
SOFTWARE TOOL ARTICLE

 cellmlmanip and chaste_codegen: automatic CellML to

C++ code generation with fixes for singularities and

automatically generated Jacobians [version 2; peer review: 3

approved]
Previously titled: 'chaste codegen: automatic CellML to C++ code generation with fixes for singularities

and automatically generated Jacobians'

Maurice Hendrix 1,2, Michael Clerx 1, Asif U Tamuri 3, Sarah M Keating3,
Ross H Johnstone4, Jonathan Cooper 3, Gary R Mirams 1

1Centre for Mathematical Medicine & Biology, University of Nottingham, Nottingham, UK
2Digital Research Service, School of Mathematical Sciences, University of Nottingham, Nottingham, NG8 1BB, UK
3Centre for Advanced Research Computing, University College London, London, WC1E 6BT, UK
4Computational Biology & Healthcare Informatics, Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK

First published: 12 Oct 2021, 6:261
https://doi.org/10.12688/wellcomeopenres.17206.1
Latest published: 15 Jun 2022, 6:261
https://doi.org/10.12688/wellcomeopenres.17206.2

v2

Abstract
Hundreds of different mathematical models have been proposed for
describing electrophysiology of various cell types. These models are
quite complex (nonlinear systems of typically tens of ODEs and
sometimes hundreds of parameters) and software packages such as
the Cancer, Heart and Soft Tissue Environment (Chaste) C++ library
have been designed to run simulations with these models in isolation
or coupled to form a tissue simulation. The complexity of many of
these models makes sharing and translating them to new simulation
environments difficult. CellML is an XML format that offers a widely-
adopted solution to this problem. This paper specifically describes the
capabilities of two new Python tools: the cellmlmanip library for
reading and manipulating CellML models; and chaste_codegen, a
CellML to C++ converter. These tools provide a Python 3 replacement
for a previous Python 2 tool (called PyCML) and they also provide
additional new features that this paper describes. Most notably, they
can generate analytic Jacobians without the use of proprietary
software, and also find singularities occurring in equations and
automatically generate and apply linear approximations to prevent
numerical problems at these points.

Open Peer Review

Approval Status

1 2 3

version 2

(revision)
15 Jun 2022

view view

version 1
12 Oct 2021 view view view

Axel Loewe , Karlsruhe Institute of

Technology (KIT), Karlsruhe, Germany

1.

David Nickerson , University of Auckland,

Auckland, New Zealand

2.

Rahuman S Malik-Sheriff , Wellcome

Genome Campus, Hinxton, UK

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://wellcomeopenresearch.org/articles/6-261/v2
https://wellcomeopenresearch.org/articles/6-261/v2
https://wellcomeopenresearch.org/articles/6-261/v2
https://orcid.org/0000-0002-6621-7996
https://orcid.org/0000-0003-4062-3061
https://orcid.org/0000-0001-6633-3789
https://orcid.org/0000-0001-6009-3542
https://orcid.org/0000-0002-4569-4312
https://doi.org/10.12688/wellcomeopenres.17206.1
https://doi.org/10.12688/wellcomeopenres.17206.2
https://wellcomeopenresearch.org/articles/6-261/v2
https://wellcomeopenresearch.org/articles/6-261/v2#referee-response-51086
https://wellcomeopenresearch.org/articles/6-261/v2#referee-response-51088
https://wellcomeopenresearch.org/articles/6-261/v1
https://wellcomeopenresearch.org/articles/6-261/v2#referee-response-48330
https://wellcomeopenresearch.org/articles/6-261/v2#referee-response-48112
https://wellcomeopenresearch.org/articles/6-261/v2#referee-response-48329
https://orcid.org/0000-0002-2487-4744
https://orcid.org/0000-0003-4667-9779
https://orcid.org/0000-0003-0705-9809
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.17206.2&domain=pdf&date_stamp=2022-06-15

Corresponding author: Maurice Hendrix (maurice.hendrix@nottingham.ac.uk)
Author roles: Hendrix M: Conceptualization, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing –
Original Draft Preparation, Writing – Review & Editing; Clerx M: Software, Writing – Review & Editing; Tamuri AU: Software, Writing –
Review & Editing; Keating SM: Software, Writing – Review & Editing; Johnstone RH: Conceptualization, Investigation; Cooper J: Funding
Acquisition, Investigation, Methodology, Project Administration, Software, Supervision, Writing – Review & Editing; Mirams GR:
Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Original
Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by Wellcome [212203, https://doi.org/10.35802/212203] via a Senior Research Fellowship
to GRM; and the Biotechnology and Biological Sciences Research Council [grant number BB/P010008/1]
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2022 Hendrix M et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Hendrix M, Clerx M, Tamuri AU et al. cellmlmanip and chaste_codegen: automatic CellML to C++ code
generation with fixes for singularities and automatically generated Jacobians [version 2; peer review: 3 approved] Wellcome
Open Research 2022, 6:261 https://doi.org/10.12688/wellcomeopenres.17206.2
First published: 12 Oct 2021, 6:261 https://doi.org/10.12688/wellcomeopenres.17206.1

Keywords
CellML, cardiac electrophysiology, code generation, C++, jacobian,
singularity, GHK equation

Page 2 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

mailto:maurice.hendrix@nottingham.ac.uk
https://doi.org/10.35802/212203
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.17206.2
https://doi.org/10.12688/wellcomeopenres.17206.1

Introduction
Within the area of electrophysiology, there are hundreds of mathematical models describing biological behaviour.
Many of these models are complex systems of tens of ordinary differential equations (ODEs) with hundreds of
parameters, making translation into different simulation software time-consuming and prone to transcription errors.
This also makes sharing models between different tools and application areas difficult. CellML1 addresses
this problem by offering a way to describe mathematical models in an XML-based format, independent of the
choice of programming language or tools used to simulate or analyse the models. It was originally created
with the Physiome Project in mind, and a large repository of well over a hundred CellML electrophysiology
models is available on the Physiome Model Repository2,3 (PMR, https://models.physiomeproject.org/cellml).
CellML sees continued development by the research user base4 and several tools are available to support
modelling using CellML models.

CellML models can be imported into various simulation tools such as the Cancer Heart and Soft Tissue Envi-
ronment (Chaste)5, OpenCOR6, Myokit7, and model comparison tools such as the Cardiac Electrophysiology
Web Lab8,9. This paper describes the development of cellmlmanip and chaste_codegen — tools that
together provide a Python 3 CellML code generator for CellML model import into Chaste C++ files, replacing
PyCML10, written in Python2. The new tools provide several useful features that we have described previously11 (in
the context of PyCML), most notably:

• �Automatic units conversion (electrophysiology models in Chaste always use milliVolts, milliseconds,
microAmps per square centimetre for membrane currents).

• �Generation of C++ code for either inbuilt Chaste ODE solvers or the Sundials CVODE library.

• �Automatic generation of lookup tables for faster evaluation of voltage-dependent functions.

• �Automatic generation of code for solving using Rush-Larsen style schemes.

cellmlmanip and chaste_codegen are an all-new implementation which also include: i) generation of
Jacobian matrices analytically; and ii) fixes for numerical singularities. We will focus on these new features in the
rest of the article.

Methods
Implementation
CellML is a model definition language, as such it describes the model and its equations but does not describe
how the equations should be solved or how experiments are run. The parsing of CellML files into sets of
symbolic/algebraic equations (in SymPy12 format) is handled by the cellmlmanip library. chaste_codegen
takes these equations and generates C++ code using Jinja213 templates for compilation within Chaste.
cellmlmanip is available as a Python3 library and chaste_codegen is available as a standalone command
line tool for Python 3. As Python based tools, they are platform independent, and have been tested on Windows,
Linux and Mac. chaste_codegen, cellmlmanip and their stack of dependencies are all free and open source.
chaste_codegen (with its dependency cellmlmanip) has been integrated into Chaste v2021.1 onwards.

cellmlmanip is a flexible component that can read CellML and enable it to be used for a variety of purposes,
such as translating CellML models into other formats, or into code for various simulation packages. A reason for
separating this functionality into separate tools is that we want to enable parsing and checking CellML files
without the need to generate Chaste code, which is useful for other projects, and indeed the next version of the
Cardiac Electrophysiology Web Lab will use cellmlmanip but not chaste_codegen. Separation of the

          Amendments from Version 1
The title and text have been amended to describe the roles of both the new cellmlmanip and chaste_codegen tools
more clearly, and to address comments from the reviewers. The introduction contains more information on the other
capabilities of the tools. There is more information on alternatives for the singularity fixing, and detail on the use of the
ontology to annotate CellML models before using with chaste_codegen.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://models.physiomeproject.org/cellml

parser and simulator has the advantage of creating a resource for the CellML community, which will ultimately be
much easier to maintain than writing a bespoke CellML parser for each application.

Key features of cellmlmanip are: using SymPy to represent mathematics (making its full suite of algebraic
manipulation capabilities available), tracking physical units and performing conversions as needed, and managing
and querying Resource Description Framework (RDF) metadata annotations on models. cellmlmanip
currently supports CellML version 1.0, but it could easily be adapted to support CellML version 2.04.
However, because of the ongoing development of libCellML4 there are currently no plans to do this
as libCellML is a more general propose CellML 2.0 library and should offer the ability to read and
manipulate CellML 2.0 models, and also write adjusted models back to CellML again, which is not something
cellmlmanip aims to do. We hope to replace cellmlmanip with libCellML at some point in the future
when it has all the features we need. Indeed, the singularity fixing code could migrate to libCellML in future.

SymPy is a python library for symbolic mathematics12 that offers several convenient features. Most notably, it
provides us with the ability to calculate Jacobians algebraically, to recognise patterns, rewrite equations, and to
extract common terms in a set of equations. It also comes with a convenient printing mechanism, separating the
mathematics from their representation.

Jinja2 is a templating language for Python, modelled after Django’s templates. Using Jinja2 allows us to separate
the logic from the code output, which allows generating code for a number of different solvers, as described
in detail in Cooper et al.11. Jinja2 templates should allow easy adaptation to export code in other programming
languages for other cardiac electrophysiology simulators (we are planning to use the same approach for python
code generation within the Cardiac Electrophysiology Web Lab). The latest release of chaste_codegen
also adds the ability to generate code in LabVIEW14 format by adding a new Jinja2 template, highlighting the
flexibility of this templating approach.

Analytic Jacobians
Within Chaste one of the main solver types available is CVODE, which performs well for the stiff systems
that feature in many electrophysiology models. CVODE can be sped up if the user provides a method to return
the ‘analytic’ (algebraically derived and exact) Jacobian matrix for the ODE system, with entries defined as
the partial derivative of each ODE’s right-hand-side with respect to each state variable. If this method is missing
CVODE derives an approximation based on finite differences15. To supply analytic Jacobians PyCML required
them to be pre-computed by the proprietary Maple software. In chaste_codegen we have integrated calculation
of a Jacobian matrix at runtime, by making use of the open source SymPy library.

We compared previously existing code, using Maple’s differentiation, with the SymPy generated Jacobians.
The validity of the generated Jacobians was assessed by comparing numerical results for 46 different models, all
results were identical or within very small tolerances.

Singularities
Many electrophysiology models use a formulation for ion currents based on the Goldman-Hodgkin-Katz
(GHK) flux equation16, or feature equations with similar structure. Unfortunately such equations can intro-
duce singularities into a model. Here, we define singularities as situations where an equation tends to 0/0 close to
a particular value of a model variable (usually membrane voltage, V).

In general terms, these GHK-style functions of voltage take the form:

0()

0()
() () ,

1B V v
V v

C V f V
e −×

−
=

−
 (1)

where B is any constant, f(V) is any function of V (that may also be simply a constant), and v
0
 is the voltage at

which we hit the singularity. Following Johnstone17, we can simplify this notation by defining a new function

()

() ,
f VA V

B
= (2)

and use the substitution

 0(),U B V v= × − (3)

Page 4 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

to leave Equation (1) with a non-dimensional fraction term that encapsulates the singularity, such that

 .() ()
1U

UC V A V
e

=
−

 (4)

For convenience we also define

 () .
1U

Ug U
e

=
−

 (5)

We can now see more clearly that at as U → 0 there is a singularity as both the top and bottom of the fraction
in Equation (5) tend to zero (eU → 1, so eU – 1 tends to zero).

It is important to point out that mathematically the value of the equation remains well defined; no physics in
the model is breaking down as we get close to 0/0. That is, there is a finite value to which the expression eval-
uates which we will tend towards as we get closer to the singularity (a limit), and this can be found analytically
using approaches such as L’Hôpital’s rule, as we will discuss later. But when evaluating such equations numeri-
cally, it is possible to reach voltages close to (or at) the singularity where the numerical evaluation is not
just inaccurate but often tends to ±∞.

As an example, Figure 1 shows the background calcium current I
Ca,b

 in the Davies et al.18 model of a canine
cardiomyocyte, as a function of trans-membrane voltage (V). The figure shows unstable, asymptotically-increasing
oscillatory behaviour close to V = 0.

By plotting such graphs for a number of cases, Johnstone17 found that the range in which instability occurs
numerically is within approximately 10–7 of U = 0 when using double precision (64 bits to represent a floating
point number in computer memory).

Problems with these singularities are most apparent when running voltage-clamp experiments, when the volt-
age V is clamped exactly at a singularity voltage v

0
. Given the infinite number of choices for voltage clamps and

parameters within the models, one might expect this to be unusual. However, this situation is very common.
Rounded numbers appear as the clamp voltage in experiments, where steps to a handful of voltages are chosen
manually by an experimenter; and also in the model equations themselves. This unfortunate collision is most
commonly encountered when the model equations feature v

0
 = 0 mV, as in the standard form of the GHK

(flux) equation itself (Equation (11) in Goldman16). But the situation also occurs in the more general form of
Equation (1) because parameterisation has commonly been done ‘by hand’ in ion channel modelling, and so

Figure 1. Example singularities fix in the background calcium current (ICa,b) equation of the Davies et al.18
model. Left: ICa,b as a function of voltage across the physiological range. At, and close to, V = 0mV we hit a singularity
such that the computation attempts to evaluate 0/0 and answers can tend to ±∞, seen here as apparently vertical lines
at V = 0 mV. Right: a zoomed-in view around the singularity. The red line represents our applied linear approximation,
evaluated in the voltage interval [–1.336 × 10–6 ≤ V ≤ 1.336 × 10–6] (or equivalently –10–7 ≤ U ≤ + 10–7). The black line
represents a standard fix often manually applied to models, which leads to the discontinuity between blue and black
lines at U = ±10–7.

Page 5 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

the (V – v
0
) terms often feature round numbers for v

0
. As an example, equations of the form of Equation (1)

with both (V + 10) and (V + 25) appeared in the original Hodgkin and Huxley19 model, meaning that even
this fundamental model requires modification to do voltage clamps to –10 or –25 mV (N.B. the voltage in
the original paper is defined relative to resting potential rather than extracellular potential, and some CellML
implementations have updated these numbers to the modern convention using a similar process to that described
in Brown20).

Apart from voltage clamp experiments and singularities at ‘round numbers’, any singularity within nor-
mal physiological voltage ranges will be crossed during the simulation of an action potential. Frustratingly,
the more accurately you solve the ODEs, the more likely you are to hit these singularities. This is because a sim-
ple fixed-timestep solver is very unlikely to hit the narrow region of voltage which causes a problem, but using an
adaptive timestep solver with automatic error correction (like CVODE21) can detect large gradients or sudden
changes, introduce more timesteps to refine the solution around these points, ‘home in’ on the singulari-
ties and crash. This is definitely not to say that the adaptive solvers are unsuitable for these models, quite the
opposite — electrophysiology models frequently have stiff systems with ‘fast sodium current’ upstrokes and other
slower processes, and adaptive ODE solvers can provide huge improvements in speed and accuracy. So rather,
enabling reliable use of adaptive solvers is an added incentive to avoid the numerical problems associated with
singularities.

Approaches to fix singularities
It is worth noting that the use of some computational optimisations such as using the C++ function 'expm1'
(where expm1(U) = eU – 1) do help by increasing precision for small values of U, but they do not alleviate the
problem entirely.

There are a number of ways the singularity can be removed completely. When inspecting existing models, we
found many CellML files where L’Hôpital’s rule had already been applied manually when numerical problems
had been encountered. In the notation we introduced above it is simple to see how L’Hôpital’s rule applies

0 0 0 0

d
1 1dlim () lim lim lim 1.

1d1 ()1
d

U UU U U UU

U
U Ug U

e eeU
→ → → →

= = = = =
− −

 (6)

So the ‘fixes’ in most CellML files apply this constant limit value, g(U) = 1, across a region close to the singularity
(by using a ‘piecewise’ statement in CellML). Substituting the L’Hôpital limit into Equation (4), this fix is applied as

1

(), ,
()

() otherwise.,−

 <= 

 U

U

A V U
C V

A V
e

ε
 (7)

Where ε is a small range, which varies depending on the CellML file but translates to a small region of voltage.
In our notation this is equivalent to |(V – v

0
)| > ε/B.

A Taylor expansion around the singularity gives
2

() 1
2 12
U Ug U ≈ − + +… and so as a refinement of Equation (7),

Johnstone17 suggested using the first two terms of the Taylor expansion rather than just the first term, giving a
more accurate approximation close to the singularity:

1

() 1 , ,
2

()

() otherwise.,U
U

UA V U
C V

A V
e

ε

−

  − <   = 



 (8)

We have taken the approach above and implemented it in cellmlmanip with a small modification. Rather
than using the above linear expression we decided to simply ‘draw a line’ between the values of C(V) evaluated
using Equation (1) at the ε bounds of our region, and interpolate from this. This was not actually any simpler to
implement, as we still identify U in order to pick bounds over which to apply the linear approximation. But a ben-
efit of this approach over using Equation (8) is that we get at least C0 continuity as we leave the region, even if

Page 6 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

some curvature in C(V) is apparent, whereas there can still be (typically very small) discontinuities in C(V) as we
transition between the cases in Equation (8). Note that any discontinuities in Equation (8) are, by definition, much
smaller than the discontinuities that appear using Equation (7), as we can see in Figure 1. This continuity can be
important to avoid problems in numerical solutions of ODEs, but in practice Equation (8) and the approach
we have taken are almost indistinguishable given the size of ε.

The algorithm we implemented within cellmlmanip has two parts. To identify whether an equation has a
singularity and apply a fix, the algorithm is:

1. �Recursively check within each equation for singularities, term by term.

2. �Skip (sub-)equations that are piecewise statements, we assume that if these have a singularity it
has a manual fix applied.

3. �Find U using SymPy’s pattern matching capabilities.

4. �Solve for U = 0 to find the singularity point in terms of model variables (usually Voltage, V).

5. �Introduce a piecewise statement to replace the original expression within –10–7 ≤ U ≤ +10–7 (the fact this
is now a nondimensional range means that the same fixed range appears to work well for all singularities
we have found; it is translated back into voltage ranges of different widths at code generation time).

6. �Within this range we use linear interpolation between values evaluated using the original expression
at the boundaries (U = ±10−7).

7. �We note that
1 U
U

e− +
 leads to a similar situation, as do 1Ue

U
− and 1 Ue

U
− + . Therefore these cases are

treated similarly.

To ensure we fix the appropriate equation, the algorithm is:

1. �A graph is constructed for dependencies of all equations in the model. We can then order them from
ODEs at the top level to state variables at the bottom level.

2. �All equations in the model are rewritten in terms of state variables, by substituting them into intermediate
variables, so that (for instance) V appears explicitly in all equations that have any dependence on it.

3. �We start at the bottom level of the graph, look for singularities and if none are found using the pro-
cedure above we progress to the next level of the graph. If a singularity is found we introduce a fix at
that node of the graph.

Testing
To test the process we searched a set of CellML models (all those annotated for use with Chaste and the
WebLab and available at https://github.com/chaste/cellml22) for any piecewise elements. We then manu-
ally identified the subset of these being used to fix singularities. We removed these fixes from the CellML files
then verified that our code would indeed find and fix these singularities automatically. The result of this exer-
cise is shown in Table 1. The table shows the number of previously hard-coded fixes and the number of

Table 1. Comparison of numbers of singularities and hard-coded fixes found in a range of CellML files
(see https://github.com/Chaste/cellml/tree/master/cellml to access these CellML files).

CellML filename # previously
hard-coded fixes 

(all auto-fixed
when removed)

extra
detected 

(all auto-fixed)

total 
(all auto-fixed)

aslanidi atrial model 2009 0 6 6

aslanidi 2009 0 9 9

beeler reuter model 1977 2 0 2

benson epicardial 2008 0 9 9

Page 7 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://github.com/chaste/cellml
https://github.com/Chaste/cellml/tree/master/cellml

CellML filename # previously
hard-coded fixes 

(all auto-fixed
when removed)

extra
detected 

(all auto-fixed)

total 
(all auto-fixed)

bernus wilders zemlin verschelde panfilov 2002
version01

0 1 1

bondarenko 2004 apical 0 1 1

bondarenko 2004 septum 0 1 1

bueno 2007 endo 0 0 0

bueno 2007 epi 0 0 0

Carro Rodriguez Laguna Pueyo CinC2010 ENDO 0 5 5

Carro Rodriguez Laguna Pueyo CinC2010 EPI 0 5 5

clancy rudy 2002 1 5 6

Corrias rabbit purkinje model 3 0 3

courtemanche 1998 7 0 7

davies isap 2012 7 0 7

decker 2009 8 0 8

demir model 1994 0 6 6

difrancesco noble model 1985 5 5 10

dokos model 1996 0 3 3

earm noble model 1990 0 3 3

espinosa model 1998 6 3 9

faber rudy 2000 2 9 11

fink noble giles model 2008 0 1 1

fox model 2001 0 4 4

grandi pasqualini bers 2010 0 6 6

grandi pasqualini bers 2010 endo 0 6 6

hilgemann noble model 1987 4 3 7

hodgkin huxley squid axon model 1952 modified 2 0 2

HundRudy2004 units 0 9 9

iribe model 2006 4 3 7

IyerMazhariWinslow2004 0 4 4

iyer model 2007 0 4 4

jafri rice winslow 1998 0 7 7

kurata model 2002 0 3 3

lindblad atrial model 1996 0 6 6

LivshitzRudy2007 0 8 8

Li Mouse 2010 1 1 2

luo rudy 1991 2 0 2

luo rudy 1994 0 9 9

MahajanShiferaw2008 units 5 0 5

Maleckar 0 1 1

maltsev 2009 3 0 3

Page 8 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

CellML filename # previously
hard-coded fixes 

(all auto-fixed
when removed)

extra
detected 

(all auto-fixed)

total 
(all auto-fixed)

matsuoka model 2003 4 0 4

mcallister noble tsien 1975 modelB 0 5 5

noble model 1962 0 3 3

noble model 1991 4 3 7

noble model 1998 4 3 7

noble model 2001 4 6 10

NN SAN model 1984 7 4 11

Noble SAN model 1989 4 4 8

nygren atrial model 1998 0 1 1

ohara rudy 2011 endo 0 5 5

ohara rudy 2011 epi 0 5 5

ohara rudy cipa v1 2017 5 0 5

paci hyttinen aaltosetala severi atrial Version 0 1 1

paci hyttinen aaltosetala severi ventricular Version 0 1 1

pandit clark giles demir 2001 version06 variant01 0 1 1

pandit clark giles demir 2001 0 1 1

pasek simurda christe 2006 0 3 3

pasek model 2008 0 7 7

priebe beuckelmann 1998 1 0 1

ramirez 2000 0 6 6

sachse model 2007 0 1 1

sakmann model 2000 epi 4 6 10

shannon wang puglisi weber bers 2004 model
updated

0 10 10

stewart zhang model 2008 0 1 1

tentusscher model 2004 endo 0 1 1

tentusscher model 2004 epi 1 0 1

tentusscher model 2004 M 0 1 1

tentusscher model 2006 endo 1 0 1

tentusscher model 2006 epi 1 0 1

tentusscher model 2006 M 1 0 1

Tomek model13endo 0 8 8

Tomek model13epi 0 8 8

Trovato2020 0 5 5

viswanathan model 1999 epi 2 7 9

wang model 2008 0 3 3

winslow model 1999 1 3 4

zhang SAN model 2000 0D capable 0 4 4

Total 106 263 369

Page 9 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

extra fixes detected for the range of CellML files. In short, all 106 singularities with previously hard-coded
fixes were identified, and the code found 263 new singularities that had never been ‘fixed’ within the CellML
files. An overview of all 369 fixes, each with a similar plot to Figure 1, is available in the ‘assets’ branch of
the chaste_codegen GitHub page23.

Note that the figure of 106 singularities includes approximately 20 hard-coded fixes we applied to our subset
of CellML models using Equation (8) after hitting singularities in previous work, and these do not feature in the
main CellML repository (PMR) which contains 80 to 90 hard-coded fixes. There are a number of advantages
in removing hard-coded singularity fixes from the CellML files: we can make more accurate linear rather than
constant fixes (as shown in Figure 1); others could choose how to treat the singularities and adapt our code to use
other methods if they wish; and finally the CellML model is simplified to represent the equations and not how
they should be solved. A disadvantage in removing hard-coded singularity fixes from the main CellML repository
(PMR) is that all translation code would need to adopt an approach similar to the one we have outlined to avoid
hitting singularities, whereas currently around 80 to 90 hard-coded fixes will appear in any generated code with-
out code generation tools needing to do any special treatment. Dealing with singularities at code generation
time is more future-proof for when people add new models, rather than hard-coding the fixes we applied here
into the CellML files in the Physiome Model Repository (PMR) and then having to periodically repeat this
exercise for any new models that have been added. On balance, we think that this automated approach at code
generation time is the preferable route and hope it has been described so that others can reproduce it in their
own code generation software, or re-use components of our open source implementation.

In the remainder of this article we discuss the practicalities of using chaste_codegen. The main limitation
of this approach is that it is only capable of fixing singularities caused by GHK flux-like equations. We have
decided to limit to these as they are most common type in the cardiac modelling area, and appear to cover
all singularities we could find in the CellML electrophysiology models in Table 1; whilst SymPy can detect
singularities more generally, this is much more computationally expensive than our ‘pattern matching’ approach,
and so covering all possible singularities would be computationally intensive, and does not appear to be necessary
for electrophysiology models.

Operation
There are two main ways to use chaste_codegen. It can be used as part of the Chaste5 build process,
from the 2021.1 release onward. It can also be used as a standalone command line tool or Python library. The
minimal system requirements for chaste_codegen as a standalone command-line tool are:

• �python3 (3.5+), tested on Windows 10, Ubuntu Linux 18.04 and MacOS.

• �python3 pip (usually bundled with a python installation).

• �python3 venv (or other python virtual environment) is recommended, to ensure the right versions of
dependencies are available. However chaste_codegen will still work without a virtual environment.
Python3_venv is required for use within Chaste and is usually bundled with a python installation.

For use integrated into the Chaste5 build process, follow the regular guides24 on installing and building Chaste.
As part of the Chaste installation process chaste_codegen will be installed in a virtual environment and all
CellML files in the source will be converted using the appropriate settings.

To install as a stand-alone command line tool, run pip install chaste_codegen. You may want to
create a python virtual environment (venv) first. The basic usage is: chaste_codegen cellml_file where
cellml_file is the CellML file to be converted. To get a detailed overview of the various options run the
command chaste_codegen -h. Before using CellML files with chaste_codegen, they are required to
be annotated with metadata in RDF format, following the Web Lab Ontology (https://github.com/ModellingWe-
bLab/ontologies). The annotations enable variables such as stimulus current, time and voltage to be identified
and then converted to consistent units. See the Chaste wiki25 for more details.

Use cases
In this section we will briefly show a number of common conversions in action. For a more detailed guide see
the ‘Code generation from CellML’ section in the Chaste guides24. Due to the size of both the import and gener-
ated code, however, we will mention only key snippets and refer to the full files available in the assets
branch of the chaste_codegen GitHub page23.

Page 10 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://github.com/ModellingWebLab/ontologies
https://github.com/ModellingWebLab/ontologies

In the following examples a CellML 1.0 file for the Hodgkin-Huxley model will be converted into code for a
number of different ODE solvers. The CellML file consists of a number of components (membrane, sodium chan-
nel, sodium channel m gate, sodium channel h gate, potassium channel, potassium channel n gate and leak-
age current) and within these components variables are defined. The model also includes and links between
components and unit definitions.

CellML files may include metadata through the use of RDF, the Resource Description Framework.
chaste_codegen makes use of these annotations when generating C++ source code for Chaste, some of
which are optional. In particular, chaste_codegen needs to know which variables represent voltage and
stimulus_current, in order to link the models into the mono/bi-domain equations.

Below an example of a variable called V tagged as voltage is shown.

<variable name="V" units =" millivolt" initial_value ="−80" public_interface="out"

 cmeta : id="membrane_voltage">

 <rdf : RDF xmlns:rdf =" http://www.w3.org/1999/02/22−rdf−syntax−ns#"

 xmlns: bqbiol="http://biomodels.net/biology−qualifiers/">

 <rdf:Description rdf:about="#membrane_voltage">

 <bqbiol : is

 rdf: resource="https://chaste.comlab.ox.ac.uk/cellml/ns/oxford−metadata#membrane_voltage"/>

 </rdf:Description>

 </rdf : RDF>

</variable>

‘Plain’ C++ code
The following command generates what we call ‘plain’ C++ code. This code is used for solvers that only
require the right-hand side of the ODE, such as Forward Euler and Runge-Kutta solvers. This kind of code
generation does not require any specific flags.

 �chaste_codegen ModelName.cellml

This generates ModelName.cpp and ModelName.hpp. The code generates a class called
CellModelNameFromCellML which inherits from AbstractCardiacCell. It contains the following
key methods:

• �a constructor and destructor

• �UseCellMLDefaultStimulus calculates a stimulus based on parameters (amplitude, duration,
start- and end-time) set in the model. These are identified using metadata as described above.

• �GetIIonic calculates total ionic current at the present time (for use in tissue simulations).

• �EvaluateYDerivatives calculates the derivatives of the state values when provided with their
current values, defining the ODEs of the model.

• �ComputeDerivedQuantities gives a way to calculate the value of quantities that are derived
directly from state variables, for example currents such as “the fast sodium current”.

• �OdeSystemInformation::Initialise gives a way to retrieve information about the model
such as name, free variable (usually time), state variable, modifiable parameters and named derived quantities.

CVODE
The following command generates code for the CVODE solver which has its own vector class.

 �chaste_codegen –cvode –use-analytic-jacobian ModelName.cellml

This generates .cpp and .hpp files with the same name as before. The generated class now inherits from
AbstractCvodeCell, containing the same methods but with SUNDIALS’ vector class for use directly with
CVODE. It also has a method EvaluateAnalyticJacobian in which the analytic Jacobian is defined, to
be used by CVODE.

Page 11 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

Backward Euler
The following command generates Backward Euler code.

 �chaste_codegen –backward-euler ModelName.cellml

This generates .cpp and .hpp files with the same name as before. The generated class inherits from
AbstractBackwardEulerCardiacCell. The class does not have EvaluateYDerivatives, but instead
it has:

• �UpdateTransmembranePotential where the voltage is updated based on the ODE for voltage.

• �ComputeOneStepExceptVoltage where the other state variables are updated. The variables are
described by linear equations use a backward Euler fashion e.g. n = (n + (α ∗ mDt)) / (1.0 – ((–α – β) ∗ mDt))

Rush-Larsen
The following command generates code in which some state variables are updated using analytic solutions
using the Rush-Larsen scheme26.

 �chaste_codegen –rush-larsen ModelName.cellml

This generates .cpp and .hpp files with the same name as before. The generated class now
inherits from AbstractRushLarsenCardiacCell. The concrete class does not contain a method
EvaluateYDerivatives, but instead it has methods:

• �EvaluateEquations where the voltage and non-linear state-variables are updated using the Forward
Euler method. For the linear equation state variables are stored to capture the analytic solution.

• �ComputeOneStepExceptVoltage where the linear state-variables are updated using their analytic
solutions.

Summary
This paper has introduced the cellmlmanip library for reading and manipulating CellML models and the
chaste_codegen software tool, designed to translate electrophysiology models from the CellML XML
format into C++ code for use by the Chaste simulation package. We have shown how the tool can be used,
highlighted the main different types of code it can generate for different solvers and shown a number of
advanced features that chaste_codegen implements over a previous tool called PyCML. The most nota-
ble are the ability to generate analytic Jacobians and to evaluate and fix singularities in equations. We have
shown that the singularity analysis works as expected with an analysis of a large number of popular models, by
identifying all previously-identified singularities and finding over three times as many in total.

Contributing to development
chaste_codegen and the cellmlmanip libraries are open-source and publicly available and we welcome
contributions: from questions about the current functionality to suggestions for improvements and source
code contributions. It should also be relatively simple to extend the use of templates to generate code for other
simulation packages in C++, Python, or other languages. Contributions are made in the first instance using
GitHub issues. In order to contribute, users create a new issue in either GitHub repository or comment on
an existing issue. Contributions in the form of source code can be made by issuing a pull request on either
repository (ideally a new GitHub issue should be created, which can then be linked to the pull request).
The pull request will trigger an automated test suite and a number of other checks for things such as code
formatting and test coverage.

Software availability
Software available from: https://pypi.org/project/chaste-codegen/

Source code available from: https://github.com/ModellingWebLab/chaste-codegen

Archived source code as at time of publication: https://doi.org/10.5281/zenodo.5527756

BSD 3-Clause License

Page 12 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://pypi.org/project/chaste-codegen/
https://github.com/ModellingWebLab/chaste-codegen
https://doi.org/10.5281/zenodo.5527756

Author contributions
MH led the development of chaste_codegen, contributed to cellmlmanip development and co-wrote
this paper. MC contributed to cellmlmanip development and provided code reviews and suggestions for
chaste_codegen development. AUT and SMK contributed to cellmlmanip development. RHJ iden-
tified the singularities issue and provided analysis around how this could be solved. JC led the development
of cellmlmanip and provided code reviews and suggestions to chaste_codegen. GRM worked on the
singularity fixing algorithm, supervised the work, and co-wrote this paper.

References

1.	 Garny A, Nickerson DP, Cooper J, et al.: CellML and associated
tools and techniques. Philos Trans A Math Phys Eng Sci. 2008;
366(1878): 3017–3043.
PubMed Abstract | Publisher Full Text

2.	 Sarwar DM, Kalbasi R, Gennari JH, et al.: Model annotation
and discovery with the physiome model repository. BMC
Bioinformatics. 2019; 20(1): 457.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Yu T, Lloyd CM, Nickerson DP, et al.: The physiome model
repository 2. Bioinformatics. 2011; 27(5): 743–744.
PubMed Abstract | Publisher Full Text

4.	 Clerx M, Cooling MT, Cooper J, et al.: CellML 2.0. J Integr Bioinform.
2020; 17(2–3): 20200021.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Cooper FR, Baker RE, Bernabeu MO, et al.: Chaste: Cancer, heart
and soft tissue environment. J Open Source Softw. 2020; 5(47):
1848.
Publisher Full Text

6.	 Garny A, Hunter PJ: Opencor: a modular and interoperable
approach to computational biology. Front Physiol. 2015; 6: 26.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Clerx M, Collins P, de Lange E, et al.: Myokit: a simple interface
to cardiac cellular electrophysiology. Prog Biophys Mol Biol.
2016; 120(1–3): 100–114.
PubMed Abstract | Publisher Full Text

8.	 Cooper J, Scharm M, Mirams GR: The cardiac electrophysiology
web lab. Biophys J. 2016; 110(2): 292–300.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Daly AC, Clerx M, Beattie KA, et al.: Reproducible model
development in the cardiac electrophysiology Web Lab.
Prog Biophys Mol Biol. 2018; 139: 3–14.
PubMed Abstract | Publisher Full Text | Free Full Text

10.	 Cooper J, McKeever S, Garny A: On the application of partial
evaluation to the optimisation of cardiac electrophysiological
simulations, PEPM ’ 06, New York, NY USA, Association for
Computing Machinery. 2006.
Publisher Full Text

11.	 Cooper J, Spiteri RJ, Mirams GR: Cellular cardiac
electrophysiology modeling with Chaste and CellML. Front
Physiol. Publisher: Frontiers, 2015; 5: 511.
PubMed Abstract | Publisher Full Text | Free Full Text

12.	 Meurer A, Smith CP, Paprocki M, et al.: Sympy: symbolic
computing in python. PeerJ Comput Sci. 2017; 3: e103.
Publisher Full Text

13.	 Jinja: Jinja Documentation (3.0.x).
Reference Source

14.	 Kodosky J: LabVIEW. Proc ACM Program Lang 2020; 4(HOPL): 1–54.
Publisher Full Text

15.	 Hindmarsh AC, Brown PN, Grant KE, et al.: Sundials: Suite of
nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software (TOMS). 2005; 31(3):
363–396.
Publisher Full Text

16.	 Goldman DE: Potential, impedance, and rectification in
membranes. J Gen Physiol. 1943; 27(1): 37–60.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Johnstone RH: Uncertainty characterisation in action potential
modelling for cardiac drug safety. PhD Thesis, University of
Oxford, 2018.
Reference Source

18.	 Davies MR, Mistry HB, Hussein L, et al.: An in silico canine
cardiac midmyocardial action potential duration model as a
tool for early drug safety assessment. Am J Physiol Heart Circ
Physiol. 2012; 302(7): H1466–H1480.
PubMed Abstract | Publisher Full Text

19.	 Hodgkin AL, Huxley AF: A quantitative description of
membrane current and its application to conduction and
excitation in nerve. J Physiol. 1952; 117(4): 500–544.
PubMed Abstract | Publisher Full Text | Free Full Text

20.	 Brown AM: The classics updated, or an act of
electrophysiological sacrilege? J Physiol. 2019; 597(11):
2821–2825.
PubMed Abstract | Publisher Full Text

21.	 Cohen SD, Hindmarsh AC, Dubois PF: CVODE, A Stiff/Nonstiff
ODE Solver in C. Computers in Physics. 1996; 10(2): 138.
Publisher Full Text

22.	 Chaste/cellml. 2021.
Reference Source

23.	 ModellingWebLab/chaste-codegen.
Reference Source

24.	 ChasteGuides. Chaste.
Reference Source

25.	 Chaste wiki. 2021.
Reference Source

26.	 Rush S, Larsen H: A practical algorithm for solving dynamic
membrane equations. IEEE Trans Biomed Eng. 1978; 25(4):
389–392.
PubMed Abstract | Publisher Full Text

Page 13 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

http://www.ncbi.nlm.nih.gov/pubmed/18579471
http://dx.doi.org/10.1098/rsta.2008.0094
http://www.ncbi.nlm.nih.gov/pubmed/31492098
http://dx.doi.org/10.1186/s12859-019-2987-y
http://www.ncbi.nlm.nih.gov/pmc/articles/6731580
http://www.ncbi.nlm.nih.gov/pubmed/21216774
http://dx.doi.org/10.1093/bioinformatics/btq723
http://www.ncbi.nlm.nih.gov/pubmed/32759406
http://dx.doi.org/10.1515/jib-2020-0021
http://www.ncbi.nlm.nih.gov/pmc/articles/7756617
http://dx.doi.org/10.21105/joss.01848
http://www.ncbi.nlm.nih.gov/pubmed/25705192
http://dx.doi.org/10.3389/fphys.2015.00026
http://www.ncbi.nlm.nih.gov/pmc/articles/4319394
http://www.ncbi.nlm.nih.gov/pubmed/26721671
http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008
http://www.ncbi.nlm.nih.gov/pubmed/26789753
http://dx.doi.org/10.1016/j.bpj.2015.12.012
http://www.ncbi.nlm.nih.gov/pmc/articles/4724653
http://www.ncbi.nlm.nih.gov/pubmed/29842853
http://dx.doi.org/10.1016/j.pbiomolbio.2018.05.011
http://www.ncbi.nlm.nih.gov/pmc/articles/6288479
http://dx.doi.org/10.1145/1111542.1111546
http://www.ncbi.nlm.nih.gov/pubmed/25610400
http://dx.doi.org/10.3389/fphys.2014.00511
http://www.ncbi.nlm.nih.gov/pmc/articles/4285015
http://dx.doi.org/10.7717/peerj-cs.103
https://jinja.palletsprojects.com/en/3.0.x/
http://dx.doi.org/10.1145/3386328
http://dx.doi.org/10.1145/1089014.1089020
http://www.ncbi.nlm.nih.gov/pubmed/19873371
http://dx.doi.org/10.1085/jgp.27.1.37
http://www.ncbi.nlm.nih.gov/pmc/articles/2142582
https://ora.ox.ac.uk/objects/uuid:0a28829c-828d-4641-bfb0-11193ef47195
http://www.ncbi.nlm.nih.gov/pubmed/22198175
http://dx.doi.org/10.1152/ajpheart.00808.2011
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pmc/articles/1392413
http://www.ncbi.nlm.nih.gov/pubmed/31148193
http://dx.doi.org/10.1113/JP276771
http://dx.doi.org/10.1063/1.4822377
https://github.com/Chaste/cellml
https://github.com/ModellingWebLab/chaste-codegen/blob/assets/singularity_fixes.md
https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides
https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CodeGenerationFromCellML
http://www.ncbi.nlm.nih.gov/pubmed/689699
http://dx.doi.org/10.1109/TBME.1978.326270

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 29 June 2022

https://doi.org/10.21956/wellcomeopenres.19920.r51088

© 2022 Nickerson D. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

David Nickerson
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

Many thanks for the detailed replies and manuscript updates!

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Standards development, cardiac electrophysiology modelling, software
development.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 17 June 2022

https://doi.org/10.21956/wellcomeopenres.19920.r51086

© 2022 Loewe A. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Axel Loewe
Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

Thank you for the clarifications and improvements.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational cardiac modeling

Page 14 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://doi.org/10.21956/wellcomeopenres.19920.r51088
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4667-9779
https://doi.org/10.21956/wellcomeopenres.19920.r51086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2487-4744

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 07 March 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48329

© 2022 Malik-Sheriff R. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Rahuman S Malik-Sheriff
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome
Genome Campus, Hinxton, Cambridgeshire, UK

This article describes the chaste_codegen tool developed to convert a CellML model to C++ code.
chaste_codegen is a Python3 implementation of the previously used Python 2 based PyCML tool.
The authors describe in detail two new additional features implemented in chaste_codegen (1)
Jacobian matrix generation (2) the ability to automatically detect and fix singularities in the
equation with linear approximation. And authors clearly demonstrate the validity of their solution
to detect and fix singularities with several examples. chaste_codegen along with the new features
is a quite useful tool.

The article is well written, however, it could benefit the readers further if the following minor
suggestions are considered.

It would be useful to provide a short summary of the major functionalities of
chaste_codegen in the introduction. Although one would expect them to be similar to
PyCML, it would useful to briefly describe them for the benefit of the new users.

1.

Also, it would be useful to discuss the performance of chaste_codegen when compared
against PyCML. For example, it will be useful to briefly mention how well does the
computational time compares in general. Were the functionalities from PyCML comparable
to those in chaste_codegen excluding the new features (automated Jacobians and
singularity fixing)?

2.

The article describes in detail the rationale and solution to fix singularities in the equations
(where the value of variable such as Voltage tends to become 0/0). The chaste_codegen has
been already integrated into chaste. Authors could discuss how this tool or approach could
be used beyond chaste and provide a few suggestions.

3.

I tried to run and test the standalone chaste_codegen python tool. Although I tried only for
an hour or so, I couldn’t get it working. I managed to get it installed in a virtual environment

4.

Page 15 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48329
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0705-9809

as suggested, but couldn’t export the cpp file from the CellML model. It will be useful to
provide some sort of “test_codegen” command to run sample tests and report errors to help
to troubleshoot.

A concern on the tool is that it is based on cellmlmanip which supports only CellML 1.0 and
the author described there are no plans to support CellML 2.0. Would this mean the
chaste_codegen will be outdated when CellML 2.0 is adapted widely? It would be useful to
discuss this in the article, as a part of the limitation if so. Also, would chaste_codegen throw
a clear warning if CellML 2.0 is used?

5.

I would suggest authors, to thoroughly check all the equations (1 - 8) and ensure all
components are properly defined. For example, V0 is defined as the voltage at which we hit
the singularity, but there is no definition for B in equation 1. Although, it might be trivial to
those working in electrophysiology modeling and references are provided, it will be useful
to describe functions such as C(V), A(V) in the text to help general readers.

6.

Validity of the singularity detection by chaste_codegen was shown through the comparison
of the number of singularities detected and the hardcoded fixes in previous CellML models
(Table 1). Similarly, the authors described that the validity of the generated Jacobians was
assessed by comparing numerical results of runs of a number of different models without
providing further details. If not in detail, at least a few sentences on how many models were
used and so on would be beneficial.

7.

The authors have discussed the advantages of the tool and the newly developed features, it
would be useful to also discuss limitations if any.

8.

It will be also useful if the authors discuss any comparable existing approaches and
implementation for automatic singularities detection and fixing.

9.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Page 16 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am a mathematical modeler and one of the editorial board members of the
community standard, SBML. I am familiar with XML-based formats to describe models and the
libraries developed to handle them. I also lead the BioModels, a repository of mathematical
models of biological systems.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Jun 2022
Gary Mirams, University of Nottingham, Nottingham, UK

It would be useful to provide a short summary of the major functionalities of chaste_codegen in
the introduction. Although one would expect them to be similar to PyCML, it would useful to
briefly describe them for the benefit of the new users.

We have expanded the introduction to point out the principal features of PyCML which
indeed chaste_codegen also provides.

Also, it would be useful to discuss the performance of chaste_codegen when compared against
PyCML. For example, it will be useful to briefly mention how well does the computational time
compares in general. Were the functionalities from PyCML comparable to those in
chaste_codegen excluding the new features (automated Jacobians and singularity fixing)?

We haven’t done a thorough comparison of performance other than that it was fast enough
and did not noticably impact the CellML conversion time during Chaste compilation (in
either direction!). As the reviewer has pointed out, chaste_codegen has a number of
features PyCML misses. The primary concern for users is almost certainly run time of the
generated code (solving ODEs) rather than this code generation step.

The article describes in detail the rationale and solution to fix singularities in the equations
(where the value of variable such as Voltage tends to become 0/0). The chaste_codegen has been
already integrated into chaste. Authors could discuss how this tool or approach could be used
beyond chaste and provide a few suggestions.

We have made some suggestions about using Jinja2 templates and pointed to their
documentation.

I tried to run and test the standalone chaste_codegen python tool. Although I tried only for an
hour or so, I couldn’t get it working. I managed to get it installed in a virtual environment as
suggested, but couldn’t export the cpp file from the CellML model. It will be useful to provide
some sort of “test_codegen” command to run sample tests and report errors to help to
troubleshoot.

Running the command chaste_codegen –h gives detailed help. Having said that,

Page 17 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

chaste_codegen should convert it. Chaste_codegen has been tested against all the models
in https://github.com/Chaste/cellml It would be interesting to know what errors the
reviewer faced, and we would encourage them to leave an issue on the github repository.
We do require the models to have metadata annotation which is not present in most
models in the CellML repository. We have highlighted this in the paper.

A concern on the tool is that it is based on cellmlmanip which supports only CellML 1.0 and the
author described there are no plans to support CellML 2.0. Would this mean the chaste_codegen
will be outdated when CellML 2.0 is adapted widely? It would be useful to discuss this in the
article, as a part of the limitation if so. Also, would chaste_codegen throw a clear warning if
CellML 2.0 is used?

The plan here has been that libCellml would replace cellmlmanip once it has been
developed enough for us to use. This would bring with it CellML 2.0 support. Cellmlmanip is
not able to recognise if an XML file is in fact a CellML 2.0 file. Therefore currently attempts to
convert a CellML 2.0 file would lead to error messages related to the XML schema validation,
informing the user that the file is not valid CellML (1.0).

I would suggest authors, to thoroughly check all the equations (1 - 8) and ensure all components
are properly defined. For example, V0 is defined as the voltage at which we hit the singularity,
but there is no definition for B in equation 1. Although, it might be trivial to those working in
electrophysiology modeling and references are provided, it will be useful to describe functions
such as C(V), A(V) in the text to help general readers.

These were generic functions or constants that could take any form to fit particular models,
we have attempted to clarify this in the text.

Validity of the singularity detection by chaste_codegen was shown through the comparison of the
number of singularities detected and the hardcoded fixes in previous CellML models (Table 1).
Similarly, the authors described that the validity of the generated Jacobians was assessed by
comparing numerical results of runs of a number of different models without providing further
details. If not in detail, at least a few sentences on how many models were used and so on would
be beneficial.

We added the number of tests and explained the results in more detail.

The authors have discussed the advantages of the tool and the newly developed features, it would
be useful to also discuss limitations if any.

We have added a few sentences on limitations, mainly in terms of the singularity detection
only working for the GHK-flux style equations we discuss here.

It will be also useful if the authors discuss any comparable existing approaches and
implementation for automatic singularities detection and fixing.

We have not seen any comparable implementations for automatic singularity fixing, all
existing approaches have relied on spotting these and fixing manually as far as we are

Page 18 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://github.com/Chaste/cellml

aware.

Competing Interests: No competing interests were disclosed.

Reviewer Report 01 March 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48112

© 2022 Nickerson D. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

David Nickerson
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

This article very nicely lays out the rationale for the chaste_codegen tool, particularly in the
evolution from the previous PyCML software used in Chaste. While clearly the emphasis is on
producing code suitable for use in Chaste, the authors do suggest how the tool could be used
independently. Some introduction or pointers as to how readers might be able to edit/alter the
Jinja2 templates to produce non-Chaste code would be helpful.

While the performance and correctness of the analytic Jacobians generated by chaste_codegen
using SymPy is very briefly mentioned, seeing some of those checks would I think be interesting to
readers.

A large portion of this manuscript is describing the use of cellmlmanip to detect and fix
singularities. While this is a valuable contribution the authors preface this by suggesting the
replacement of cellmlmanip with the libCellML when looking at handling more recent versions of
the CellML specification. Perhaps a bit more clarity regarding the future use of cellmlmanip and
chaste_codegen regarding the singularity detection and fixing would be helpful.

I needed the assistance of google to learn what expm1 is, so perhaps other readers might
appreciate a pointer.

Step 2 in the algorithm to identify singularities in equations seems a bit too general. While
historically most cardiac electrophysiological models have been encoded in CellML in a similar
manner for which this assumption holds true, it is not likely to always be true. Particularly if
readers were looking to build on chaste_codegen to work with models from other domains.

The discussion regarding the removal of hard-coded singularity fixes from the original models
available in the main CellML repository is great to see. And something that the authors should be
encouraged to discuss with the broader CellML community.

(Minor comment: `chaste_codegen -h` suggests that the cellml_file could be a URI, but pointing to,
for

Page 19 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48112
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4667-9779

example, https://raw.githubusercontent.com/Chaste/cellml/master/cellml/hodgkin_huxley_squid_axon_model_1952_modified.cellml
fails with a file not found error.)

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Standards development, cardiac electrophysiology modelling, software
development.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Jun 2022
Gary Mirams, University of Nottingham, Nottingham, UK

This article very nicely lays out the rationale for the chaste_codegen tool, particularly in the
evolution from the previous PyCML software used in Chaste. While clearly the emphasis is on
producing code suitable for use in Chaste, the authors do suggest how the tool could be used
independently. Some introduction or pointers as to how readers might be able to edit/alter the
Jinja2 templates to produce non-Chaste code would be helpful.

This is an interesting thought, and indeed we have added the ability to generate labview
and more generic C code since submitting this article. We added a brief discussion of this to
the paper.

While the performance and correctness of the analytic Jacobians generated by chaste_codegen
using SymPy is very briefly mentioned, seeing some of those checks would I think be interesting to
readers.

Page 20 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

The resulting Jacobians from Maple and from sympy look quite different. For a few simple
toy examples we manually verified them, but beyond that, the verification is based on the
converted models using the sympy generated Jacobians passing the same set of numeric
tests against reference results as we previously ran for the Maple-generated Jacobians.
Some further information about numbers of models tested has been added.

A large portion of this manuscript is describing the use of cellmlmanip to detect and fix
singularities. While this is a valuable contribution the authors preface this by suggesting the
replacement of cellmlmanip with the libCellML when looking at handling more recent versions of
the CellML specification. Perhaps a bit more clarity regarding the future use of cellmlmanip and
chaste_codegen regarding the singularity detection and fixing would be helpful.

While this functionality is indeed in located cellmlmanip at the moment, it would be quite
straightforward to move to chaste_codegen, or elsewhere such as a future version of
libCellML. It does not rely in cellmlmanip specifically, but just requires an algebraic
representation of the equations such as SymPy uses. We added text to explain this in the
Implementation section.

I needed the assistance of google to learn what expm1 is, so perhaps other readers might
appreciate a pointer.

We add an explanation in brackets when it is first encountered.

Step 2 in the algorithm to identify singularities in equations seems a bit too general. While
historically most cardiac electrophysiological models have been encoded in CellML in a similar
manner for which this assumption holds true, it is not likely to always be true. Particularly if
readers were looking to build on chaste_codegen to work with models from other domains.

It is indeed a limitation that we will only spot these GHK-flux style equations. One nice
feature is that we still spot them even when intermediate equations are involved with our
recursive approach. It would be possible to do further ‘pattern matching’ approaches on a
case-by-case basis, or to use SymPy’s inbuilt methods (
https://docs.sympy.org/latest/modules/calculus/index.html#sympy.calculus.singularities.singularities
) to find singularities in almost any expression, we tried this initially but found it was a lot
slower than our approach (minutes rather than less than a second for a moderately large
action potential model, and we even found some examples where the method didn’t
terminate at all).

The discussion regarding the removal of hard-coded singularity fixes from the original models
available in the main CellML repository is great to see. And something that the authors should be
encouraged to discuss with the broader CellML community.

Thanks for that suggestion, we will be attending CellML workshops and COMBINE etc. to
discuss these issues.

Minor comment on URIs

Page 21 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://docs.sympy.org/latest/modules/calculus/index.html#sympy.calculus.singularities.singularities

Thank you for pointing this out! It is indeed the case that we decided against implementing
the ability to convert a remote URI, we updated the help text to reflect this in the current
release of chaste_codegen.

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 February 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48330

© 2022 Loewe A. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Axel Loewe
Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

Hendrix et al. present chaste_codegen, a Python 3 reimplementation of the PyCML software
package which adds new functionality, mostly through integration of the cellmlmanip library.
Flexible code generation for CellML models is a relevant need in the cardiac modeling community
and the tool is well presented in general.

A few remarks:

It seems that most of the new functionality (fixes for singularities) comes directly through
cellmlmanip: https://github.com/ModellingWebLab/cellmlmanip/. As such, it might be
helpful to explain the relation between cellmlmanip and chaste_codegen early in the
manuscript. In the current form it seems a bit odd that half of the 12 text pages of the
manuscript deal not with chaste_codegen but with one of its dependencies.

○

It might be helpful for the reader to point out the main differences between
chaste_codegen and other tools providing similar functionality like for example Myokit
(partly from the same authors)

○

In general, the tool could be valuable for developers (and potentially also users) of other
cardiac electrophysiology simulators. To increase the value beyond the Chaste user
community, it would be helpful to outline how the Jinja2 templates would need to be
adapted or extended. For example Introduction in the (second paragraph, first sentence)
and Methods (fourth paragraph, second-last sentence) sections.

○

Why are specific operating systems mentioned? I would have assumed that chaste_codegen
runs on all platforms that provide a Python interpreter.

○

Typos and other trivia:

Title: consider adding the dash in "chaste_codegen" ○

Page 22 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

https://doi.org/10.21956/wellcomeopenres.19013.r48330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2487-4744

Abstract: consider "new cellmlmanip Python library" -> "cellmlmanip Python library"

○

Introduction:
consider "hundreds of models" -> "hundreds of mathematical models"

○

The first sentence of the second paragraph is a bit confusing. Why is chaste_codegen
needed if CellML models can be imported in Chaste already? Or is this only the case
with PyCML/chaste_codegen?

○

○

Methods:
Please double check appropriate references to software mentioned in the manuscript
(cellmlmanip, SymPy etc.)

○

CellMl -> CellML

○

Cellmlmanip is typed with capital c and in normal font in the second paragraph

○

RDF should be spelled out when it is first mentioned

○

Second paragraph, last sentence: is an "and" missing here?

○

Often, the Goldman–Hodgkin–Katz voltage equation is referred to as "the GHK
equation". Here, you refer to the GHK flux equation. Mentioning this explicitly can
help to avoid confusion.

○

p.5: some readers might not be familiar with "expm1", please provide some more
background

○

p.6, point 5: hyphenation in nondi-mensional

○

Table 1: model naming (w, w/o "model" etc.) and capitalization appear arbitrary

○

○

Operation:
"can be used integrated" -> "can be used"?

○

p.12: "pull-request" -> "pull request" for the sake of consistency○

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Page 23 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational cardiac modeling

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 08 Jun 2022
Gary Mirams, University of Nottingham, Nottingham, UK

It seems that most of the new functionality (fixes for singularities) comes directly through
cellmlmanip: https://github.com/ModellingWebLab/cellmlmanip/. As such, it might be helpful to
explain the relation between cellmlmanip and chaste_codegen early in the manuscript. In the
current form it seems a bit odd that half of the 12 text pages of the manuscript deal not with
chaste_codegen but with one of its dependencies. This is a fair point. Cellmlmanip is developed by
us to parse CellML into sets of equations, and is also used in other projects. Chaste_codegen then
takes care of the described manipulations.

We have altered the title to reflect that we are introducing both new tools, and clarified their
roles in the Introduction section of the paper and the start of the Methods.

It might be helpful for the reader to point out the main differences between chaste_codegen and
other tools providing similar functionality like for example Myokit (partly from the same
authors) The biggest difference is that chaste_codegen is specifically designed to generate (C++)
code that for chaste, so that it can be compiled and used in a chaste simulation. Myokit for
example is more general purpose.

We pointed this out better in the introduction that the main job of chaste_codegen is to
generate code for chaste.

In general, the tool could be valuable for developers (and potentially also users) of other cardiac
electrophysiology simulators. To increase the value beyond the Chaste user community, it would
be helpful to outline how the Jinja2 templates would need to be adapted or extended. For
example Introduction in the (second paragraph, first sentence) and Methods (fourth paragraph,
second-last sentence) sections.

 This is an interesting thought, and indeed we have added the ability to generate LabView

Page 24 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

and more generic C code since submitting this article. We added a brief discussion of this to
the paper.

Why are specific operating systems mentioned? I would have assumed that chaste_codegen runs
on all platforms that provide a Python interpreter.

 We have clarified that these are the platforms we have tested the software on. While
Python in theory is platform independent, in practice there are subtle difference how things
like file paths work as well as not all libraries are available for all operating systems. While
there is no obvious reason to assume that it does not work on other platforms we can also
not guarantee that it does.

Typos and other trivia: We thank the reviewer for these remarks and have corrected the
typos and minor comments

Competing Interests: No competing interests were disclosed.

Page 25 of 25

Wellcome Open Research 2022, 6:261 Last updated: 29 JUN 2022

