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Abstract—Metaheuristic algorithms have been investigated in-
tensively to address highly complex combinatorial optimisation
problems. However, most metaheuristic algorithms have been
designed manually by researchers of different expertise without
a consistent framework to support effective algorithm design.
This paper proposes a general search framework to formulate
in a unified way a range of different metaheuristics. This
framework defines generic algorithmic components, including
selection heuristics and evolution operators. The unified general
search framework aims to serve as the basis of analysing
algorithmic components for automated algorithm design. With
the established new general search framework, two reinforcement
learning based methods, deep Q-network based and proximal
policy optimisation based methods, have been developed to
automatically design a new general population-based algorithm.
The proposed reinforcement learning based methods are able to
intelligently select and combine appropriate algorithmic compo-
nents during different stages of the optimisation process. The
effectiveness and generalization of the proposed reinforcement
learning based methods are validated comprehensively across
different benchmark instances of the capacitated vehicle routing
problem with time windows. This study contributes to making
a key step towards automated algorithm design with a general
framework supporting fundamental analysis by effective machine
learning.

Index Terms—Automated algorithm design, general search
framework, metaheuristic, reinforcement learning, vehicle rout-
ing problem.

I. INTRODUCTION

ADDRESSING highly complex Combinatorial Optimisa-
tion Problems (COPs) with various real-world constraints

has proven to be one of the current research challenges
in evolutionary computation. Current state-of-the-art include
metaheuristic algorithms, which are successful in finding
good-quality solutions within a reasonable computational time.
However, most metaheuristic algorithms proposed in the litera-
ture only work for particular problem instances or at particular
stages of problem-solving, and rely heavily on the experience
of human experts. In addressing this issue, automated algo-
rithm design has attracted considerable attention recently from
the research community [1], [2].
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Towards automated algorithm design, the problem of de-
signing metaheuristics itself is defined as a combinatorial
optimisation problem in [3], upon a search space of different
decision variables, e.g. algorithm parameters, portfolio of
algorithms or algorithmic components. The research in this
field therefore can be categorized into automated algorithm
configuration, algorithm selection, and algorithm composition,
based on the different types of decision variables considered
in the search space of algorithms [3]. The first category aims
to automatically configure the parameters of a specific type
or a family of algorithms. The second category focuses on
selecting a candidate algorithm or combining several existing
algorithms against problem/instance characteristics. In contrast
to these two categories, by combining the basic algorith-
mic components, automated algorithm composition aims to
generate general algorithms to solve multiple COPs, i.e. the
algorithms generated do not belong to any specific search
algorithms, for example genetic algorithms or particle swarm
optimisation, etc.

Algorithm configuration can determine a well-performing
parameter setting; however, it requires sufficient prior knowl-
edge about which specific algorithm should be used. Algo-
rithm selection addresses the limitation of the first category;
however, it introduces the difficult and complex problem of
identifying the key characteristics of the problem. Automated
algorithm composition aims to flexibly compose and gener-
ate new algorithms; however, some human expertise is still
required to pre-select candidate heuristics in existing frame-
works. This study falls into the third category to investigate
the elementary and basic components to automatically design
search algorithms within a unified framework.

In the literature, Reinforcement Learning (RL) [4] has been
used to automatically design algorithms through modelling the
problem of algorithm design as a Markov Decision Process
(MDP). RL is a learning technique, where an agent determines
an optimal action at each state based on its interaction with
the environment. At each new state of the environment the
agent selects an action from a set of actions. Based on the
rewards or punishments after performing each selected action,
it learns to intelligently select the action in the current state
by forming the state-action pairs through trial and error [5].

Some researchers have used the simplest tabular RL tech-
niques, such as SARSA [4] and Q-learning (QL) [6] for
evolutionary algorithm design. One research issue in applying
tabular RL is concerned with the discretization of the con-
tinuous state space, leading to unreliable results [7], [8]. In
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this research presented in this paper, neural network function
approximation is adapted to handle continuous state to address
the above issue. Besides, there are less studies on RL tech-
niques to support effective design of evolutionary algorithms
to solve constrained COPs such as the Capacitated Vehicle
Routing Problem with Time Windows (CVRPTW).

To support automatic design of effective metaheuristic al-
gorithms for COPs, a general search framework is firstly
established, within which learning techniques can be applied
to the design space of algorithms and thus support automated
algorithm design. At this stage of research, instead of studying
all the algorithmic components, we only focus on investigating
the key issue of automatic composition of key evolutionary
operators which have the biggest impact on algorithm per-
formance. RL is used in automated algorithm composition to
reward or penalize combinations of key evolutionary operators
based on their performance. The research work aims to make
the following contributions:

• A new general search framework (GSF) is established to
formulate different single-solution based and population-
based algorithms. The unified GSF serves as the basis
to analyze algorithmic components, generating effective
search algorithms for CVRPTW automatically.

• The automated algorithm composition process is formu-
lated as an MDP. Two RL methods, Deep Q-Networks
(DQN) [9] and Proximal Policy Optimisation (PPO)[10]
have been investigated within the proposed GSF to ad-
dress the key issue of automatic selection and combina-
tion of the most efficient evolutionary operators during
different stages of the evolution. Results on CVRPTW
demonstrate the effectiveness of the trained policy com-
pared to a search procedure without learning.

• The generalization of the trained policy is further vali-
dated by applying it directly to new CVRPTW instances.
In addition to the knowledge extracted and retained in the
DQN and PPO models, the training time of RL-based
techniques is also justified by the time and expertise
needed to develop new models and algorithms from
scratch to tackle new problem instances.

The remainder of this paper is structured as follows. Section
II presents related work on existing automated algorithm de-
sign frameworks and reinforcement learning techniques within
these frameworks. Section III describes the proposed general
search framework and learning techniques. In Section IV, the
optimisation model of vehicle routing problem is described,
and experimental results are analysed on a benchmark dataset,
whereas Section V presents the conclusions and discusses
future research.

II. RELATED WORK

Most evolutionary algorithms and metaheuristics in the
existing literature have been designed manually by researchers
of different expertise, many with ad hoc chosen algorithms for
the specific problems in hand. There is relatively less work
on building general search frameworks to support effective
algorithm design.

A. Existing Frameworks for Automated Algorithm Design

The algorithm design problem has been formally modelled
as a COP, namely the General Combinatorial Optimisation
Problem (GCOP) model in [3]. Based on the fundamental
difference in the decision space, automated algorithm design
can be divided into three categories: algorithm configuration,
algorithm selection, and algorithm composition. A number of
frameworks have been developed in the literature to support
the task of automated algorithm design within these different
categories.

Automated algorithm configuration aims to find a well-
performing parameter setting of a target algorithm across a
given set of problem instances. Frameworks built to support
this task include ParamILS [11], which utilizes iterated local
search, F-race [12] and irace [13], both using a racing mech-
anism, and the surrogate-based methods such as SPOT [14],
SMAC [15], MIP-EGO [16] and Hyperopt [17].

In automated algorithm selection, a specific algorithm or a
portfolio of algorithms is automatically chosen on an instance-
by-instance basis. Frameworks developed include PAP [18],
which integrates different evolutionary algorithms to solve
numerical optimisation problems, and Hydra [19], with a con-
figuration technique for portfolio-based algorithm selection,
and machine learning based algorithm selectors [20].

In automated algorithm composition, a set of heuristics is
automatically combined to generate new algorithms to solve
instances across different problem domains. The most investi-
gated technique is hyper-heuristics [21], which is broadly con-
cerned with intelligently selecting or generating appropriate
heuristics in a given situation. Frameworks developed include
HyFlex [22], EvoHyp [23] and SHH [24], etc. HyFlex explores
a decision space of low-level heuristics or heuristic operators
(e.g., taking search operators from ten well-known techniques
as building blocks [25]) while EvoHyp adapts evolutionary
algorithms as high-level strategies. SHH is specifically built
for automatically combining different components of swarm
intelligence algorithms [24]. In addition, some composition
frameworks have been built within a template of specific
metaheuristics, such as CMA-ES [26] and PSO-DE [27].

The recent fast growth of automated algorithm composition
is due to its greater potential to generate more general search
algorithms to solve complex COPs. It is not restricted within
a template of existing specific search algorithms. This study
focuses on automated algorithm composition problem, draw-
ing in advanced reinforcement learning for effective algorithm
design.

Although existing automated algorithm composition frame-
works (e.g. HyFlex, EvoHyp and SHH) have been successfully
used for solving a variety of COPs, several limitations remain.
HyFlex requires a set of pre-defined or problem-specific
heuristics rather than basic algorithmic components to generate
more general and powerful search algorithms for wider range
of problems. EvoHyp predefines the selection operator and
evolution operator, while SHH mixes these two types of
operators. These frameworks thus build on the reduced search
space of algorithm design, however, result in the loss of some
advantageous combinations of basic components which may
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never be obtained or explored.
With the new standard in algorithm design, namely GCOP

established in [3], this research systematically investigates
learning techniques within the unified GSF to underpin au-
tomated algorithm design.

B. Reinforcement Learning within Automated Algorithm Com-
position

In recent literature on automated algorithm composition,
some RLs, such as SARSA [4], QL [6] and DQN [9],
have been used to support the intelligent selection of the
most appropriate heuristic operators. They utilise feedback
information on the performance of operators during different
stages of the search process. The research in this field can be
classified into two categories based on how the action space
is defined.

The first category of RL techniques in automated algorithm
composition defines the operators in a specific type of search
algorithms as the optional actions of the RL agent. In the
literature, RL techniques are mostly applied to evolutionary
algorithms such as the genetic algorithm to select efficient
mutation and crossover operators [7]. Results on the Travel-
ling Salesman Problem and the 0-1 Knapsack Problem have
demonstrated the superiority of this automated method [7],
[28], [29], [30].

However, due to the complexity of RL techniques, most
studies in this field [7], [28], [29] have only focused on using
the simplest tabular RL methods such as SARSA and QL. Few
studies have investigated advanced techniques to handle the
continuous state spaces when applying RL to select evolution
operators [30]. There is a lack of research on advanced
RL in effective and efficient automated algorithm design in
evolutionary computation.

The second research category treats problem-specific heuris-
tics as the optional actions of the RL agent. RL techniques
are used as the high-level strategy to automatically combine
different low-level heuristics in hyper-heuristics. Results of
these RL-based approaches on unmanned aerial vehicles [31]
and different COPs within the HyFlex software framework [5]
demonstrated the effectiveness of these methods.

In these studies, several search-dependent features, i.e. the
observations of the search process itself, have been used
to represent the state. The number of features identified,
however, is limited and insufficient for learning. Also, simple
positive/negative reward schemes are used, which cannot accu-
rately reflect the effects of the selected action. Furthermore, it
is often not clear how the RL techniques within the hyper-
heuristic framework have been devised, i.e. lack of clear
definition on the three fundamental elements of RL, namely
the state, action and reward scheme. There is still a large scope
and gap in this area of research, as it is often challenging to
reimplement the exact same method and subsequently replicate
the experiments.

In this study, we apply two RL techniques with a neural
network function approximator in the learning of automated
algorithm composition. The state space with sufficient features
for effective learning is carefully defined. The action space is

defined as the basic algorithmic components to learn reusable
knowledge in automated design of general search algorithms.
Also, an effective reward scheme is defined to encourage the
RL system to find efficient search policies. It should be noted
that this study adopts an offline RL framework, in which
the policy is trained offline but used in an online fashion.
This is different from most of RL-based automated algorithm
composition methods in the literature.

III. LEARNING WITHIN THE GENERAL SEARCH
FRAMEWORK

A. General Search Framework

Evolutionary algorithms and metaheuristics in the literature
follow a similar underlying philosophy of artificial evolution
driven by selection and reproduction. The evolution and search
process of specific metaheuristic is distinguished and mainly
depends on the selection heuristics and evolution operators.

Based on the analysis of the basic schemes of metaheuristic
algorithms, a general search framework (GSF) has been devel-
oped, as illustrated in Fig.1. The framework is composed of
five modules as shown in Table I for updating the individuals
and four archives as shown in Table III for storing the
individuals. For each of these components, different settings,
heuristics or parameters can be chosen, as shown in Tables
V-VII, to automatically compose and design different general
search algorithms within the GSF. Algorithms represented by
the combination of heuristics and operators are set as the
output.

With respect to Initialization, although some problem-
specific heuristics (hp) have been developed, the majority of
existing studies generally adopt a ‘purely at random’ (hr)
strategy. The two most common criteria for Termination are
computation time (ht) and population convergence (hc). Of
the five modules presented in Fig.1, Selection for Evolution,
Evolution and Selection for Replacement contribute more to
the search performance. Therefore, they are discussed in detail
in the following section.

TABLE I
MODULES WITHIN GSF

Module Different heuristics, operators or parameters
Initialization random (hr), problem-specific (hp)
Selection for Evolution probability-based operators (h1, h2, h3),

deterministic operators (h4, h5, h6)
Evolution mutation (Omutation),

crossover (Ocrossover)
Selection for Replacement comma-selection (h7), plus-selection (h8)
Termination computation time (ht), convergence (hc)

The proposed GSF is able to formulate in a unified way
a range of single-solution based algorithms and population-
based algorithms by setting different parameters for the mod-
ules and archives, as shown in Table II, e.g. different popula-
tion size, the four archives and heuristic sets in the Selection
for Evolution module. This paper focuses on reinforcement
learning on automated design of population-based search al-
gorithms.

Table III shows the archives defined within GSF. In the
Selection for Evolution module, some individuals within the
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Fig. 1. General search framework

TABLE II
SINGLE-SOLUTION BASED AND POPULATION-BASED SEARCH

ALGORITHMS DEFINED WITH GSF

Parameters/components Single-solution
based algorithm

Population-based
algorithm

Population size 1 > 1

Archive
AC = AP =
AO = Ai

I

AC 6= AP 6=
AO 6= Ai

I
Initialization hr, hp hr, hp
Selection for Evolution h4 h1, h2, h3, h4, h5, h6
Evolution Omutation Omutation, Ocrossover

Selection for Replacement h7, h8 h7, h8
Termination ht, hc ht, hc

TABLE III
FOUR POPULATION ARCHIVES WITHIN GSF

Archive Description
AC : Current population,
nPop = |AC |.

The individuals chosen in the current pop-
ulation before evolution.

AP : Parent population,
µ = |AP |.

The individuals chosen using heuristic in
HSE .

AO : Offspring population,
λ = |AO|.

The offspring population after evolution
OE .

Ai
I : Personal archive,

i ∈ {1, 2. · · · , nPop}. Personal archive Ai
I for the individual ith

to reserve individual trajectories.

Current Population archive (AC) are selected and stored in
the Parent Population archive (AP ) using selection heuristics
(HSE). The population is updated or evolved by using the
evolution operators (OE) in the Evolution module and stored
in the Offspring Population archive (AO). The Current Pop-
ulation archive is then generated by adopting the selection
heuristics (HSR) in the Selection for Replacement module.
In addition, every individual has a Personal Archive (AiI ) to
reserve individual trajectories.

TABLE IV
THE HEURISTIC/OPERATOR SET FOR THE MODULES WITHIN GSF IN FIG. 1

Heuristic/operator set Description
HSE for module Selection for
Evolution

Various heuristics as defined in Ta-
ble V to select the parent popula-
tion AP from the current popula-
tion AC .

HSR for module Selection for Re-
placement

Various heuristics as defined in Ta-
ble VI to update the current popu-
lation AC based on AP .

OE for module Evolution Various operators as defined in Ta-
ble VII to generate the offspring
population AO based on AP se-
lected by HSE .

B. Basic GSF Modules

In GSF, the Selection for Evolution and Selection for Re-
placement modules select individuals using various heuristics
based on the fitness of individuals in the population archives.
Without loss of generality, all selection heuristics are set for
solving optimisation problems where the aim is to minimize
the objective value.

1) Selection for Evolution: There are two types of heuris-
tics in the Selection for Evolution module. As Table V shows,
h1, h2 and h3 are probability-based, where individuals are
selected as parents according to a probability related to their
fitness. h4, h5 and h6 select an individual to be a parent in a
deterministic way instead of by probability.

TABLE V
HSE : HEURISTICS IN SELECTION FOR EVOLUTION MODULE

Heuristic Description
h1 h1

t
b/h1tw : tournament selection of the best/worst of v ∈

{1, · · · , nPop} individuals as parent candidates from AP .
For each individual i, the probability to be selected as parent
candidate p′i = 1/nPop. When v = 1: random selection.
When v = nPop: greedy selection of the best/worst individ-
ual.

h2 Proportionate roulette wheel selection of an individual i as
parent from AP with a probability proportional to its fitness.

h3 Ranking selection of an individual i as parent according to
the probability proportional to the its rank (ascending order
based on the fitness function).

h4 Select the current individual itself as parent.
h5 Rank selection of the best previous position as parent based

on individual’s personal archive Ai
I .

h6 Selection of all the individual(s) with a lower fitness than the
current individual as parent(s) from AP .

2) Selection for Replacement: After evolution, the popula-
tion is updated by using the selection heuristic (h7, h8) in the
Selection for Replacement module, as shown in Table VI.

TABLE VI
HSR : HEURISTICS IN SELECTION FOR REPLACEMENT MODULE

Heuristic Description
h7 Comma-selection (nPop, λ). Select nPop individuals only

from the offspring population AO , λ > nPop, nPop =
|AC | , λ = |AO|.

h8 Plus-selection (nPop, µ+ λ). Select individuals from both
the parent population AP and the offspring population AO ,
nPop = |AC |, µ = |AP | , λ = |AO|.
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3) Evolution Operators: Evolution operators (OE) in the
Evolution module include Omutation, which operates upon
one individual, and Ocrossover, which operates on multiple
individuals. Regarding the capacitated vehicle routing problem
with time windows (CVRPTW), crossover operators are prone
to infeasible solutions. Therefore, in this study, we focus on
investigating various mutation operators, which are defined in
TableVII, for solving CVRPTW. Note that these general basic
operators (exchange, insert and remove, etc.) can be adapted
accordingly to automatically design algorithms for different
COPs.

TABLE VII
OE : EVOLUTION OPERATORS FOR CVRPTW

Operator Description
ochg in Exchange m and n nodes from the same route in a

solution
ochg bw Exchange m and n nodes from different routes in a

solution
oins in Insert m nodes to other positions of the same route in

a solution
oins bw Insert m nodes to other positions of different routes in

a solution
oruin recreat The m nodes within a pre-determined distance d to the

base customer are removed from the solution. The value
of d is set based on the distance between the base node
and the furthest node from the base node. If there exist
feasible routes which can accommodate the removed
nodes, the insertion position with the minimum waiting
time is selected. Otherwise, a new route is created.

otwo opt Exchange two nodes in the same route in a solution
otwo opt∗ Take the end sections of two routes in a solution and

swap them to create two new routes

C. Reinforcement Learning for Automated Algorithm Compo-
sition in GSF

Reinforcement learning is a machine learning technique,
where intelligent agents take actions based on the learned
policy trained through trial and error interactions with the
environment by maximising total reward. The environment of
RL is considered as a MDP, which is composed of a set of
possible states and a set of selectable actions. Each state-action
pair is given a total reward value (Q-value).

With the established GSF, RL is used for automated al-
gorithm composition as shown in Fig.2. The actions are the
selectable combinations of algorithmic components (i.e. evolu-
tion operators). The states are defined by different features of
the search process, the solution and the instance, as shown in
Table IX. The automated algorithm composition process starts
with the observation of the agent’s current situation (a state)
and the selection of a combination of algorithmic components
(an action). The execution of the resulting algorithmic compo-
nent (selected action) leads to a new state of the optimisation
process (environment) by the chosen selection heuristic and
evolution operator to the current state. A reward (or penalty)
is assigned to the selected action with respect to the current
state.

Tabular RL techniques, such as SARSA [4] and QL [6],
have been used to select heuristic operators in the literature.
However, a Q-table cannot handle continuous state space,

Fig. 2. Reinforcement learning in the context of automated algorithm
composition in GSF

leading to unreliable results. To address this issue, in this
study, RL techniques with a neural network as value-function
approximator have been adopted.

RL techniques can be roughly divided into value-based
methods and policy-based methods based on their policy
update mechanism [4]. To comprehensively verify the ef-
fectiveness of RL on automated algorithm design, a typical
value-based method and a typical policy-based method are
investigated within GSF in this research.

In value-based RL, DQN [9], the first deep reinforcement
learning method, is selected. The DQN-based method to
automatically design an algorithm within the GSF is named
DQN-GSF. In policy-based RL, PPO [10], which outperforms
other policy gradient approaches, is selected, named PPO-GSF
in this study.

Table VIII shows the notations used in this study. The pseu-
docodes of DQN-GSF and PPO-GSF are shown in Algorithm
1 and Algorithm 2, respectively.

Note that h1 and h8 are fixed in the Selection for Evolution
and Replacement modules to address our key research issues,
i.e., how to automatically design algorithms with evolution-
ary operators which have the most impact on evolutionary
algorithms. With the newly established GSF, at this stage
of research, the focus is on the key modules of evolution,
rather than on determining all the components in all modules
simultaneously to find the best results within a reasonable
computational time. With controlled experiments on the key
module while fixing the other sub-modules, we can focus on
examining the results only due to different settings in the
Evolution module. From the preliminary experimental anal-
ysis, compared with the Evolution module, it is observed that
the choice of components in the Selection for Evolution and
Replacement modules has a smaller impact on the algorithm
performance. Therefore, the most commonly used components
in the existing metaheuristic algorithms, i.e. h1 in Selection
for Evolution and h8 in Replacement, are chosen for focused
investigations.

In DQN-GSF and PPO-GSF, the two RL techniques, DQN
and PPO, are firstly applied in multiple episodes to train the
policy within the GSF. After that, the trained policy is used
to design the search algorithm online. The training process is
the key research issue, and described in details as follows.

As shown in Algorithm 1, the DQN-GSF is trained on
every timestep. Specifically, an action (an evolution opera-
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TABLE VIII
NOTATIONS USED IN DQN-GSF AND PPO-GSF

Notation Description
s0 The initial state
st The state at timestep t
at The selected action at timestep t
rt The reward value at timestep t
NoE The number of episodes
NoT The number of timesteps in one episode

Algorithm 1 Pseudocode of DQN-GSF
1: Initialize memory buffer D
2: Initialize evaluation action-value function Q network and

target action-value function Q̂ network
3: Generate initial population, record the initial state s0
4: for episode k = 1 to NoE do
5: initialize the state s0
6: for timestep t = 1 to NoT do
7: observe the current state st by calculating values of

different state features in Table IX
8: with probability ε select a random action at, with

probability 1−ε select an action that has a maximum
Q-value: at = argmaxQ (st, at)

9: select parents using a selection heuristic
hi (i = 1, 2, ..., 6) from HSE (fixed as h1 in
this study)

10: generate offspring population by performing the se-
lected action at to state st

11: update the population using a selection heuristic
hi (i = 7, 8) from HSR (fixed as h8 in this study)

12: observe reward rt based on Equation (3) and Equa-
tion (4), and next state st+1, store experience
(st, at, rt, st+1) in D

13: sample random minibatch of experiences
[sj , aj , rj , sj+1]J (J denotes the size of the sampled
minibatch) from memory buffer D and calculate the

loss:
[
rj + γmax

aj+1

Q̂ (sj+1, aj+1)−Q (sj , aj)

]2
, γ

denotes the discount factor.
14: perform gradient descent with respect to Q network

in order to minimize the loss
15: every N timesteps reset Q̂ = Q
16: end for
17: end for

tor) is deterministically selected with the largest Q-value for
exploitation or randomly selected for exploration (Line 8,
Algorithm 1). The designed search algorithm with predefined
selection heuristics is executed for one timestep (Line 9-11,
Algorithm 1). The next state and reward are identified, and
this experience (st, at, rt, st+1) is stored in the memory buffer
(Line 12, Algorithm 1). After that, a minibatch of experiences
is randomly sampled from the memory buffer to train the
evaluation network (Line 13-14, Algorithm 1). The process
is iterated at each timestep until the end of the episode. In
the process, the target network parameters are periodically
synchronized with the evaluation network parameters (Line

Algorithm 2 Pseudocode of PPO-GSF
1: Initialize memory buffer D
2: Initialize policy parameters θ0, value function parameters
Φ0

3: Generate initial population, record the initial state s0
4: for episode k = 1 to NoE do
5: for timestep t = 1 to NoT do
6: observe the current state st by calculating values of

different state features in Table IX
7: select parents using a selection heuristic

hi (i = 1, 2, ..., 6) from HSE (fixed as h1 in
this study)

8: generate offspring population by performing the se-
lected action at based on policy πk = πθk .

9: update the population using a selection heuristic
hi (i = 7, 8) from HSR (fixed as h8 in this study)

10: observe reward rt based on Equation (3) and Equa-
tion (4)

11: collect experience (st, at, rt) and save it in D
12: end for
13: update the policy by maximizing the PPO objective

θk+1 based on Equation (1)
14: fit value function Φk+1 based on Equation (2)
15: empty memory buffer D
16: end for

15, Algorithm 1).
Unlike value-based DQN-GSF, policy-based PPO-GSF is

trained on every episode rather than each timestep. As shown
in Algorithm 2, firstly, a series of actions are selected based
on the probability of the policy πθk , k = 1, 2, ..., NoE, and
then the designed search algorithm with predefined selection
heuristics is correspondingly executed for one episode (Line
5-12, Algorithm 2). Then, the policy is updated by maximizing
the PPO objective based on Equation (1) (Line 13, Algorithm
2) and the value function is fitted by time differential error
based on Equation (2) (Line 14, Algorithm 2). Finally, the
memory buffer is set to be empty (Line 15, Algorithm 2). A
series of actions is selected based on the updated policy to
perform the next episode of optimisation (Line 8, Algorithm
2).

θk+1 =arg max
θ

1

|Dc|NoT
∑
τ∈Dc

NoT∑
t=0

min (rt (θ)

Aπθk (st, at) , clip (rt (θ) , 1− ε, 1 + ε))

(1)

Φk+1 = argmin
Φ

1

|Dc|NoT
∑
τ∈Dc

NoT∑
t=0

(
VΦ (st)− R̂t

)2
(2)

rt (θ) denotes the probability ratio rt (θ) = πθ(at|st )
πθk (at|st )

.
Aπθk (st, at) is an estimator of the advantage function at
timestep t. ε is a hyperparameter. clip (rt (θ) , 1− ε, 1 + ε)
denotes the modified surrogate objective by clipping the prob-
ability ratio. The rewards-to-go R̂t is calculated according
to trajectory τ : [(s1, a1, r1) , (s2, a2, r2) , · · · , (st, at, rt)].
Please refer to [10] for more detail about these two equations.
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1) State Representation: Different state features, including
search-dependent, solution-dependent and instance-dependent
features, are first distinguished in this section.

Search-dependent features observe the search process, such
as the total improvement over the initial solution. Solution-
dependent features are associated with the solution encoding
scheme, take TSP as an example, the encoding of a complete
tour can be directly defined as the state. Instance-dependent
features refer to the instance-specific characteristics, such as
the vehicle number or the vehicle capacity of VRP.

When search-dependent or instance-dependent features are
used to define the state space, the learned information can
be transferred to other instances of the same problem, or
even to other problems. In many cases, the solution-dependent
features cannot be used to develop a general methodology
since they are problem-specific. Therefore, in this study, as
shown in Table IX, four search-dependent features (f1-f4) and
four instance-dependent features (f5-f8) are used to define the
state space.

TABLE IX
DEFINITION OF THE STATE SPACE

Feature Description
f1 The total fitness improvement over the initial population fitness
f2 The diversity of the population, measured by the standard

deviation of the population fitness
f3 The current algorithmic stage, calculated as i/NoT where i is

the index of the current timestep
f4 The altitude of the search space which is based on the difference

between the upper and lower bounds of the fitness values, i.e.
of the current best and worst solutions found within the episode

f5 The number of vehicles
f6 The capacity of the vehicle
f7 The density of the time window, i.e. the percentage of time-

constrained customers
f8 The tightness of the time window, i.e. the width of the time

windows

2) Action Representation : In DQN-GSF and PPO-GSF,
the set of possible actions in each state is defined by the set
of evolution operators (OE) in Table VII. Once an action is
selected, it is applied to the whole population.

3) Reward Scheme: Reward scheme, which encourages the
RL system to find efficient search policies, is very important
for an RL method. In DQN-GSF and PPO-GSF, the reward
is calculated based on the improvement of the fitness of the
current population over the initial population, as shown in
Equation (3) and Equation (4). When population fitness is
optimised above a certain threshold, a larger reward is given
for the same fitness improvement.

f1 =
fcurrent
finitial

(3)

reward =

{ .
−f1, if f1 > C

−f1 − log10 (f1) , if f1 6 C
(4)

Two methods are used in setting the reward: normalize f1
to increase the training efficiency; assign a larger reward by
using a log function to the same fitness improvement in the
later stage of the optimisation process.

Many of the simple positive/negative reward schemes in
the literature track the fitness improvement by counting the
number of steps achieved successfully. The proposed reward
scheme is designed to instead maximize the total fitness
improvement itself, which is what really needs to be optimised.
Compared to the simple positive/negative reward schemes, the
proposed reward scheme not only reflects but also measures
the positive/negative impact of the selected action. Moreover,
the proposed reward scheme assigns a larger reward to the
actions that lead to fitness improvements at the later stage
of the optimisation process, to address the issue that such
improvements are usually very small at the final stage of
evolution.

4) Episode Setting: An episode is defined as the whole
optimisation process. Since the time-based stopping criteria
is used in this study, the period of each episode equals to the
given optimisation time tmax. An episode is divided into NoT
timesteps, so the period of each timestep equals to tmax/NoT .

For training purposes, the proposed DQN-GSF and PPO-
GSF are executed for NoE episodes. For testing purposes,
the designed DQN-GSF and PPO-GSF are executed for one
episode.

IV. EXPERIMENTS AND DISCUSSION

The proposed RL-GSF methods within the novel GSF
are investigated and evaluated on one of the mostly studied
COPs, CVRPTW, in this research. All experiments have been
conducted using a computer with Intel(R) Xeon(R) W-2123
CPU@ 3.60 GHz processors, and with 32.0 GB of memory.
The RL-GSF methods are implemented in Java environment
with IntelliJ IDEA 2020.3.3 as the development tool.

The experimental investigations aim to address two research
issues: (1) the effectiveness of the new RL techniques to
automatically generate a search algorithm to tackle the bench-
mark Solomon CVRPTW dataset; (2) the generalization of the
trained policies to new problem instances. To analyse the influ-
ence of the Q-value function approximator on learning models,
two value-based RL-GSF methods with fitness improvement
as the state definition, namely QL-GSF with a Q-table and
DQN-GSF with a neural network function approximator, are
compared in section IV-B1. To analyse the influence of the
policy update mechanism on learning models, DQN-GSF and
PPO-GSF, are assessed in section IV-B2. The generalization of
the trained policies across the same-type and different-type of
problem instances are assessed by directly applying the trained
policies to new instances in section IV-C1 and section IV-C2,
respectively.

A. Problem Definition and Dataset

The vehicle routing problem is arguably one of the most
important transport scheduling problems. In the classic model
CVRPTW, a fleet of vehicles are routed to serve the cus-
tomers with the minimal distance, satisfying capacity and time
windows constraints. CVRPTW has been intensively tested as
a benchmark problem in evaluating the performance of evo-
lutionary and metaheuristic algorithms [32]. This paper will
investigate the CVRPTW to gain a better understanding on the



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , NOVEMBER 2021 8

proposed reinforcement learning based automated algorithm
design methodologies.

The CVRPTW can be mathematically formulated as follows
[33]:

A fleet of K vehicles are used to serve n customers. To
customer vi, the service start time bi must fall within the time
window [ei, fi], where ei and fi represent the earliest and
latest time to serve qi (i.e. the demand of vi), respectively.
If a vehicle arrives at vi at time ai < ei, a waiting time
wi = max {0, ei − ai} occurs. Consequently, the service
start time bi = max {ei, ai}. Each vehicle with a capacity Q
travels on a route connecting a subset of customers starting
from v0 and ending within the schedule horizon [e0, f0]. dij
represents the distance from customer vi to customer vj .
Decision variables:
Xk
ij = 1, if the edge from vi to vj is assigned in the route of

vehicle k; otherwise Xk
ij = 0.

Objective function:

Minimize K (5)

Minimize
∑
k∈K

∑
vi∈V

∑
vj∈V

Xk
ijdij (6)

Constraint: ∑
k∈K

∑
vi∈V

Xk
ij = 1,∀vi ∈ V \ {vo} (7)

∑
k∈K

∑
vj∈V

Xk
ij = 1,∀vj ∈ V \ {vo} (8)

∑
k∈K

∑
vi∈V

∑
vj∈V \{vo}

Xk
ij = n (9)

∑
vj∈V

Xk
oj = 1,∀k ∈ K (10)

∑
vi∈V

Xk
ij −

∑
vj∈V

Xk
ji = 0,∀k ∈ K, vj ∈ V \ {vo} (11)

∑
vi

Xk
io = 1,∀k ∈ K (12)

ei 6 bi 6 fi,∀vi ∈ V (13)∑
vi∈V

∑
vj∈V

Xk
ijqi 6 Q,∀k ∈ K (14)

Xk
ij ∈ {0, 1} ,∀vi, vj ∈ V, k ∈ K (15)

The first objective is to minimize the number of vehicles
(Equation (5)) while the second objective is to minimize
the total travelled distance (Equation (6)). Constraints (7–
9) limit every customer to be visited exactly once while
ensuring that all customers are served. Constraints (10–12)
define the route by vehicle k. Constraints (13) and (14) define
the customer time windows constraint and vehicle capacity
constraint, respectively. Constraint (15) defines the domain of
the decision variable Xk

ij .
We adapt the same evaluation function in the literature,

where the two objectives are transformed into a single ob-
jective with a weight [34] as shown in Equation (16).

f =
∑
k∈K

K∑
vi∈V

∑
vj∈V

Xk
ijdij + 1000×K (16)

The Solomon benchmark dataset [35] consists of six sets
of instances of different characteristics (C1, C2, R1, R2, RC1
and RC2. The instances differ with respect to the customers’
geographical locations, vehicle capacity, density and tightness
of the time windows. Customers in instance sets C1 and C2
are clustered geographically; while customers in instance sets
R1 and R2 are randomly located. Instance sets RC1 and
RC2 contain a mixture of random and clustered customers.
The customer coordinates are identical for the same type of
problem instances. The instances within one type differ with
respect to the density and tightness of the time windows, i.e.
the percentage of time-constrained customers and the width of
the time windows.

B. Effectiveness of the Learning Models

This section investigates the effectiveness of the proposed
RL-GSF models from two aspects: influence of the Q-value
function approximator; and influence of the policy update
mechanism.

1) Influence of Q-value Function Approximator on the
Learning Models: QL, representing the tabular RL methods,
and DQN, representing the function approximation RL meth-
ods, are applied in the established GSF in this section. The ran-
dom algorithm is chosen as the baseline algorithm to demon-
strate the performance of the RL methods. The Random-GSF
method randomly selects algorithmic components within the
established GSF during different stages of the optimisation
process without any learning, i.e., each algorithmic component
has the same probability of being selected.

The state space is defined by the total fitness improvement
over the initial population fitness, i.e. f1 in Table IX. As
CVRPTW is a NP-hard problem with a finite fitness search
space, QL-GSF method needs to handle a large number of
states. An approximation technique based on the concept of the
state aggregation [36], [37], [38] is used within the QL-GSF
to aggregate the state space into several disjoint categories.

From the preliminary experimental observations, in type-
R1 and type-RC1 instances, the values obtained fall
into the range [0.4,0.6]. The range is slightly different
in type-C, type-R2 and type-RC2 instances, observed as
[0.3,0.5] from experiments. Therefore, the state space of
type-R1 and type-RC1 instances is divided as: f1 ∈
[0, 0.4) , [0.41, 0.42) , ..., [0.59, 0.6) , [0.6, 0.7) , ..., [0.9, 1]; for
type-C, type-R2 and type-RC2 instances, the state space is di-
vided as: f1 ∈ [0, 0.3) , [0.31, 0.32) , ..., [0.49, 0.5) , [0.5, 0.7) ,
[0.7, 0.8) , ..., [0.9, 1]. In DQN-GSF with a neural network
function approximator, there is no need to aggregate state;
instead, f1 can be simply used as the sole input of the neural
network.

Apart from the Q-value function approximator, the experi-
mental environment and parameters settings are identical for
these three algorithms. In all algorithms, the population size,
the number of timesteps NoT and pre-defined maximum
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running time of one episode tmax are set to 100, 50, and 600s,
respectively. For training the policy, the number of episodes
NoE is set to 500. For testing purposes, as shown in Tables X-
XII, by running each learning algorithm 10 times, we collected
the average best fitness (AVG), standard deviation (SD), the
best fitness (BEST) and the GAP between BEST and the best-
known solution in the literature [39].

It should be noted that a direct comparison on the computa-
tional expenses between the proposed methods and the state-
of-the-art algorithms which produce the best-known solutions
is difficult due to the different computer platforms and/or im-
plementation languages. Furthermore, the termination condi-
tion and the number of independent runs differs from methods
to methods in most of the published algorithms. The proposed
methods require extra computation time on the training and
testing process compared to other methods. However, the aim
is not to develop a fast method but rather to automatically
develop search algorithms that can produce state-of-the-art
results with a certain degree of generality. The extra time
can potentially be compensated by solving different problem
instances without redesigning or fine-tuning algorithms in the
long-term.

On the type-C instances, the results of BEST and GAP in
Table XI demonstrate that these three methods can produce
the current best-known solutions [39]. This type of instances
can be solved by evolutionary search without any learning
techniques. The different AVG and SD indicate that the
proposed RL-GSF methods, especially DQN-GSF, are more
stable to automatically design a search algorithm for solving
type-C instances with statistical significance (measured by
Wilcoxon rank sum test with p < 0.05), and indicated by
∗ in all the tables of results.

On the type-R and type-RC instances, as shown in Table
XI and Table XII, DQN-GSF achieves the best results among
these three algorithms in most instances. QL-GSF is the
second best, with a higher AVG and a smaller GAP than
Random-GSF in most instances. It indicates that learning
based models are more effective than the non-learning search
procedure.

In conclusion, a neural network function approximator out-
performs the simple Q-table. With more features to define the
state space, the effectiveness of the learning methods is likely
to be further improved. However, the memory required by a
simple Q-table to handle multiple features will increase and
the amount of time required to explore each state to create
the required Q-table becomes unrealistic. In comparison to a
Q-table, a neural network is able to handle multiple features.

It can also be observed that Random-GSF shows comparable
performance with the other two methods on type-C instances
but poorer performance on type-R and type-RC instances. This
indicates that learning mechanisms can help to find better
combination of the algorithmic components, obtaining better
solutions. In the next section, two neural network based RL-
GSF methods, DQN-GSF and PPO-GSF, will be investigated
further.

2) Influence of Policy Update Mechanisms in the Learning
Models: In the value-based method DQN-GSF, and policy-
based method PPO-GSF, apart from the policy update mech-

TABLE X
COMPARISONS ON SELECTED TYPE-C INSTANCES (INFLUENCE OF

Q-VALUE FUNCTION APPROXIMATOR). ] AND ∗ INDICATE DQN-GSF IS
SIGNIFICANTLY DIFFERENT FROM RANDOM-GSF AND QL-GSF,

RESPECTIVELY, I.E., p < 0.05

Instance C101 C102 C105 C201 C202 C205
Best-known solutions 10828.94 [40] 10828.94 [40] 10828.94 [40] 3591.56[40] 3591.56[40] 3588.88[40]

Random-GSF

AVG 11061.1 10928.73 10832.97 3604.44 3616.24 3599.05
SD 483.51 110.36 12.75 16.64 24.9 15.82
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

QL-GSF

AVG 10828.94 10860.36 10828.94 3591.56 3618.87 3591.75
SD 0 45.11 0 0 17.32 8.62
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

DQN-GSF

AVG 10831.47 ] 10840.84 ] ∗ 10833.93 3591.56 3616.15 3588.88 blue]
SD 7.61 24.65 14.99 0 17.44 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

TABLE XI
COMPARISONS ON SELECTED TYPE-R INSTANCES (INFLUENCE OF

Q-VALUE FUNCTION APPROXIMATOR). ] AND ∗ INDICATE DQN-GSF IS
SIGNIFICANTLY DIFFERENT FROM RANDOM-GSF AND QL-GSF,

RESPECTIVELY, I.E., p < 0.05

Instance R101 R102 R105 R201 R202 R205
Best-known solutions 20645.79 [41] 18486.12 [40] 15377.11[40] 5252.37[42] 4191.7[43] 3994.42[43]

Random-GSF

AVG 21213.58 19541.53 16777.28 5445.83 5285.64 4193.57
SD 525.00 25.30 503.17 75.07 50.04 37.23
BEST 21637.7 19510.7 16421.4 5318.79 5183.26 4139.7
GAP 4.8% 5.5% 6.8% 1.3% 23.66% 3.6%

QL-GSF

AVG 21893.56 19505.09 16938.17 5384.10 5213.21 4179.57
SD 397.57 19.62 500.57 40.39 22.08 27.64
BEST 21665.47 19486.77 16438.95 5336.10 5183.86 4131.79
GAP 4.94% 5.41% 6.91% 1.59% 23.67% 3.44%

DQN-GSF

AVG 21171.67 ] ∗ 19516.86 ] 16736.59 ∗ 5366.27 ] ∗ 5191.93 ] 4168.28 ] ∗
SD 500.27 20.15 459.63 27.17 31.23 36.63
BEST 20655.81 19481.96 16414.47 5325.66 5137.16 4086.29
GAP 0.05% 5.39% 6.75% 1.40% 22.56% 2.30%

TABLE XII
COMPARISONS ON SELECTED TYPE-RC INSTANCES (INFLUENCE OF

Q-VALUE FUNCTION APPROXIMATOR). ] AND ∗ INDICATE DQN-GSF IS
SIGNIFICANTLY DIFFERENT FROM RANDOM-GSF AND QL-GSF,

RESPECTIVELY, I.E., p < 0.05

Instance RC101 RC102 RC105 RC201 RC202 RC205
Best-known solutions 15696.94 [44] 13554.72 [44] 14628.44[45] 5406.91[46] 4367.09[47] 5297.19[46]

Random-GSF

AVG 17340.05 16196.35 16971.02 5631.78 5439.67 5533.55
SD 537.58 543.03 508.91 73.60 53.03 62.02
BEST 16687.5 14527.04 16627.61 5561.31 5315.21 5435.81
GAP 6.3% 7.2% 13.7% 2.9% 21.7% 2.6%

QL-GSF

AVG 17840.39 15967.39 16932.14 5595.50 5464.09 5430.87
SD 716.74 499.91 463.88 30.34 31.41 33.28
BEST 16686.71 15502.68 16613.85 5553.28 5446.44 5396.74
GAP 6.31% 14.37% 13.56% 2.71% 24.72% 1.87%

DQN-GSF

AVG 17523.59 ] ∗ 15653.58 ] ∗ 16936.21 ] 5659.06 ∗ 5338.71 ] ∗ 5547.81 ∗
SD 621.65 294.00 468.76 296.92 33.30 305.41
BEST 16662.50 15490.86 16589.13 5473.00 5251.44 5396.45
GAP 6.15% 14.28% 13.4% 1.22% 20.25% 1.88%

anism, the other parameters, such as the population size and
the maximum running time are all identical to conduct fair
comparison.

The policies of PPO-GSF and DQN-GSF are gradually
improved during the training process. However, a certain
degree of randomness must be maintained to avoid being
trapped in a local optimum. The reward curve appears to
rise with some fluctuation as a result of this. To present the
training effects more clearly, the reward curve is smoothed
by using a sliding window filter method (moving average), as
shown in Equation (17).

lsmoothed =
convolve (xbuff , ybuff )

convolve (zbuff , ybuff )
(17)

where xbuff is the raw reward per episode, ybuff =
[1, · · · , 1]q is a vector with the length of the smooth factor
q, zbuff = [1, · · · , 1]NoE is a vector with the length of the
whole training data. q is set to 5 in the experiment.

On the type-C instances, as illustrated in Fig.3, PPO-GSF
performs better than DQN-GSF in most instances. As shown
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in Table XIII, the average best fitness and standard deviation
also demonstrate the superiority of PPO-GSF over DQN-GSF.
Again both learning methods can produce the current best-
known solutions [39].

(a) C101 (b) C102 (c) C105

(d) C201 (e) C202 (f) C205

Fig. 3. Influence of Policy Update Mechanisms on the Learning Models
(type-C problem instances)

TABLE XIII
COMPARISONS ON SELECTED TYPE-C INSTANCES (INFLUENCE OF POLICY

UPDATE MECHANISMS). ∗ INDICATES PPO-GSF IS SIGNIFICANTLY
DIFFERENT FROM DQN-GSF, I.E., p < 0.05

Instance C101 C102 C105 C201 C202 C205
Best-known solutions 10828.94 [40] 10828.94 [40] 10828.94[40] 3591.56[40] 3591.56[40] 3588.88[40]

DQN-GSF

AVG 11148.36 10900.96 10832.46 3591.56 3612.52 3588.88
SD 487.93 112.83 10.57 0 13.95 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

PPO-GSF

AVG 10834.01 ∗ 10855.22 ∗ 10831.72 3591.56 3595.29 ∗ 3588.88
SD 10.15 50.24 8.36 0 11.19 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

On the type-R instances, as illustrated in Fig.4, PPO-GSF
outperforms DQN-GSF in terms of algorithm convergence and
solution quality. Further, Table XIV reveals that PPO-GSF
achieves better results in terms of all four indicators AVG,
SD, BEST and GAP in most instances. The GAPs of PPO-
GSF are less than 3% in most instances except on the R202
instance.

(a) R101 (b) R102 (c) R105

(d) R201 (e) R202 (f) R205

Fig. 4. Influence of Policy Update Mechanisms on the Learning Models
(type-R problem instances)

On the type-RC instances as illustrated in Fig.5, PPO-GSF
clearly outperforms DQN-GSF in all instances. In Table XV,

TABLE XIV
COMPARISONS ON SELECTED TYPE-R INSTANCES (INFLUENCE OF POLICY

UPDATE MECHANISMS). ∗ INDICATES PPO-GSF IS SIGNIFICANTLY
DIFFERENT FROM DQN-GSF, I.E., p < 0.05

Instance R101 R102 R105 R201 R202 R205
Best-known solutions 20645.79 [41] 18486.12 [40] 15377.11 [40] 5252.37 [42] 4191.7[43] 3994.42[43]

DQN-GSF

AVG 20981.19 19910.38 16434.78 5378.77 5201.13 4280.21
SD 454.50 452.07 489.72 44.67 34.34 308.16
BEST 20656.49 19495.43 15410.25 5304.48 5159.01 4131.92
GAP 0.05% 5.5% 0.02% 0.99% 23.1% 3.4%

PPO-GSF

AVG 20665.46 ∗ 18708.26 ∗ 16329.39 ∗ 5382.98 5200.721 4145.18 ∗
SD 10.16 413.91 321.27 39.15 29.83 29.52
BEST 20655.81 18493.03 15418.00 5318.35 5144.32 4094.81
GAP 0.05% 0.04% 0.03% 1.3% 22.7% 2.5%

in most type-RC instances, the solutions obtained by PPO-GSF
and DQN-GSF are non-dominated solutions to the best-known
solution identified by all the other metaheuristics methods in
the literature [39].

(a) RC101 (b) RC102 (c) RC105

(d) RC201 (e) RC202 (f) RC205

Fig. 5. Influence of Policy Update Mechanisms on the Learning Models
(type-RC problem instances)

TABLE XV
COMPARISONS ON SELECTED TYPE-RC INSTANCES (INFLUENCE OF

POLICY UPDATE MECHANISMS). ∗ INDICATES PPO-GSF IS
SIGNIFICANTLY DIFFERENT FROM DQN-GSF, I.E., p < 0.05

Instance RC101 RC102 RC105 RC201 RC202 RC205
Best-known solutions 15696.94 [44] 13554.72 [44] 14628.44[45] 5406.91[46] 4367.09[47] 5297.19[46]

DQN-GSF

AVG 17586.44 16146.86 17041.4 5661.65 5351.60 5535.85
SD 728.65 486.43 499.10 269.55 45.33 284.21
BEST 16570.05 15526.71 16603.84 5507.77 5293.64 5361.69
GAP 5.56% 14.55% 13.5% 1.87% 21.2% 1.2%

PPO-GSF

AVG 17521.35 ∗ 16005.04 ∗ 16543.15 ∗ 5567.00 ∗ 5359.51 5450.50 ∗
SD 410.16 525.97 309.87 78.01 57.68 36.60
BEST 16679.80 15511.07 15617.44 5467.35 5246.94 5359.96
GAP 6.3% 14.4% 6.8% 1.12% 20.1% 1.2%

In conclusion, the experimental results show that both the
PPO-GSF and DQN-GSF methods can support effective learn-
ing in GSF to automatically generate evolutionary algorithms
for solving different types of CVRPTW instances. In particu-
lar, with a neural network approximator, PPO-GSF, the policy-
based model, is more effective than DQN-GSF, the value-
based model. There are mainly two reasons. Firstly, policy-
based methods can learn stochastic policies while value-based
methods can only learn deterministic policies. Policy-based
methods are more capable of better environmental exploration.
Secondly, PPO-GSF can ensure that the learned policy is
monotonically increasing due to its effective value function
optimisation method, leading to better exploitation.
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TABLE XVI
GENERALIZATION ACROSS THE SAME-TYPE OF INSTANCES. ∗ INDICATES PPO-GSF IS SIGNIFICANTLY DIFFERENT FROM DQN-GSF, I.E., p < 0.05

Best-known solution
in the literature

DQN-GSF

(trained policy)

PPO-GSF

(trained policy)

Instance NV TD AVG SD BEST GAP AVG SD BEST GAP
R102 17 1486.12 [40] 19198.08 455.54 18499.58 0.07% 18918.03 ∗ 486.78 18507.80 0.12%
R105 14 1377.11 [40] 16446.11 438.62 15475.15 0.64% 16343.12 ∗ 297.87 15451.57 0.48%
R201 4 1252.37 [42] 5369.89 39.99 5325.66 1.40% 5344.44 24.74 5311.65 1.13%
R202 3 1191.70 [43] 5180.19 31.71 5131.13 22.41% 5103.13 ∗ 273.80 4286.01 2.25%
R205 3 994.42 [43] 4165.78 58.63 4069.41 1.88% 4135.23 26.08 4096.00 2.54%

TABLE XVII
GENERALIZATION ACROSS DIFFERENT-TYPE OF INSTANCES. ∗ INDICATES PPO-GSF IS SIGNIFICANTLY DIFFERENT FROM DQN-GSF, I.E., p < 0.05

Best-known solution
in the literature

DQN-GSF

(trained policy)

PPO-GSF

(trained policy)
Instance NV TD AVG SD BEST GAP AVG SD BEST GAP
C101 10 828.94 [40] 10828.94 0 10828.94 0 10828.94 0 10828.94 0
C102 10 828.94 [40] 10856.95 52.99 10828.94 0 10867.18 57.35 10828.94 0
C105 10 828.94 [40] 10828.94 0 10828.94 0 10836.85 15.84 10828.94 0
C201 3 591.56 [40] 3591.56 0 3591.56 0 3591.56 0 3591.56 0
C202 3 591.56 [40] 3608.60 25.82 3591.56 0 3615.97 ∗ 12.53 3591.56 0
C205 3 588.88 [40] 3588.88 0 3588.88 0 3588.88 0 3588.88 0
RC101 14 1696.94 [44] 17402.55 662.31 16650.43 6.07% 17221.51 ∗ 501.87 16671.46 6.20%
RC102 12 1554.75 [44] 15552.85 22.76 15524.71 14.53% 15562.96 425.14 14678.64 8.29%
RC105 13 1629.44 [45] 16933.63 473.08 16596.77 13.45% 16633.88 ∗ 28.28 16592.69 13.42%
RC201 4 1406.91 [46] 5561.91 38.81 5505.18 1.82% 5552.57 42.40 5478.44 1.3%
RC202 3 1367.09 [47] 5332.53 45.89 5243.20 20.06% 5323.74 44.29 5251.08 20.24%
RC205 4 1297.19 [46] 5441.44 41.46 5381.83 1.60% 5440.90 42.06 5386.30 1.68%

C. Generalization of the Learning Models

The training process of RL-GSF models is very time-
consuming. This section investigates the generality of the
policies trained by the proposed RL-GSF models, potentially
reducing the time and reusing policies learned on automated
algorithm design in solving new problem instances. Analysis
has been conducted from two aspects: generalization across
the same-type instances and generalization across different-
type instances.

1) Generalization across the Same-type Instances: The
policies trained on instance R101 by DQN-GSF and PPO-GSF
are used to validate their generality to other type-R instances.
Results in Table XVI of applying these policies to other five
instances demonstrate a good degree of generalization. NV
denotes the number of vehicles and TD denotes the total
distance. Policies trained by DQN-GSF lead to a GAP less
than 2% apart from instance R202. With PPO-GSF, the GAP
is less than 3% in all instances, obtaining comparable results
to the best-known results in the literature [39].

2) Generalization across Different-type Instances: General-
ity of the policies trained on instance R101 by DQN-GSF and
PPO-GSF are validated by directly applying them to type-C
and type-RC instances with different features. Results in Table
XVII to other twelve instances again demonstrate the gener-
alization of the trained policies. For type-C instances, all the
GAP values are equal to 0, which means the trained policies
of DQN-GSF and PPO-GSF can produce the current best-
known solutions. On the type-RC instance, in most instances,
the trained policies can obtain non-dominated solutions to

the best-known solution. For example, on RC101, the trained
policy of PPO-GSF can obtain a solution of 15 vehicles
travelling a total distance of 1671.46, while the best-known
solution is of a total travelled distance of 1696.94 by 14
vehicles.

In conclusion, the experimental results show that the algo-
rithms designed automatically by DQN-GSF/ PPO-GSF are
able to produce high quality solutions for different problem
instances, of the same and also different types. This indicates
that the proposed framework is reliable for different scenarios,
which is the aim of the automated algorithm design.

V. CONCLUSION

In this study, a general search framework (GSF) is firstly
established to formulate different metaheuristics, including
single-solution based algorithms and population-based algo-
rithms. Reinforcement learning methods, Deep Q-Network
(DQN) and Proximal Policy Optimisation (PPO), are de-
vised within the established unified GSF to automatically
design population-based algorithms by intelligently selecting
appropriate combinations of the algorithmic components (i.e.
evolution operators) during different stages of the optimisation
process. The proposed models showed to be able to effectively
design algorithms within GSF, by learning from interactions
with the environment (optimisation process).

The performance of the proposed two reinforcement learn-
ing models has been evaluated on different benchmark in-
stances of the capacitated vehicle routing problem with time
window to investigate their effectiveness and generality. Re-
garding the effectiveness of the learning models, investigations
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on the Q-value function approximator and policy update
mechanism show that the policy-based models with a neural
network function approximator (i.e. PPO) are more suitable to
automatically design search algorithms. Regarding the gener-
ality, the policies learned on one instance are applied across
the same-type and different-type instances. The results validate
the generality of the trained policies of DQN-GSF and PPO-
GSF models. This provides promising evidence in learning
reusable new knowledge in designing algorithms based on the
basic algorithmic components within the unified general search
framework.

For future work, the proposed general search framework
can be extended to formulate multi-objective evolutionary
algorithms to support the automated design of multi-objective
algorithms. Precise measure of population diversity in both
the solution space and the objective space, as well as fitness
landscape analysis on the search space of algorithm composi-
tions may further identify search-dependent features to better
represent the state, enhancing the reinforcement learning based
methods towards effective learning on algorithm design.

APPENDIX

The detail of the neural network used in the DQN-GSF and
the PPO-GSF are shown in Fig.6 and Fig.7, respectively.

Fig. 6. Details of the neural network of DQN-GSF method

In Fig.6, the state and action are taken as the input ( 1©, 3©)
for the Q networks, evaluation network and target network,
respectively. The parameters of the target network are replaced
(11©) by the evaluation network every n episodes. The output
of the Q networks is a set of Q values of all actions ( 2©,
4©). The action is decided by the maximal Q values ( 5©). The

selected action a is executed ( 6©) in the environment, called
one step. The (st, rt, at, st+1) generated at each step is stored
in the replay buffer ( 7©). The loss of the parameters of the
evaluation network is calculated( 8©). After the update of the
Q networks (10©, 11©), the data flows back to 1©.

In Fig.7, the state is taken as the input ( 1©) of the actor
neural network, the output of which is a probability distribu-

Fig. 7. Details of the neural network of PPO-GSF method

tion of all actions ( 2©). The action is decided by the obtained
probability distribution ( 5©). The selected action a is executed
( 6©) in the environment, called one step. The (st, rt, at, st+1)
generated at each step is stored in the replay buffer ( 7©). The
parameters of the critic neural network are updated ( 8©) by
minimizing the advantage function value. On the other hand,
the state and reward are taken as the input ( 3©) of the critic
neural network, and the output, advantage function value of
current state ( 4©), guides the update direction of the actor
neural network ( 9©). Then, the data flows back to 1©.

In RL, the learning rate, discount rate, and size of the
neural network are the key hyper parameters in the algorithms.
Specifically, the learning rate is adjusted adaptively, set as
0.002 at the beginning and halved when the output is stable.
The discount rate is set to 0.99 thus the learned policy focuses
more on sequential decisions. The topology of the network is
set based on the complexity of the problem, and the number
of layers and neurons has been shown in Fig.6 and Fig.7.
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