
Evolutionary Local Search for Solving the
Office Space Allocation Problem

Özgür Ülker
Automated Scheduling, Optimisation and Planning

(ASAP) Research Group
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: psxou@nottingham.ac.uk

Dario Landa-Silva
Automated Scheduling, Optimisation and Planning

(ASAP) Research Group
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: dario.landasilva@nottingham.ac.uk

Abstract—Office Space Allocation (OSA) is the task of correctly
allocating the spatial resources of an institution to a set of
entities by minimising the wastage of space and the violation of
additional constraints. In this paper, an evolutionary local search
algorithm is presented to tackle this problem. The evolutionary
components of the algorithm include standard crossover and
mutation operators and a relatively small population of indi-
viduals. The offspring produced by the evolutionary operators
are subjected to a short but intense local search process. A very
fast cost calculation method tailored for searching a large section
of the search space is implemented. Extensive experimentation
is carried out related to several parameters of the algorithm:
the mutation rate, the population size, the length of the local
search procedure after each mutation, hence the balance between
the evolutionary and the local search stages, and the level of
greediness of the local search process. The final results on
72 different data instances show that this hybrid evolutionary
algorithm is very competitive with an integer programming
model.

I. INTRODUCTION

Office Space Allocation (OSA) is the task of distributing the
space (rooms, floors, halls) used in an organisation to a set of
entities (people, machines) based upon a set of constraints and
objectives. While the main target in a typical OSA problem
is to reduce the misuse of space, additional constraints that
involve the relationships between several entities and rooms
can arise in different problem variants. Several attributes of
the problem can be traced back to the bin packing [1], multiple
knapsack [2], and generalised assignment [3] problems.

Now in this paper, an evolutionary local search algorithm
(ELS) is described for tackling the OSA problem. This al-
gorithm combines evolutionary mechanisms of crossover and
mutation (to move around the search space) with a fast and
extensive local search procedure (to quickly search through a
specific segment of the search space). The proposed method
is competitive with a mathematical programming approach [4]
developed previously for tackling this combinatorial optimisa-
tion problem.

The initial attempts at tackling the office space allocation
problem were several goal and linear programming approaches
by Ritzman et al. [5], Benjamin et al. [6], and Giannikos et
al. [7]. A systematic analysis of the problem was done by

Burke and Varley [8] in a questionnaire about the manual space
allocation process in 38 UK universities. This questionnaire
depicted some of the most commonly encountered constraints
and objectives that are also investigated here.

Burke et al. [9] applied various hill climbing and simulated
annealing [10] methods to solve the optimisation (creating a
complete allocation from scratch) and reorganisation problems
by using allocation, reallocation and swap moves. In the
follow up works, [11] and [12], the authors combined their
local search methods within a population based framework. A
mutation operator was also implemented for the disruption of
the current solution. The authors concluded that the population
based algorithm did not offer any benefits over the variant
tailored for creating a single higher quality solution. Burke
et al. [13] further reported the application of multi-objective
optimisation by using two different objectives (the total space
misuse in an allocation and the weighted sum of the soft
constraints violated). It is reported that these two objectives
were conflicting in nature.

Landa-Silva and Burke [14] developed an asynchronous
cooperative local search method in which several local search
threads in a population cooperated with each other to improve
the solution. In the information sharing strategy, promising
segments of the solution were shared between different threads
and the diversification strategy applied a mutation operator
over the bad regions of the solution. The authors implemented
hill climbing, simulated annealing, and a hybrid metaheuristic
within a population based framework.

Lopes and Girimonte [15] extended the work in [14] to
tackle the OSA problem in European Space Agency. In ad-
dition to the previous constraint types in the literature, the
authors introduced a few new ones (grouping constraints at
different levels, avoid spreading constraint to prevent the split
of the departments and avoid sharing across constraint to pre-
vent the sharing of offices between departments). Apart from
various types of local search algorithms similar to [14], the
authors modified the length of the move operators. Pereira [16]
implemented local and tabu search algorithms to investigate a
different variant of the OSA where the goal is to minimise the
distance between the employees in the same organisation and

minimisation of the misallocation of the rooms.
Ulker and Landa-Silva [17] developed a 0-1 integer pro-

gramming [18] model based upon the office space alloca-
tion problem variant described in [19]. The first model was
implemented using CPLEX [20] as an integer programming
solver. This model yielded the best obtained results for the
larger dataset instances that were used in [19] and [14]. The
model was later improved in [4] with a different not sharing
constraint formulation and the addition of three different
constraint types that were not present in previous works. The
model was reimplemented using Gurobi [21] and improved
results over [17] were observed. Additionally, a random data
instance generator was presented. Two new datasets were
created by starting with an initial set of entities, rooms and
constraints and modifying them via four different parameters
which adjusted the difficulty of the instance.

This paper is organised as follows: Section II explains the
problem definition of the OSA variant in this paper. Section
III is devoted to the details of the ELS algorithm. Section IV
presents extensive experimentation on two different datasets.
Finally, Section V presents final remarks about the current
algorithm and provides further research directions.

II. PROBLEM DEFINITION

A typical OSA problem contains three important sets: The
E set contains information related to the entities (the space
required for the entity, the organisational group it belongs to,
constraints associated with it, etc). The R set contains the
attributes of each room (the capacity of the room, the floor
it is in, the neighbourhood relationships with other rooms,
the capacity constraints associated with it, the space that is
currently being used, etc). Finally the C set represents all the
constraints (hard and soft) associated to entities and the rooms.

There are two main goals in the variant of the office
space allocation problem [19] considered in this paper: the
minimisation of the space misuse and the minimisation of the
soft constraint violations. The space misuse is the summation
of the under and over utilisation of the rooms beyond their
capacity. Since it is not desirable for the rooms to be overused
beyond their capacity, the overuse of a room is penalised twice
as much as under-utilisation of a room. In certain cases, it is
not even possible to overuse a room at all. On the other hand,
it is not desirable for a large number of rooms being under-
utilised. In such allocations, it might be preferable to remove
these severely under-utilised rooms from the problem, and redo
the allocation task with the remaining rooms.

There are additional constraints that can happen frequently
in many organisations. Nine types of such constraints are
considered in this paper. These constraints can be either hard
(must be satisfied all the time) or soft (desirable but not
necessary). These constraints are defined in Table I.

The difference between the adjacency and nearby con-
straints is that the adjacency constraint is related to rooms
that are really close to each other, whereas the nearby relation
deals with rooms that in a larger neighbourhood (like a floor
or a specific large section of a building).

TABLE I
DESCRIPTION OF THE CONSTRAINTS

Type Description Weight

allocation e should be in room r 20
non-allocation e should not be in room r 10

same room e1 and e2 should be in same room 10
not same room e1 and e2 should not be in same room 10

not sharing e should not share its room with others 50
adjacency e1 and e2 should be in adjacent rooms 10

nearby e1 and e2 should be in nearby rooms 10
away from e1 and e2 should be away from each other 10

capacity r should not be overused 10

In this work, the objective function that has to be minimised
is taken as in [19]: the weighted sum of the space misuse and
the soft constraint violations. The space misuse penalty mp in
a given solution is:

mp =

|R|∑
i=1

max((cap(ri)− usg(ri), 2× (usg(ri)− cap(ri)))

(1)
where cap(ri) and usg(ri) stand for the capacity and the used
space of room ri respectively.

The soft constraint violation penalty cp is the weighted sum
of the individual soft constraint violations which is

cp =

|C|∑
i=1

w(ci)× v(ci) (2)

where v(ci) = 1 if the constraint is violated and v(ci) = 0 if
the constraint is satisfied. The total penalty tp then becomes

tp = α×mp+ β × cp (3)

where α and β are selected as 1.0 for this work.

III. THE ALGORITHM

In this work, an evolutionary local search algorithm, also
referred as a memetic algorithm, was developed. A memetic
algorithm [22] is traditionally the hybridization of a genetic
algorithm [23] with local search mechanisms. The goal of the
evolutionary components of the algorithm is typically jumping
to a different region of the search space. The local search
is then applied to quickly explore this specific region of the
search space.

A. Evolutionary Components

The algorithm proposed here uses a standard encoding of
fixed-size arrays. The length of a single individual is equal
to the number of entities and the content of each location
represents the room the entity is placed into. Small populations
of 10 to 20 individuals are utilised. In our implementation,
a steady state population is used. At each iteration, two
individuals are selected randomly from the population and
then two offspring are produced using the traditional one-
point crossover operator. Although we experimented with other
traditional crossover operators like uniform and two point

Input: input file with entities, rooms, and constraints.
Output: solution (an entity-room mapping)

Randomly Select Two Individuals for Crossover
Apply Crossover to produce two offspring
Apply Random Mutation on the two offspring
Apply Allocation Mutation on the two offspring
Apply Local Search on the two offspring
Replace the parents with the best solution encountered so
far in ELS.

Fig. 1. Evolutionary Local Search Algorithm

crossover as well as problem specific crossovers (based upon
the preservation of the allocations within the rooms and the
floors), we did not observe any tangible benefits of using these,
that is why this paper restricts itself to the traditional one
point crossover. After the crossover, two types of mutation
operations are applied to the produced offspring. The first
one is the traditional random mutation operator in which
a randomly selected location is changed (which effectively
sends the entity from one room to another). The mutation
rate m (which is the percentage of the entities that are
randomly subjected to mutation) is an important parameter
of the algorithm. The second mutation operator is based upon
the allocation constraint. The operator selects a randomly high
number of violated allocation constraints and forces them to be
satisfied by setting the corresponding location in the individual
accordingly. After the two mutation operators, the offspring is
improved using the local search procedure. Finally, the best
obtained solution encountered during the search replaces the
parent.

B. Local Search

Our main design goal with the local search operator is to
apply a short but aggressive search to cover the single-move
neighborhood of a candidate solution as quickly as possible.
We implemented a local search method based upon searching
a large portion of the single-move (one entity to another room)
neighbourhood of the current solution as fast as possible.

For an efficient implementation of this greedy local search,
fast cost calculations that involve the space misuse and the nine
different types of constraint violations are required. We used a
∆ matrix of size |E||R| where each location (e, r) corresponds
to a move of sending the entity e from its current location to
another room r and holds the cost change of making such a
move. There are two steps to maintain the ∆ matrix: delta and
update stages.

C. Delta Stage

This stage is the initial calculation of the ∆ matrix given a
current solution. This stage incrementally calculates the whole
single-move neighbourhood of a candidate solution. It is a
costly operation and must be used once after a large change is
made on the candidate solution. In our algorithm, this is the
first step in the local search phase after the crossover and the
mutation operators are applied to the individual.

Input: input solution
Output: output solution

Initial calculation of the delta matrix (Delta Stage)
for = 1→ h iterations do

Select E′ = |E|/d entities randomly from the entity set
Find minimum (e, r2) in ∀e ∈ E′ ∀r ∈ R (e, r)
Make move (e, r1, r2)
Update the locations in ∆ affected by the move (e, r1, r2)

end for

Fig. 2. Local Search Stage

R
r1 r2

f

E e

g

Fig. 3. Locations affected by the move (e, r1, r2). The e row, and r1 and
r2 columns are always affected in each iteration. The update on f and g rows
depends upon the constraint and the allocations in r1 and r2

D. Update Stage

After a single move (e, r1, r2) has been applied to the
solution (entity e is moved from room r1 to r2), certain regions
of the ∆ matrix have to be updated. The algorithm goes
through all constraints associated to the entity e, and rooms
r1 and r2 and only updates the locations that are affected by
this single move (e, r1, r2). The affected locations (illustrated
in Figure 3) are as follows:

When an entity e is moved from room r1 to r2, we must
check whether there should be a change of space misuse when
moving the rest of the entities to these two rooms, r1 and r2.
This corresponds to the locations ∀e′ ∈ (E − e)(e′, r1) and
(e′, r2) in ∆ matrix. Since the space usage in r1 is going to
be reduced and the space usage in r2 is going to be increased,
the algorithm checks the difference of the space misuse of
sending the entities ∀e′ ∈ (E − e) to r1 and r2 before and
after the move is made and updates the corresponding location
accordingly. Additionally, the locations ∀r ∈ (R − r2) f ∈
Er1(f, r) and ∀r′ ∈ (R − r1) g ∈ Er2(g, r′) also need to be
updated. This corresponds to sending an entity that is already
present in either r1 or r2 to all the other rooms and updating
the space misuse accordingly.

The capacity constraint (that a specific room should not be
overused) needs a similar update on the same locations as

in space misuse calculations described above. The algorithm
checks whether affected rooms have space overuse before and
after the move, whether moving the other entities to rooms r1
or r2 prevents or causes an overuse before and after the move,
and updates the corresponding locations accordingly.

For the not sharing constraint (that an entity should not
share a room with others), the locations ∀e′ ∈ (E − e)(e′, r1)
and (e′, r2) need to be updated because of the number of
entities in rooms r1 and r2 are changed. Sending any other
entity to r1 or r2 might change the not sharing penalty if
the rooms r1 and r2 contain entities that should not share the
rooms with others. Additionally, the locations ∀r ∈ (R − r2)
f ∈ Er1(f, r) and ∀r′ ∈ (R − r1) g ∈ Er2(g, r′) might or
might not require an update operation.

If the entity e has any of same room, not same room,
adjacency, nearby, and away from constraints with another
entity f , then the locations ∀r ∈ R (f, r) need updating.
These locations correspond to the moves that send the entity
f to other rooms. If the constraint is satisfied before the
move and not satisfied later or in the opposite case (that
the constraint is not satisfied before the move and now it
is satisfied), depending upon the constraint, the respective
constraint penalty should be either subtracted or added to
∀r ∈ R (f, r).

During our experiments, it was observed that roughly three
to five percent of the ∆ matrix needs to be updated whenever
a move is made. This percentage is expected to go down if the
number of rooms is increased. As a result, the update stage
will result in very high speedups for algorithms that search a
large portion of the search space at each iteration (such as tabu
search or steepest descent). However, it is not desirable to use
the update stage in algorithms that operate on the acceptance
or rejection of random moves (such as Simulated Annealing).

E. Partial Local Search

During the local search stage, the ∆ matrix is calculated
first. At each one of the h iterations, a random subset E′ of
entities of size |E|/d is selected, and the minimum location
(e, r) is searched in that subsection of the ∆ matrix. The d
paramater adjusts the greediness of this search: when d =
1, the whole neighbourhood is checked. However, in practice
poor results were observed with such a greedy search, that is
why additional experiments with different values of d were
performed.

F. Tabu Search

As an alternative to the local search, we also implemented
a tabu search [24] procedure. Tabu search algorithm utilises a
data structure called a tabu list to prevent certain moves from
being carried out to prevent the search getting stuck in local
optima. In our implementation, whenever an entity e is moved
from room r1 to r2, the moves that send the entity back to r1
are considered tabu and hence forbidden until the end of that
specific local search stage. However if a tabu move produces
the best obtained solution encountered during the entire search,
the move is made (aspiration criteria).

TABLE II
ATTRIBUTES OF THE INSTANCES IN SVE150 AND PNE150 DATASETS

Attribute Value

Number of entities: 150
Entity size: 5.5 - 30.5

Number of Groups: 10
Number of Floors: 3
Number of Rooms: 92

Number of Hard Constraints: 67
Number of Soft Constraints: 185 - 214

IV. EXPERIMENTS

The algorithm was implemented using the Microsoft Visual
Studio 2010 C++ compiler. All experiments were carried out
on a Windows PC with Intel Core 2 Duo E8400 (3 Ghz)
processor.

In our experiments, we used the SVe150 and PNe150
datasets from [4]. These datasets contain 150 entities and 92
rooms and were incrementally generated from initial sets of
entity, rooms, and constraints using four different parameters.
The S (slack space) and V (soft constraint violation) rates
adjust the amount of space misuse and soft constraint violation
penalties in an instance respectively and higher values of S
and V amount to higher space misuse and soft constraint
violation penalties. The P (positive slack) and N (negative
slack) rates adjust the amount of space underuse and space
overuse penalties respectively. Higher values of P and N
amount to higher space underuse and overuse penalties. The
SVe150 dataset contains 36 instances in which the S and V
rates change between 0.00 and 1.00 with 0.20 increments. The
PNe150 dataset contains another 36 instances where the P and
N rates change between 0.00 and 0.25 with 0.05 increments.
The attributes of the SV e150 and PNe150 instances are given
in Table II.

In order to determine the best parameter values for m (ran-
dom mutation rate), h (the number of local search iterations
after each mutation), d (divisor value which adjusts the size
of the neighbourhood explored by the local search in each
iteration) and ps (population size), we performed initial experi-
ments on 6 instances chosen from SVe150 and PNe150. These
instances are S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,
P0.10N0.20 and P0.20N0.10. In these experiments, each in-
stance was given 20 runs of 90 seconds each for a total
execution time of 30 minutes. Our base parameter values were
m = 0.03, h = 100, d = 3 and ps = 20 unless one of them
was changed in its respective test.

Four different mutation rates (m = 0.00, m = 0.01,
m = 0.03, m = 0.05) and four different values for number of
iterations after each mutation (h = 50, h = 100 h = 250,
h = 500) were tested. Since a large mutation rate might
cause a large disruption on the solution, there might be a
need for a larger number of iterations afterwards to obtain
better results. The results are given in Table III and V for
SV instances and in Table IV and VI for PN instances
respectively. Columns 2 and 3 represent the mutation rate and

TABLE III
THE IMPACT OF DIFFERENT M (MUTATION RATE) ON INSTANCES

S0.00V0.00 , S0.40V0.80 AND S0.80V0.40

instance m µ σ min max

S0.00V0.00

0.00 677.35 200.09 241.50 1107.50
0.01 64.35 19.42 38.50 111.00
0.03 51.85 20.91 24.00 92.00
0.05 52.33 18.84 22.50 84.50

S0.40V0.80

0.00 755.83 188.12 412.20 1158.10
0.01 239.47 20.13 211.50 278.30
0.03 230.49 14.90 205.50 253.20
0.05 243.77 22.11 208.90 286.30

S0.80V0.40

0.00 841.56 209.57 505.50 1242.10
0.01 199.24 16.64 171.30 249.00
0.03 198.99 17.38 171.60 239.60
0.05 204.43 15.51 186.40 243.90

TABLE IV
THE IMPACT OF DIFFERENT M (MUTATION RATE) ON INSTANCES

P0.00N0.00 , P0.10N0.20 AND P0.20N0.10

instance m µ σ min max

P0.00N0.00

0.00 760.75 229.60 297.50 1046.50
0.01 111.25 19.22 82.00 146.50
0.03 116.88 23.52 78.00 161.50
0.05 110.93 17.74 79.00 141.50

P0.10N0.20

0.00 787.31 154.35 574.30 1059.60
0.01 228.22 12.25 209.30 256.50
0.03 226.18 16.94 196.10 261.70
0.05 231.74 16.07 207.00 275.20

P0.20N0.10

0.00 688.20 215.08 353.70 1032.90
0.01 173.17 19.82 143.80 207.50
0.03 167.27 17.14 145.30 205.70
0.05 178.24 17.43 144.50 215.70

the number of local search iterations respectively. Columns
µ, σ, min and max represent the average best objective
value, the standard deviation on the best objective value, the
minimum and maximum objective value obtained after 20 runs
respectively.

It was observed that the mutation was essential to the
success of the algorithm; without random mutation (the case
m = 0.00), the algorithm quickly got stuck in a local optimum
and produced uncompetitive results. We observed that the
algorithm worked best when the mutation rate was around
(m = 0.01−0.03), although m = 0.05 still yielded acceptable
results. It was observed that the local search iterations should
be kept quite low (usually h = 50, h = 100) for the best
results to be obtained. Increasing h beyond 500 affected the
performance of the algorithm adversely, therefore, using a
long extensive local search after each crossover and mutation
operator is not recommended. Another benefit of using a lower
h is that it reduced the effect of using different mutation
rates between m = 0.01 and m = 0.05, therefore, setting
the mutation rate precisely becomes less important.

Table VII and Table VIII depict the effect of using different

TABLE V
THE IMPACT OF DIFFERENT H (LOCAL SEARCH ITERATIONS) ON

INSTANCES S0.00V0.00 , S0.40V0.80 AND S0.80V0.40

instance h µ σ min max

S0.00V0.00

50 56.43 15.42 28.00 87.50
100 51.85 20.91 24.00 92.00
250 56.33 22.01 13.50 110.50
500 68.80 15.10 46.00 105.00

S0.40V0.80

50 236.48 21.74 193.60 291.40
100 230.49 14.90 205.50 253.20
250 245.78 18.88 204.00 279.80
500 240.98 25.35 206.20 292.20

S0.80V0.40

50 197.94 19.93 171.00 232.10
100 198.99 17.38 171.60 239.60
250 207.67 18.86 183.40 258.30
500 212.96 15.25 183.60 235.10

TABLE VI
THE IMPACT OF DIFFERENT H (LOCAL SEARCH ITERATIONS) ON

INSTANCES P0.00N0.00 , P0.10N0.20 AND P0.20N0.10

instance h µ σ min max

P0.00N0.00

50 117.78 18.23 92.50 168.50
100 116.88 23.52 78.00 161.50
250 127.98 23.61 87.50 175.00
500 126.43 18.42 97.50 166.50

P0.10N0.20

50 225.84 12.42 207.20 246.70
100 226.18 16.94 196.10 261.70
250 240.57 24.55 216.40 298.70
500 245.79 23.06 204.00 278.10

P0.20N0.10

50 174.15 17.96 133.50 208.50
100 167.27 17.14 145.30 205.70
250 171.14 15.78 146.50 207.00
500 176.58 17.13 145.50 201.10

d (divisor) values on the SV and PN instances. Five different
values were tested: d = 1 (%100), d = 2 (%50), d = 3 (%33),
d = 4 (%25) and d = 5 (%20). One immediate observation
is that searching for the whole single-move neighbourhood
(d = 1) greedily produced the worst results in all of the
instances. The algorithm had a tendency to get stuck in a
local optima when d = 1 (although not severely as with the
no mutation case), however by simply increasing d (and hence
decreasing the greediness of the search), the algorithm gave
the best results when d was around 3 (%33.3 of the ∆ matrix
searched at each iteration). However, this could be attributed
to the size of a specific instance and our implementation of
the algorithm. During the profiling tests of our code using
the Visual Studio 2010 Profiler tool, it was observed that the
majority of the execution time was spent in two sections of
the algorithm: searching the ∆ matrix for the best move and
the update stage after making this best move. When d = 3,
these two steps took roughly equal amount of time practically
maximising the amount of iterations per unit time. As a result,
our conjecture is that d should be further increased when the
size of the instance (the number of entities x the number of

TABLE VII
THE IMPACT OF DIFFERENT D (DIVISOR) VALUES ON INSTANCES

S0.00V0.00 , S0.40V0.80 AND S0.80V0.40

instance d µ σ min max

S0.00V0.00

1 83.50 26.26 49.00 147.00
2 56.30 20.39 28.00 110.00
3 51.40 20.58 24.00 92.00
4 57.18 14.89 23.50 85.00
5 65.65 19.99 35.50 127.50

S0.40V0.80

1 273.77 18.38 233.10 302.90
2 231.15 18.67 202.20 265.30
3 230.35 14.93 205.50 253.20
4 244.49 21.66 213.50 295.70
5 259.57 29.65 205.90 321.90

S0.80V0.40

1 228.49 24.44 194.90 276.40
2 203.68 16.51 184.20 238.30
3 199.44 17.60 171.60 239.60
4 208.61 18.79 184.80 254.30
5 205.72 23.95 171.40 253.80

TABLE VIII
THE IMPACT OF DIFFERENT D (DIVISOR) VALUES ON INSTANCES

P0.00N0.00 , P0.10N0.20 AND P0.20N0.10

instance d µ σ min max

P0.00N0.00

1 134.93 14.00 108.00 159.00
2 118.03 13.06 91.00 138.50
3 117.45 23.10 78.00 161.50
4 132.10 20.96 98.00 173.50
5 120.33 19.34 82.00 146.50

P0.10N0.20

1 256.54 16.68 217.20 288.50
2 229.00 19.64 201.80 275.80
3 225.96 17.05 196.10 261.70
4 236.48 16.07 206.90 266.00
5 246.22 21.03 200.30 291.80

P0.20N0.10

1 215.03 23.89 172.00 255.60
2 178.51 26.73 144.40 228.80
3 167.12 16.80 145.30 202.70
4 174.12 16.64 149.90 212.90
5 169.94 20.07 140.60 212.30

rooms) is increased because the time required for searching
the ∆ matrix is inversely proportional to d while the time
required for the update stage is just directly proportional to
the number of constraints (and hence mostly constant).

Our final parameter tests were performed on the ps, the
number of individuals in a population. The population sizes
were chosen as ps = 5, ps = 10, ps = 20, ps = 50 and
ps = 100. The results for SV and PN instances are given
in Table IX and Table X respectively. It was observed that
for the average best objective function value µ, there wasn’t
any statistically significant difference between any of the ps
values. However, for ps = 20 individuals, it was observed that
the chance of finding a best minimum value after 20 runs was
slightly higher. The main benefit of using a population-based
algorithm is to keep a number of different solutions so that

TABLE IX
THE IMPACT OF DIFFERENT PS (POPULATION SIZES) ON INSTANCES

S0.00V0.00 , S0.40V0.80 AND S0.80V0.40

instance ps µ σ min max

S0.00V0.00

5 52.63 16.11 33.00 98.00
10 58.30 16.68 31.00 82.50
20 51.40 20.58 24.00 92.00
50 63.28 24.99 28.50 109.50

100 49.80 20.34 16.50 99.50

S0.40V0.80

5 237.45 14.21 202.80 268.60
10 241.33 16.90 206.40 278.10
20 230.94 14.98 206.40 253.20
50 246.35 23.00 200.40 290.20

100 245.74 17.79 214.80 272.30

S0.80V0.40

5 203.72 16.59 182.70 239.10
10 201.01 13.82 177.90 226.90
20 199.34 17.49 171.60 239.60
50 208.02 17.95 173.80 247.00

100 204.41 16.69 185.70 239.30

TABLE X
THE IMPACT OF DIFFERENT PS (POPULATION SIZES) ON INSTANCES

P0.00N0.00 , P0.10N0.20 AND P0.20N0.10

instance ps µ σ min max

P0.00N0.00

5 117.23 13.52 97.50 146.50
10 119.40 13.85 95.00 146.00
20 116.88 23.52 78.00 161.50
50 118.43 25.58 79.00 173.00
100 116.10 15.39 87.50 140.50

P0.10N0.20

5 226.54 16.28 201.30 261.80
10 223.87 12.78 198.50 248.70
20 226.18 16.94 196.10 261.70
50 226.88 14.31 205.80 261.40
100 232.62 17.66 202.80 273.40

P0.20N0.10

5 167.77 16.53 140.20 195.30
10 162.21 12.14 139.50 190.60
20 167.27 17.14 145.30 205.70
50 167.85 12.94 141.90 189.90
100 165.65 16.57 144.00 207.40

the algorithm has a chance to backtrack from a local optimum
to another section of the search space by means of crossover
and mutation operators.

In Table XI, the comparison of using tabu search instead of
local search within the evolutionary framework is presented.
Columns µ, σ and min give the average best objective value,
the standard deviation on the best objective value and the
minimum best objective value obtained after 20 runs of 90
seconds each. Replacing the local search with the tabu search
offered no benefits for obtaining better average or minimum
results. After using a small population, crossover and mutation
operators and a divisor parameter to adjust the greediness
of the search, adding a tabu list structure did not offer any
additional benefit over the local search.

Finally, by using the parameters obtained after experimenta-

TABLE XI
RESULTS ON SOME OF THE SV AND PN INSTANCES USING LOCAL AND

TABU SEARCH WITHIN THE ELS

Local Search Tabu Search
instance µ σ min µ σ min

S0.00V0.00 53.65 18.16 19.50 64.40 23.38 34.50
S0.40V0.80 233.62 23.27 190.70 248.48 14.99 209.00
S0.80V0.40 200.34 15.03 168.90 211.59 20.05 188.20

P0.00N0.00 108.65 19.55 74.00 123.03 17.21 90.00
P0.10N0.20 227.01 18.83 201.30 253.17 21.93 215.10
P0.20N0.10 165.25 14.78 140.50 190.22 14.97 165.80

tion on a subset of SVe150 and PNe150, additional experiments
were carried out on the full set of instances. The following
parameters were used: mutation rate m = 0.03, population
size ps = 20, the number of local search iterations h = 100
and the divisor value of the local search d = 3. Each instance
was given 10 runs of 3 minutes each (for a total of 30
minutes execution time per instance). The results produced by
the evolutionary local search algorithm were compared to the
integer programming (IP) model proposed in [17] and [4]. The
IP model had been given a single run of 30 minutes [4] using
Gurobi’s deterministic IP solver [21]. In order to compare the
new algorithm with the IP model, we took the minimum results
obtained after ten runs. The Tables XII and XIII represent
the results obtained. Columns S, V , P , N represent the four
different parameters: slack space rate, soft constraint violation
rate, positive and negative slack rates respectively. Columns µ
and σ represent the average and standard deviation of the total
penalty obtained after 10 runs respectively. Columns mp and
cp give the average misuse and soft constraint violation penalty
after 10 runs respectively. Column min gives the minimum
total penalty obtained after 10 runs and column IP represents
the best result obtained with the IP model [4].

For the SVe150 dataset, out of the 36 instances, evolutionary
local search algorithm produced better results for 21, and the
IP formulation was more successful for the remaining 15 of
them. It was observed that when the S and V were higher
(when the expected space misuse and soft constraint violation
penalty were higher in an instance), the ELS performed better
than the IP formulation. However ELS struggled especially
when the V value was low and it was beaten by the mathe-
matical model in those cases. When V was low, the ELS had
difficulty in reducing the space misuse penalty in an instance.
However when the instance was expected to have higher space
misuse and constraint violation penalties due to higher S and
V , the ELS performed better than IP.

There was a tie between the ELS and the IP with the PNe150
dataset. For 17 instances, ELS performed better, for the other
17 instance IP performed better and for the remaining two,
there was a tie. Although there was not a clear pattern, it was
observed that for low P values (where the instance is expected
to have small space underuse to compensate for the overuse),
the IP performed better, however when P was increased, a
more balanced outcome between the ELS and IP was observed.

TABLE XII
THE EXPERIMENTAL RESULTS ON THE SVE150 DATASET INSTANCES

s v µ σ mp cp min IP

0.00 0.00 49.30 15.11 39.30 10.00 31.50 0.00
0.00 0.20 90.80 27.30 52.80 38.00 61.50 32.00
0.00 0.40 102.40 17.43 56.40 46.00 89.50 57.00
0.00 0.60 118.40 12.31 50.40 68.00 99.00 95.50
0.00 0.80 169.85 18.04 65.85 104.00 138.50 171.00
0.00 1.00 192.25 18.89 65.25 127.00 165.00 193.00

0.20 0.00 64.04 14.29 55.04 9.00 38.90 28.10
0.20 0.20 105.24 22.72 62.24 43.00 77.90 52.90
0.20 0.40 133.23 22.45 75.23 58.00 115.40 86.60
0.20 0.60 139.92 14.46 69.92 70.00 117.10 122.80
0.20 0.80 182.19 17.11 85.19 97.00 157.90 212.70
0.20 1.00 213.71 28.83 90.71 123.00 181.60 210.30

0.40 0.00 125.27 16.59 95.27 30.00 108.40 82.80
0.40 0.20 157.45 25.90 101.45 56.00 118.80 116.30
0.40 0.40 173.27 18.85 110.27 63.00 144.60 155.10
0.40 0.60 197.05 18.05 123.05 74.00 163.90 188.80
0.40 0.80 218.23 17.24 117.23 101.00 185.60 208.70
0.40 1.00 246.95 19.30 126.95 120.00 219.70 271.50

0.60 0.00 137.63 11.85 115.63 22.00 116.60 109.70
0.60 0.20 170.23 10.72 122.23 48.00 154.70 129.70
0.60 0.40 198.65 10.45 134.65 64.00 189.00 168.20
0.60 0.60 209.00 14.25 136.00 73.00 189.20 205.20
0.60 0.80 254.23 12.97 143.23 111.00 233.60 289.10
0.60 1.00 280.13 17.34 153.13 127.00 261.90 278.70

0.80 0.00 151.31 13.52 120.31 31.00 131.40 124.70
0.80 0.20 170.63 14.38 124.63 46.00 152.90 160.30
0.80 0.40 188.42 13.09 127.42 61.00 165.00 173.60
0.80 0.60 202.94 18.59 132.94 70.00 175.90 195.90
0.80 0.80 255.37 23.72 141.37 114.00 229.20 267.80
0.80 1.00 284.52 12.18 159.52 125.00 259.20 276.10

1.00 0.00 186.75 15.25 160.75 26.00 167.70 169.10
1.00 0.20 226.99 17.17 172.99 54.00 201.00 194.20
1.00 0.40 243.02 12.53 176.02 67.00 225.30 221.40
1.00 0.60 260.61 18.44 174.61 86.00 238.30 243.40
1.00 0.80 298.76 11.16 195.76 103.00 284.90 340.40
1.00 1.00 309.96 19.46 187.96 122.00 280.80 345.30

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an evolutionary local search
algorithm to solve the office space allocation problem. This
algorithm was designed to be a fast method to find high-quality
solutions for this difficult and highly constrained combinatorial
optimisation problem. In our experiments, it was observed
that the mutation rate m and the number of local search
iterations h turned out to be the performance affecting factors
of the algorithm. Low mutation rates and a small number of
local search iterations greatly improve the performance of the
algorithm. When we compare the current evolutionary local
search algorithm to the mathematical programming model
presented in [4], for more than half of the instances, better
results were obtained for the same execution times.

In this paper, in addition to the traditional random muta-

TABLE XIII
THE EXPERIMENTAL RESULTS ON THE PNE150 DATASET INSTANCES

p n µ σ mp cp min IP

0.00 0.00 103.75 14.60 45.75 58.00 79.00 73.00
0.00 0.05 138.90 9.06 79.90 59.00 120.80 119.40
0.00 0.10 174.45 9.22 117.45 57.00 161.70 145.20
0.00 0.15 216.14 12.34 153.14 63.00 198.40 186.00
0.00 0.20 244.64 17.54 183.64 61.00 222.90 210.20
0.00 0.25 283.79 10.31 220.79 63.00 269.20 250.80
0.05 0.00 111.01 21.50 55.01 56.00 87.90 119.90
0.05 0.05 133.29 13.50 76.29 57.00 113.90 130.80
0.05 0.10 173.08 16.11 108.08 65.00 146.90 141.40
0.05 0.15 201.85 17.62 135.85 66.00 180.40 185.00
0.05 0.20 227.66 14.74 168.66 59.00 206.60 202.40
0.05 0.25 268.28 11.81 204.28 64.00 250.60 232.70
0.10 0.00 128.74 19.64 60.74 68.00 100.50 130.40
0.10 0.05 142.71 23.96 82.71 60.00 106.00 134.00
0.10 0.10 169.92 17.08 105.92 64.00 149.40 162.60
0.10 0.15 203.62 13.83 134.62 69.00 182.40 176.30
0.10 0.20 217.43 17.65 155.43 62.00 192.20 205.00
0.10 0.25 254.31 15.28 192.31 62.00 237.00 240.60

0.15 0.00 116.55 13.32 64.55 52.00 91.50 96.00
0.15 0.05 136.17 15.01 82.17 54.00 120.20 105.40
0.15 0.10 157.63 11.56 104.63 53.00 143.50 124.50
0.15 0.15 185.43 13.92 123.43 62.00 159.30 183.50
0.15 0.20 219.86 17.90 151.86 68.00 203.10 192.90
0.15 0.25 236.59 12.55 176.59 60.00 213.70 229.50

0.20 0.00 119.61 11.29 73.61 46.00 108.60 108.60
0.20 0.05 148.65 10.12 94.65 54.00 138.90 135.40
0.20 0.10 155.50 12.12 105.50 50.00 141.70 129.90
0.20 0.15 186.63 18.79 127.63 59.00 161.50 167.20
0.20 0.20 204.08 11.13 142.08 62.00 184.10 177.20
0.20 0.25 236.96 23.25 166.96 70.00 204.40 219.50

0.25 0.00 139.03 12.99 89.03 50.00 126.00 126.00
0.25 0.05 150.55 9.51 101.55 49.00 133.90 180.30
0.25 0.10 164.91 12.96 115.91 49.00 151.20 132.90
0.25 0.15 185.92 9.77 125.92 60.00 170.70 192.40
0.25 0.20 199.60 7.71 132.60 67.00 189.80 195.30
0.25 0.25 233.41 13.21 158.41 75.00 212.40 233.00

tion operator, we used a mutation operator based upon the
allocation constraint. Although additional mutation operators
based upon the correction and disruption of other types of
constraints (mainly same room, adjacency, nearby, and away
from) were implemented, our limited experimentation with
these procedures did not yield immediate benefits. However,
revisiting these mutation operators is planned because of the
high penalty values in some of these constraints.

The current variant of the algorithm is tailored for shorter
runs, our limited experimentation on longer runs did not offer
any drastic improvement on the solution quality. Instead, in
order to prevent the algorithm from getting stuck in a local
optima, backtracking to a previous population in the search or
a complete restart of the algorithm is being considered rather
than letting the algorithm running indefinitely to improve the

current best solution.

REFERENCES

[1] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: A survey,” pp. 46–93, 1997.

[2] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York, USA: John Wiley & Sons, Inc., 1990.

[3] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for
the generalized assignment problem,” European Journal of Operational
Research, vol. 60, no. 3, pp. 260–272, 1992.

[4] Ö. Ülker and D. Landa-Silva, “Designing difficult office space allocation
problem instances with mathematical programming,” in SEA - Sympo-
sium of Experimental Algorithms, 2011, pp. 280–291.

[5] L. Ritzman, J. Bradford, and R. Jacobs, “A multiple objective approach
to space planning for academic facilities,” Managament Science, vol. 25,
no. 9, pp. 895–906, 1980.

[6] C. Benjamin, I. Ehie, and Y. Omurtag, “Planning facilities at the
university of missouri-rolla.” Interfaces, vol. 22, no. 4, 1992.

[7] J. Giannikos, E. El-Darzi, and P. Lees, “An integer goal programming
model to allocate offices to staff in an academic instituition.” Journal of
the Operational Research Society, vol. 46, no. 6, pp. 713–720, 1995.

[8] E. K. Burke and D. B. Varley, “Automating space allocation in higher
education,” in SEAL’98: Selected papers from the Second Asia-Pacific
Conference on Simulated Evolution and Learning on Simulated Evolu-
tion and Learning. London, UK: Springer-Verlag, 1999, pp. 66–73.

[9] E. K. Burke, P. Cowling, J. D. Landa Silva, and B. McCollum, “Three
methods to automate the space allocation process in UK universities,”
in The practice and theory of automated timetabling III (PATAT 2004),
LNCS, Vol. 2079. Springer, 2001, pp. 254–273.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[11] E. K. Burke, P. Cowling, and J. D. Landa Silva, “Hybrid population-
based metaheuristic approaches for the space allocation problem,” in
Proceedings of the 2001 Congress on Evolutionary Computation (CEC
2001), 2001, pp. 232–239.

[12] E. K. Burke, P. Cowling, J. D. Landa Silva, and S. Petrovic, “Combining
hybrid metaheuristics and populations for the multiobjective optimisa-
tion of space allocation problems,” in Proceedings of the 2001 Genetic
and Evolutionary Computation Conference (GECCO 2001), 2001, pp.
1252–1259.

[13] E. K. Burke, J. D. Landa Silva, and E. Soubeiga, Multi-objective hyper-
heuristic Approaches for Apace Allocation and Timetabling. Springer,
2005, pp. 129–158.

[14] D. Landa-Silva and E. K. Burke, “Asynchronous cooperative local search
for the office-space-allocation problem,” INFORMS J. on Computing,
vol. 19, no. 4, pp. 575–587, 2007.

[15] R. Lopes and D. Girimonte, “The office-space-allocation problem in
strongly hierarchized organizations,” in Evolutionary Computation in
Combinatorial Optimization, ser. LNCS. Springer, 2010, vol. 6022,
pp. 143–153.

[16] R. Pereira, K. Cummiskey, and R. Kincaid, “Office space allocation
optimization,” in IEEE Systems and Information Engineering Design
Symposium (SIEDS 2010), 2010, pp. 112–117.

[17] Ö. Ülker and D. Landa-Silva, “A 0/1 integer programming model
for the office space allocation problem,” Electronic Notes in Discrete
Mathematics, vol. 36, pp. 575–582, 2010.

[18] L. A. Wolsey, Integer programming, 1st ed. Wiley Interscience, 1998.
[19] J. D. Landa-Silva, “Metaheuristics and multiobjective approaches for

space allocation,” Ph.D. dissertation, School of Computer Science and
Information Technology, University of Nottingham, 2003.

[20] IBM, “Ilog cplex optimizer,” 2010. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex/

[21] G. Optimisation, “Gurobi,” 2010. [Online]. Available:
http://www.gurobi.com

[22] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts - towards memetic algorithms,” 1989.

[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1st ed. Addison-Wesley, 1989.

[24] F. Glover, “Tabu search, part 1,” ORSA Journal on Computing, vol. 1,
pp. 190–206, 1989.

