ here means that they are spatially-constangiisoof type
a. Fork < k* we find 3, > 0 and only the trivial solutio8 = O exists, corresponding
to the maintenance of the type (i) heterogeneous steady @t periodic unit remains
in the staten ~ (n®* . n® on®*). As the feedback strength increasgschanges sign:
k > k*, B2 < 0; in this regime non-trivial roots exist and the behaviaguttie periodic
unitisn~ (n®,n, 0)+ &(£+/— B2/ a2, F1/—PBo/02,i%) corresponding to the emer-
gence of type (iii) patterns. Considering only the localreabf the feedback strength
B2 = B2(x,y), we therefore expect the generation of patterned statesléat the pitch-
fork bifurcation atk*. For brevity, hereafter we will refer to this patterning betour
as that influenced by “local feedback strength”.

We note that a similar analysis may be performed at the kifioo pointséy, é:
yielding a corresponding result.

3.1.3 Two parameter expansion

The above multiscale analyses have produced continuumIsdzsed upon an un-
derlying discrete patterning system, for the emergencamndtéble) patterns from the
homogeneous steady stag8.(L.1) and the (stable) transitions between patterns ektyp
(i) and (ii) and types (ii) and (iii))§3.1.2) in parameter regimes for which these pattern-
ing bifurcations are widely spaced.

Inspection of the model equations derive¢$3.1.1 and 3.1.2 reveals that the gen-
eration of, and transition between, period-three pattisrdependent ot (for clarity,
we emphasise that; = a1 (n®,d* k* b), n® andd® being the steady states in cells
of type a at the bifurcation poirt* for a specific value ob). The multiscale anal-
yses presented i§§3.1.1 and 3.1.2 correspond to the bifurcation structuestithted
in Figure 3 for whicha; > ¢(1). In the casen; = 0 (b ~ 1.927), the five bifurca-
tions collapse onto one pitchfork-like patterning bifufoa generating stable type (ii)
and unstable type (i) patterns from the homogeneous stdatly (see Figure 4(c)).
Here, we analyse the behaviour near the bifurcatian at 0; inspired by Figure 4 we
consider: A

b(x,y; €4) = b* + &ab(X,y) (37)

in addition to the expansions (7)—(9), in whi¢#*, n'*) = (d*,n*) denote the homo-
geneous steady-state values of Delta and Notch activity, &, the bifurcation point
values at whiclog = 0.

In this regime, the model (21) and (22) breaks down, progdnly the trivial
steady state; instead, a continuum model for period thriéerpa being generated from
the homogeneous steady state is obtained by choasiages = €4 = 6% ande, =
and spatial and temporal variation enterg’gt°®) as in§3.1.2. The equations at each

order are identical to (28)—(33) with and its derivatives evaluated af = d*; here,
Fi, F1, Gy, G, are theﬁ(éz) perturbations td, g and f/, g expanded arounk¥, k*.

As in the previous analysis of pattern emergence from thedgemeous steady
state, the linear combinations (19) enable eliminatior?(6d3) perturbationsr@, dg)
from (32) and (33). Equations (31) allo@(62) perturbations to be removed from
the resulting pair of equations in favour of those(fd); employing the ansatz (20)
with C = 0, (28)—(33) may then be expressed as the following pair oplsa partial
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differential equations foA(x, T), B(x, T):

A % (A+2B) = a, (A +3A°B+3AB% + 2B%) + (B, + 0%) (A+2B),  (38)

A % (2A+B) = a2 (B*+3AB+ 3AB% + 2A%) + (B, + 0%) (2A+B),  (39)

wherea, and 3, are defined by (36) and evaluatedagt= 0, d* = d*. The corre-
sponding Notch activity is given by equation (13).

The analyses presentedjf3.1.1 and 3.1.2 describe the behaviour near the indi-
vidual bifurcation pointsg™ or €,—%6y4; above, via the isolation of the combination
a1 which dictates the bifurcation structure of the system égxdn the special case
for which the downregulation of Notch activity in one cellegtreme), we have de-
rived a more general formulation which captures the geiweraif the five bifurcation
points illustrated in Figure 3. Furthermore, the model esponding to the structure
illustrated in Figure 4(c) may be recovered by setting 0.

We remark that the nonlinearities in the model (38), (39)ddr& different form to
those in the models (21), (22) and (26), (27), obtained byyairay pattern generation
in the regimenr; > ¢'(1) for steady states of comparable order. However, by consider
ing the matching between the inner (in parameter space)iation (38) and (39) and
the outer formulations (21), (22) and (26), (27) can be shown that these models are
consistent in the limit§ — o, b — b*. This calculation is summarised in Appendix B
for completeness.

314 Summary

We have employed a multiscale analysis to derive continuwdeats based upon the
discrete Delta-Notch signalling model that describe bloghegmergence of period three
patterns from the homogeneous steady state and the toangiween two types of
period-three pattern in appropriate parameter regimes.

In the former case, the bifurcation from the homogeneous ganerating type (i)
patterns is sub-critical, and so the asymptotic behavieuived will not be reflected
in the observed solutions to (1). However, the analysisainat herein serves to il-
lustrate our methodology; similar continuum models may beved for alternative
signalling systems whose stability properties imply tlne tesults are more immedi-
ately applicable. On considering the transition betwedtepaed states, two distinct
regimes were identified. In the case for which the heterogemsteady states of Delta
and Notch activation are of comparable order, the generatipatterns from the ho-
mogeneous state and the transition between patterningsvasdeoverned by models
of a similar form. In each case we obtain a pair of coupledtieadaiffusion equations
with quadratic nonlinearity: equations (21), (22), (26)1&87). This deviates from the
equation derived in O’'Dea and King (2011), in which a cubialireearity is obtained.
This disparity is due to the asymptotic scalings requireckioture solution behaviour
near the bifurcation points in the multiscale analysis. Aception is the transition be-
tween patterning modes in parameter regimes for which timdegulation in one of
the three cells is extreme (the transition at the pitchfafitkrbationss; or 64 shown in
Figure 3). Here, since the level of activation in the downtaged cell remains constant
(to first order), the resulting continuum model (34) is idealtin form to that derived

2We note that the outer pattern transition model (34) is nptiegble at the edge of the inner layer since
in this regime the steady states are of comparable order.
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in O’Dea and King (2011) in which the symmetric divergenca gieriodic unit of two
cells at a pitchfork bifurcation was considered.

The model equations (21), (22) and (26), (27) are expressadiore general form
than that in O’'Dea and King (2011), leading to a system of PIDEdace of the single
PDE obtained in O’'Dea and King (2011). This reflects the morelex pattern form-
ing behaviour exhibited in a hexagonal mesh. In the caseafla@rboard patterns, the
pattern-forming bifurcation is of pitchfork type and thesgible pattern configurations
are equivalent up to a phase shift of a single cell. The asyticgiehaviour is therefore
captured by one PDE (with cubic nonlinearity) and the Notctivation in alternate
cells (hy, ny, say) diverges symmetrically from the bifurcation poirite talternative
pattern therefore displays the corresponding, but inydrsleaviouryiz. +n; = Fn,.

In the case of patterns of period three, the various pattenfigurations associated
with each mode mean that such a symmetry is not sufficientpgtuoathe entire be-
haviour. A second PDE is required to provide an additiongirele of freedom and
these patterns may then be captured via suitable choice sfdtvly-varying functions
A andB. In (34), however, due to the specifics of the problem at hamdare led to
consider the case for which= C = 0 and the resulting single equation models the
transition from type (i) patterns in the configuratior®(, n®*, dA®) to corresponding
patterns of type (iii) only. The return to a single PDE andicutonlinearity obtained
in this case reflects that the third cell in the periodic uaihains constant to first or-
der, the remaining two cells diverging symmetrically, athis case for checkerboard
patterns.

Figure 4 reveals that the bifurcation structure is contbby the feedback parame-
terb, reflected in the appearance of the combinatigin the asymptotic analysis; the
five bifurcations illustrated in Figure 3 collapse onto agénsupercritical pitchfork-
like bifurcation at a critical valu®* (corresponding tar; = 0). Inspired by this, we
performed a two-parameter expansion, constructing armamtn model for the unfold-
ing bifurcation atk*, b*. In this case, the second order equations become degenerate
and the resulting reaction-diffusion equation has a cubidinearity as in O’Dea and
King (2011), reflecting that the behaviour in two of the thoedls is identical, track-
ing the upper solution branch of the pitchfork. The remainiell follows the lower
branch; the alternative patterns are obtained by inveitigy behaviour. However,
a system of PDEs is nevertheless obtained, reflecting thitiathl possible pattern
configurations. By considering matching between this fdation and the preceding
analyses in appropriate limits, we confirmed that the varimntinuum limits are con-
sistent and that the model derived for the behaviour béapntains the other models
as limit cases.

4 Numerical results

4.1 Steady states

As noted above, the continuum model (21), (22) is unable eédipt the observed be-
haviour of the discrete model (1) since the period threeepagtbranch subcritically
from the homogeneous steady stat&atin place of time-dependent numerical sim-
ulations of (1), we therefore compare the unstable steaatesof (1) neafs” with
those of (21) and (22) to demonstrate that our multiscaléyaisadoes in fact reflect
the (unstable) behaviour of the underlying system near ifuedation point. Figure
7(a) shows how the steady state levels of Notch activity amepo the bifurcation
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behaviour of the nonlinear model (1) as the paramieisrvaried; Figure 7(b) shows
this in more detail. Clearly, the steady states of the cowtim model form a good
approximation to the (unstable) underlying discrete bahawlose to the bifurcation
point; further from the bifurcation point, the transcritietype behaviour predicted by
the continuum limit diverges from the nonlinear model.

—O— Asymptotic approximation

—©— Asymptotic approximatior]

167 168 169 17k171 h]72 173 174

@ (b)

Figure 7: (a) Comparison of the steady states of Notch &gtfithe nonlinear system
(1) near the bifurcation poir#” (see Figure 3) with those of the continuum approxima-
tion (21), (22); (b) the comparison in more detail. The stadibady state is indicated
by a solid line, unstable nonlinear steady states by doitted.| Parameter values as in
Figure 2 excepk = h as indicated.

4.2 Simulations

To illustrate the dynamic behaviour of our continuum foratigns, we now present nu-
merical solutions of (34) on the domaindOx < L, 0< y < L and compare these to cor-
responding numerical simulations of the discrete systgniliese simulations capture
the transition between type (i) and type (iii) patterns. \Weasek(x,y) = 2x/L — 1 to
demonstrate how spatial variation in feedback strengttatis the emergence of fine-
grained patterning in the domain. As notedi#11.2, the uniform steady steady states
of (34) are (0£+/—f2/a). Considering only the local value of the feedback strength
B2 = B2(x,y), we therefore expect the generation of patterned statesléatthe pitch-
fork bifurcation ak*. In addition to the comparison with the underlying discratalel,

in the following, we demonstrate how solutions to (34) wiplasally-varying feedback
differ from the pitchfork bifurcation behaviour that arist'om considering only this
‘local feedback’ strength. Simulations of (38) and (39)tcap the emergence of stable
type (ii) patterns from the homogeneous steady state; \ilindlaspecifics of the pattern
transition represented by (38) and (39) are significanffedint to those described by
(34), the behaviour of the relevant variables at first orglguialitatively similar (two of
the cells following the upper solution branch of the pitafkftike bifurcation, the third
cell tracking the lower) and simulations are therefore tedifor brevity.

Equation (34) was solved by discretising on a uniform spgtia and employing
the initial value problem solvesde15s in MATLAB; in the following simulations
we choose the grid spacimx, Ay asAx = Ay = 10~ We note, however, that the
grid spacing is not prohibited from exceeding significatiy diameter of a single cell
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since the cell-scale variation has been systematicallyagesl out. Since we expect
macroscale variation over the domain due to the chosen férkixpy), we impose
no-flux conditions ak = O, L in place of a macroscale periodic domain imposed in the
discrete simulations shown in Figure 2.

In Figure 8(a), the steady-state pattern in & 19 section of a small 2D array of
hexagonal cells is shown, obtained from simulation of tiseite system (1) indicating
the transition from one patterning mode to the next. So tladteming effects are
evident on this small domain, we choa®e- 0.5,L = 10.5. In Figure 8(b) the steady-
state value of the level of Notch activation in cells of typaral b as predicted by (34)
are compared to a corresponding simulations of (1) in aryafr@00x 900 hexagonal
cells L =9, 0 =0.01), demonstrating that a smooth transition to from typéo(iype
(ii) patterning is obtained. In contrast, consideringyotiie local feedback strength
(see§3.1.2) predicts a pitchfork bifurcation from spatial horaogity to patterning;
far from the bifurcatiork®, the local feedback approximation shows good quantitative
agreement with the numerical simulations.

Local feedback
Type A cells
e -1611 - - -~ Type B cells
© Discrete

(@) (b)

Figure 8: (a) The steady state level of Delta activity prastidoy the discrete model
(1) in a section of a two-dimensional array £ 0.5, L = 10.5), and (b) a comparison
between the levels of Delta activity indicated by the diszsd homogenised models
in an array of 90& 900 cells § = 0.01,L = 9) along the lingy = 4.5. The dotted line
indicates the pitchfork transition arising from considerilocal feedback’ (see text)
only. R(x, y) = 2x/L—1,Ax =1 x 10~* = Ay, other parameters as in Figure 2.

4.3 Pattern invasion
4.3.1 Travellingwaves

In this discrete model, spatial patterns in Delta and Notitlvation can be generated
by a modulated travelling wave, behind which a regular patterms. Comparison
between the wave speed of pattern invasion predicted by antintium models and
that obtained from simulation of the discrete system presid quantitative descrip-
tion of the accuracy of the continuum approximation and alicetion of its range of
applicability in parameter space. Furthermore, such pimema are also observéa
vivo; for example, the morphogenetic furrow in the retindodsophila, behind which
a regular pattern of photoreceptors surrounded by suppdrp@ment cells is created
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(Owen, 2002; Plahte and @yehaug, 2007).

Travelling-wave solutions to (34) may be constructed bysabering a type (iii)
pattern-forming wave invading the unstable type (i) staiean infinite domain. As
noted in O’Dea and King (2011), while linear propagatiomfréravelling-wave so-
lutions of the formB(x+ vt) may be constructed, these correspond to ‘pushed’ wave
fronts. Equations (1) and (34) describe ‘pulled’ wave feoff{adeler and Rothe, 1975;
Stokes, 1976; Rothe, 1981, Plahte, 2001), whose minimunesymed may be calcu-
lated by analysing the behaviour at the leading edge of the wia:

B(x,t) ~ 5\, (40)

The wavenumber in each coordinate directlos: (ky,ky) and the minimum speed
v are determined from the dispersion relation obtained fr8#4) fogether with the
corresponding repeated root condition. Considering wénge®lling in the direction
y =0, we obtairnv = 2,/B,/A.

Pattern-forming travelling waves may be induced in simafet of the discrete and
continuous models through choice of suitable initial ddta;following simulation cor-
responds to an initial state consisting of stable typegaiftern in the region & y < L,

0 < x< L/30 and unstable type (i) in the remainder. We chdosel00 6 = 0.05 and,
as in§4.2, no-flux conditions are appliedat O, L in place of periodicity. Figure 9(a)
shows the position of the midpoint (defined as the half-maxialue of Delta activa-
tion in cells of type a) of a modulated travelling wave of ady(pi) pattern invading a
region of unstable type (i) pattern obtained from numesaalulation of (1) and (34),
indicating that the numerical solution of the homogenisediet faithfully reproduces
the behaviour of the underlying discrete system. While joliog a good qualitative ap-
proximation, the ‘linearly-selected’ wavespeed devidtes this observed behaviour;
analysing travelling waves closer to the bifurcation peeduces this deviation: Fig-
ure 9(b) indicates how the speed of the invading wave prediby the discrete and
continuous systems varies as a functio@ofn these simulations, the wavespeed was
calculated in the central part of the domain to minimise lotzuy effects. Clearly,
the minimum wavespeed predicted by the continuum modeligesvan excellent ap-
proximation to the underlying discrete behaviour, everpfmrameter values relatively
far from the bifurcation point; this approximation imprevas the bifurcation point is
approached.

4.3.2 Pattern competition

In each of the three patterning regimes depicted in FigungoBe than one period-three
heterogeneous state is stable: there are three possiblé}gnd type (ii) patterns, and
six type (iii) pattern configurations. Since, in each case,dattern configurations are
equivalent (up to a suitable permutation of the periodi¢)uamd equally stabley pri-
ori, neither has the propensity to invade the other: In Figurexsdemonstrate how
the system (1) evolves from an initial state containing ntba@ one type of stable pat-
tern configuration. Figure 10(a) illustrates that two typ@étterns may coexist stably,
with a smooth transition region in between. This behavisutiserved irrespective of
the proportion of the domain occupied. In contrast, Fig@gLindicates the evolution
of the system from an initial state comprising one stable i) pattern enclosing an-
other, showing that these patterns may invade leading @@ where only the pattern
which initially occupies the majority of the domain exists. this regime, the multi-
scale analysis outlined i§8.1.2 applies and comparison with the homogenised model
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Simulation of homogenised model (33) . Numerical solution of homogenised model (33)
i ©O  Simulation of discrete system (1)
— — — Linearly-selected wavespeed of (33)

60 ©  Simulation of discrete system (1)
— — — Linearly-selected wavespeed of (33)
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Figure 9: (a) The position of the midpoint and (b) the speed asction ofd (k =

k* + &), of the modulated travelling wave of Delta/Notch activjigedicted by the
linearly-selected minimum wavespeed= 2,/B,/A and simulations of the discrete
and continuum systems (1) and (34). The domain is of kige100, (4 = 0.05) and
all parameters are as in Figure 8 except, in {oas stated.

may be performed; as demonstrated in O’Dea and King (20ELnikially (approxi-
mately) square enclosed region becomes circular as it &lew as expected from the
corresponding continuum system (figure omitted for cooaisi Referring to Figure
3(b), the patterns shown in 10(b) are type (iii) patterns3y2,l) and (2,3,1) config-
uration which lie on the same solution curve emanating froendssociated type (i)
pattern ¢+,+,—) configuration. The remaining two matching configuratio®d (3)
and (3,1,2) which branch from the bifurcation po#j also display similar invasive
behaviour; all other competing pattern configurations &iestably in the domain with
smooth transitions between patterning statésHigure 10(a); omitted for concision).
The non-invasive behaviour displayed by the discrete misdigrmed “pinning”
and illustrates an interesting feature of such patternygiesns in which multiple
modes are stable: a minority of patterning modes displagsive behaviour, the re-
mainder are able to pin, forming discrete regions of stabléepn. Such invasive be-
haviour is exhibited only by ‘compatible’ patterning modesch as those highlighted
in Figures 3(b,c). These correspond to the symmetricaspdipattern configurations,
reflecting the pitchfork structure of the pattern-genagabifurcation; the remaining
configurations are not invasive. In view of this, the longeg tharacteristic wave-
length of the pattern under consideration, the more patficdbthis pinning behaviour
will be, since permutation of the periodic unit implies aglar number of possible con-
figurations. Pinning of patterns can therefore be expectedtur even for parameter
values very near the bifurcation point, for which behavimare appropriate to a con-
tinuum description would be anticipated. Far from the laédion point, strong discrete
effects may prevent pattern invasion, and pinned pattemtdrare generally observed
even for ‘compatible’ patterns. Pinning is exhibited in tekated juxtacrine signalling
model of Owen and Sherratt (1998) and will be discussed irbaesguent publication.
The corresponding continuum limit is unable to capture sagthaviour, its description
being restricted to the relatively few compatible pattesnfgurations emanating from
the bifurcation point; continuum models of patterning eys$ with a wide range of
patterning modes are therefore severely restricted inathge of patterning behaviour
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they are able to capture.
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Figure 10: (a) The evolution of the level of Delta activataong the linej = 100 in

a 210x 210 array of cells labelledj(l) predicted by the discrete system (1) in type
a and b (dashed line) and C (solid line) cells starting fromirétial state compris-
ing a (+,+, —) configuration type (i) patterr  105) and a {,+,+) configuration

(I > 105) att = 0,1 x 10°. Parameter valuek = k* — 52, = 0.1. (b) The evolution
of the level of Delta activation predicted by the discretsteyn (1) and the continuum
model (34) in type a (dashed line) and b (solid line) celts-at(0,5,200Q 1 x 1CP) in
an array of 21& 210 cells § = 0.01,L = 2.1) along the liney = 1 from an initial state
comprising a (32, 1) configuration type (iii) pattern enclosing a 81) configuration
(k= k* 4 82). Here, the continuum model solutions are indicated bylestdn (b) the
Delta evolution in the remaining cell is omitted for clar{the extreme Delta upregula-
tion in type c cells renders the graphs unclear). Exceptaedstall model parameters
are as in Figure 2.

5 Discussion

In this paper, we have examined thoroughly the range of fragigd (period-three)
patterns formed in an array of hexagonal cells which eximbércellular signalling be-
haviour governed by the generic Delta-Notch signalling elad Collier et al (1996).
This model takes the form of a pair of ODEs, representing thigation of juxtacrine
(membrane-bound) signalling molecules and their recejnazach cell; a key assump-
tion is that receipt of inhibition reduces the ability of dlde inhibit its neighbours.
For sufficiently strong feedback, this negative feedbadpls able to amplify differ-
ences in Notch activation between cells, the level of whietedmines the cell’s fate
(low levels lead to the progression of cells to the primatg favhilst high levels rele-
gate the cell to the secondary fate) and is therefore an itrapiocell fate regulator in
densely-packed tissues.

We employ the method outlined in O’'Dea and King (2011) to wedontinuum
models based upon the underlying discrete model which gr&bta of describing the
fine-grained patterning which arises under particular mg$ions on the model pa-
rameters associated with signalling feedback strengthadtpreviously been thought
that the short spatial scale of oscillation of these patteetessitates analysis via dis-

24



crete methods; however, by considering period-two (chdxdard) patterning in square
cells, in O’Dea and King (2011) we demonstrated that suchigs@ale variation may
be accommodated within models derived via the straightiodvassumption of slow
variation and judicious choice of variables, exploiting tbcal periodicity displayed
in specific parameter regimes. The resulting continuum ndel@onstrates that this
interaction may be represented as a diffusive process avefine-grained patterning
regime.

Inspired by the fine-grained patterns observed in early [dpweent of some tis-
sues, and the discrete analysis of Webb and Owen (2004) wikitlonstrated that cell
shape has a strong influence on the patterns produced inigredillsng models and
the morphology of certain epithelial cell types, we extendpmrevious work to analyse
fine-grained patterns in an array of hexagonal cells. Inreshto the checkerboard pat-
terns analysed in O’Dea and King (2011) (which, althoughgéegodic unit contains
four cells, are equivalent to period-two patterns in a oimeethsional string), here, fine-
grained patterning corresponds to a wavelength of thrddecgjths in each direction
(and the periodic unit therefore contains three cells). [@&till fine-grained in nature,
the increased pattern wavelength leads to a far richerrpagienerating bifurcation
structure than that investigated in O’'Dea and King (2011 wae are led to consider
separate continuum models for the generation of patteons fne homogeneous state
and the transition between patterning modes. Via a tworpater expansion, we addi-
tionally derive a more general formulation capturing theeegence of the bifurcation
structure.

The continuum model derived in O’Dea and King (2011) tookftiren of a single
reaction-diffusion equation with cubic nonlinearity (elyaic formulae providing the
three remaining solutions), the juxtacrine interactiomifessting itself as linear dif-
fusion. In this case, due to the symmetry of the two possibltepn configurations,
the entire checkerboard patterning behaviour of the systagnbe represented by one
such equation; here, the form of the continuum model is detexd by the pattern-
ing regime (and associated scalings) that we wish to capfline crucial difference
between the continuum formulations obtained in square axddonal geometries is
that, since the various period-three pattern configuratiorhexagons conform to a
more complex symmetry than checkerboard patterns, aniaunlaidegree of freedom
is necessary, resulting in a pair of coupled reaction-diffo equations.

In the case for which the bifurcation points are widely sph@® > ¢(1)), the
nonlinearities in the systems of PDEs representing botlerggion of patterns from
the homogeneous steady state and transition betweenmiagtenodes are quadratic
rather than cubic. A notable exception is equation (34) Wiaipplies to the specific
case where downregulation in one of the cells is extremes, lveg obtain a model of
identical form to that derived in O’'Dea and King (2011), refieg the fact that the third
cellin the periodic unit remains constant to first order réraaining two cells diverging
symmetrically as is the case for checkerboard patterns. bdcawonlinearity is also
obtained in the parameter regime for whicki@r; < 1 in which the five bifurcation
points shown in Figure 3 collide to leave a single pitchfoiflatration generating type
(i) and (iii) patterns from the homogeneous state; howewethis case a system of
PDEs is nevertheless required to capture the various pegsiltern configurations.

We remark that the continuum formulations are general: ¢ fof the nonlinear-
ity is influenced by the required asymptotic scalings rathan the specific details of
the signalling model under consideration. Ongoing anslg§iperiod two patterning
phenomena in a more complex juxtacrine signalling framé&warodelling explicitly
the number of ligand molecules and free and bound recepitoesich cell results in a
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continuum model of the form presented in O’Dea and King (301tlis important to
note that due to the bifurcation structure of the specifinaiighg model under consid-
eration (see Figure 3), the continuum representation (2d4.22) of pattern generation
from the homogeneous steady state in the regime: &' (1) is not reflected in the
observed solution behaviour; however, such a model willyappgeneral to similar
signalling systems whose stability properties imply tinég tinalysis is more immedi-
ately applicable.

The ability of our formulation to capture the underlyingaiste dynamics is illus-
trated via comparison between the nonlinear steady stéties continuum and discrete
models (in the case of equations (21) and (22) for the reasatfised above) and be-
tween time-dependent numerical solution of the continuumdehand simulations of
the corresponding discrete system in a variety of scenaFosconcision we present
time-dependent simulations of the transition model (34y;aorresponding behaviour
is observed in solutions to the remaining continuum equnat{@6), (27), (38) and (39)
in appropriate parameter regimes.

We demonstrate firstly that the steady-states of (21) angdg&®ide a good ap-
proximation to the bifurcation behaviour of the nonlineardel (1) for parameter val-
ues close to the bifurcation point. Further from the biftiarapoint, the nonlinear
behaviour rapidly diverges from the transcritical-typé&é@our predicted by the con-
tinuum limit. Secondly, we consider the time-dependemtsition between patterns of
types (i) and (iii). We demonstrate that under slow variatid parameters associated
with feedback strength, the continuum model faithfullynaghuces the transition be-
tween patterning types demonstrated by the underlyingetissystem. We also com-
pare the speed of propagation of travelling waves of staigle iii) patterns invading
a region of unstable type (i) patterns, demonstrating éxcefualitative agreement
between numerical solution of, and the speed of a linealgesed travelling-wave so-
lution to, our homogenised model and the behaviour of thetipithg discrete system,
even for parameter values far from the bifurcation point.

Lastly, we investigate the competition between the mudtgtterning modes. We
show that pairs of ‘compatible’ type (iii) patterns exhibivasive behaviour, the sys-
tem evolving to contain the pattern configuration initiadlgcupying the larger part of
the domain. These compatible modes are those pattern cratfagns which reflect the
symmetry of the underlying bifurcation structure. Comiati between the remaining
patterning modes results in pinned behaviour in which tretesy supports multiple
stable patterning regions with a smooth transition regiobdtween. Such behaviour
is not reflected in the continuum description of the pattegrsystem, which highlights
a limitation of the ability of continuum models of the typeepented herein to capture
patterning behaviour in systems with a wide range of staldden. We remark that
such shortcomings are likely to be more pathological in &ragnge patterning sys-
tems in which a wider range of pattern configurations exisefich patterning mode.
In addition, the dynamics of such discrete systems may bagly influenced by the
underlying lattice geometry (Cahn et al, 1998), a featuriecaptured in the contin-
uum representations presented here. A subsequent pidsiigdll investigate lattice-
induced anisotropy in discrete diffusion and cell sigmgjlsystems. We remark that the
stable “pinned” patterning behaviour highlighted here rhayinterpreted biologically
in terms of a stem cell niche, as it corresponds to the cansttpof cells of a dis-
tinct phenotype to a distinct, fixed region. As such, furtingestigations into pinning
phenomena in discrete systems may have implications dttelntiation research.

The aim of this work was to develop continuum representatafrthe discrete pat-
terning phenomena arising from models of intercellulanalting. Such an approach
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enables the integration of important microscale behavigatissue-scale models. The
specific intercellular signalling model analysed in thisrkvavas chosen in large part
for illustrative purposes, its relative simplicity adrimty analysis; however, the mathe-
matical techniques employed here may be applied to morerbspatially-discrete
signalling models with little difficulty, enabling integran of discrete cell-signalling
mechanisms into tissue-scale models in a wide variety ofaoes. Our methodology
is, however, limited in two important ways. Firstly, it is aisle to account for large
microscale stochastic noise in cell signalling activityedo its reliance on a separation
of scales between cell signalling variation and feedba@angth. Our analysis there-
fore applies only in those cases for which the noise is sefiity small to be averaged
out on the macroscale, or has no affect on the overall stabilipatterns (see Rudge
and Burrage (2008)). Secondly, although our methodologybeaextended to reflect
cell growth or domain deformation (seeg., Fozardet al. (2009)), we are unable,
as it stands, to accommodate cell division, which may reqglobal relabelling of
cells. Both of these phenomena may be modelled with easéweaithindividual-based
model and their inclusion in continuum models poses intergshallenges for fu-
ture work. Other biologically-relevant extensions in@udvestigations of continuum
models capable of capturing multi-mode patterning stafetditionally, the patterns
typically observed in biological systems have approxinsatat-range periodicity with
defects; capturing such phenomena will provide many istarg mathematical chal-
lenges and is integral to the development of relevant cantimmodels of cell sig-
nalling behaviour.
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A Patterned statetransition

Here, we present, for completeness, the form of the paraswety that appear in the
continuum representation of (1) when considering the ttiansbetween period-three
patterns of types (i) and (iii) or types (ii) and (iii) in panater regimes for which the
steady-state levels of upregulated and downregulatechNuiivation are of compara-
ble order. As noted if3.1.2 since, at the bifurcation point, both cells of typed lare

in the upregulated state), the first of the two PDEs (26) and (27), which comprise
the continuum model takes an identical form to that obtaimkdn analysing pattern
generation from the homogeneous state. However, in cetigoefc, Notch activation

is downregulatedn®*) leading to the following more complex coefficierts-x in the
remaining PDE:
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Q = d1c — Q1a, B = —01a, K = 2014, (41)

X X . . 26, 26
1 = guFic (a1 — Gfl) + GhFia (a1a — gufl) — 2 (g(;Glc +0,G1at+ 2+ —“’(52)

A (VA
29 Vo Ay 29 Vo Aya\ | 20.f0V 20442
a G G
+4 (g(;Glc 9,G1a+ —= — }a>.
o g

The functionsf;, g, aii, ¥, Fij, Gi etc. are defined by equations (2), (23) and (24),
the additional subscript indicating the cell type on whikk functions are evaluated,
for instanceiry; = ay(ni*,d ).

B Maitching between the asymptotic formulations

In this appendix, we consider asymptotic matching betwéert‘inner” formulation
(38), (39) for which 0< a1 <« 1, and the “outer” formulations (21), (22) and (26),
(27), for whicha; > €(1).

Denoting the outer solution with carets and returning tortb&tion (8) in favour
of the functionsA, B andC for clarity, we match between the different formulations
via:

d=d*+D'+5?D" + 52}, (44)
d =d*+ D"+ 52" + 52!, (45)

whered* andd* are the inner and outer steady states@hd", Ot andd" are cho-
sen to ensure that both the inner and outer solutions mattifetappropriate steady
state at the boundary layer edge separating the inner aed foumulations. In the
homogeneous casef,* — d* andd” = D = 0. When con3|der|ng an outer expan—
sion around the heterogeneous stagein the configuratiord” = (d da, d®*), w
setb” = (0,0, 15’”) and similarly forD". Corresponding forms are chosen for the re-
maining patterning configurations &, or expansion around the heterogeneous state
atée.

Matching to the homogeneous outer solution, in the lirbits « andb — b* and
examining the equations at each order, the nonlineariti¢21), (22) are replaced by
terms of the following form:

ot (df?—d2'2) + BT (o] — ). (46)

The coefﬁments&fr andB’ are known functions of the expansionaf and; in the
limit b — b*, DT, d* andd*; similarly, DT is a known function of the model parameters.
These are omitted for brevity. The corresponding nonlitiearin (38), (39) have an
identical form.

In the case of the heterogeneous steady state the nonlmeairt (26) is identical
to (46); the nonlinearity in (27) has the form:

aq S — byd® 4 cydSt — eyt + £ 1 gy, 47)
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in which a;—f; are functions of the expansions@f, B, d®, d® andd* independent
of D = agd‘fr - bgdi‘Jr +go (in which a,, b, andg, are similarly dependent on the
steady states and model parameters) which are too longltaiznbere. Corresponding
nonlinear terms are obtained from (38) and (39) in the Ilmit oo,
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