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Abstract

Side effects of prescription drugs present a serious is-
sue. Existing algorithms that detect side effects generally
require further analysis to confirm causality. In this paper
we investigate attributes based on the Bradford-Hill causal-
ity criteria that could be used by a classifying algorithm to
definitively identify side effects directly. We found that it
would be advantageous to use attributes based on the asso-
ciation strength, temporality and specificity criteria.

1. Introduction

The aim of medication is to improve patients’ standard of
living, but medication can lead to side effects, also known
as adverse drug reactions (ADRs). Existing ADR signalling
algorithms have a high false positive rate. This reduces their
efficiency as the signals they generate need to be confirmed
with more rigorous analysis.

A novel approach for signalling ADRs is to develop a
causality classifier with suitable input attributes. Such an
algorithm would be more efficient at signalling ADRs as it
would not require additional analysis. The Bradford Hill
causality criteria (BHCC) [1] is an excellent starting point
for developing suitable attributes as it is often considered
when determining causal relationships. In this paper we in-
vestigate attributes based on the BHCC to aid future ADR
classifying algorithms. In the continuation of this paper we
summarise the existing algorithms, the BHCC and the fea-
ture selection applied in the next section, followed by the
results and finish with the conclusion.

2 Background & Methodology

Spontaneous Reporting System (SRS) databases and
Electronic Healthcare Databases (EHDs) are the databases
generally used for post marketing drug surveillance. The

SRS databases rely of voluntary reports of suspected ADRs
whereas the EHD databases are often extracted directly
from medical practitioners records. Existing algorithms
measure association rather than determining causality di-
rectly. The BHCC were developed to distinguish between
association and causation. The nine factors of interest (in
the context as ADR signalling) are:

• Association Strength - how strong the association is.
• Temporality - the direction of the association.
• Specificity - how specific the relationship is.
• Experimentation - does the medical event stop and start

in sync with the drug?
• Dosage - correlation between dosage and medical

event occurrence?
• Analogy - do similar drugs have similar side effects?
• Coherence - does the association make sense?
• Plausibility - is the association possible?
• Consistency - association found in different databases?

The SRS and EHD algorithms calculate a measure of asso-
ciation strength and also cover temporality, as the EHDs ap-
ply filters to removed medical events that cause the drug and
people submitting reports to SRS algorithms will only re-
port medical events that occur after the drug. Furthermore,
people will only report a suspected ADR if it is plausible,
so the SRS algorithms indirectly cover plausibility.

The attributes detained in Table 1 were derived using
The Health Improvement Network database (www.thin-
uk.com). Feature selection was applied using a multivariate
filter, the Correlation-based Feature Selection (CFS) algo-
rithm [2], as this algorithm is not dependent on a specific
classifier.

3. Results & Discussion

The attributes chosen by the CFS algorithm were LEOP-
ARD, RD13BNF , ABratio Lv3, Gender Ratio and Read
Code Level. The reason that the majority of attributes were
not selected by the CFS algorithm is because they had a high
correlation with either LEOPARD or the RD13BNF . The



Table 1. Attribute Summary Table
Feature Criterion Description

RR, RD, OR Strength The Risk Ratio, Risk Difference and Odds Ratio [5] for all prescriptions.
RR13d,RD13d,OR13d Strength The Risk Ratio, Risk Difference and Odds Ratio for drugs prescribed for the first

time in 13 months.
RR13BNF ,RD13BNF

,OR13BNF

Strength The Risk Ratio, Risk Difference and Odds Ratio for drugs corresponding to a bnf
that has not been prescribed in the last 13 months.

IC∆ Strength The Information Component as calculated in [3]
lowerIC∆ Strength The lower 95% interval of the Information Component as calculated in [3]

Age STDEV Specificity Standard deviation of patient’s age who experience medical event after drug di-
vided by standard deviation of the ages for all the patients.

Gender Ratio Specificity Male proportion of patients experiencing the medical event within 30 days of the
drug divided by male proportion of patients prescribed the drug.

RR drug / RR bnf Specificity The RR of the drug divided by the RR for all the drugs in the same family.
Read Code Level Specificity The specificity level of the medical event: general (level 1)- specific (level 5).
ABratio Level 2 Temporality How often the level 2 version of the medical event is recorded after the prescription

compared to before.
ABratio Level 3 Temporality How often the level 3 version of the medical event is recorded after the prescription

compared to before.
LEOPARD [4] Temporality 1 if the drug is prescribed significantly more after the medical event than before, 0

otherwise.
OEfilt1 [3] Temporality 1 if the IC∆ is greater the month before the drug than the month after, 0 otherwise.
OEfilt2 [3] Temporality 1 if the IC∆ is greater on the day of prescription compared to the month after, 0

otherwise.
Dosage Ratio Dosage Average dosage of patients experiencing the medical event within 30 days of the

drug divided by average dosage of patients prescribed the drug.
High Low Ratio Dosage Proportion of patients given the highest dosage that experience the medical event

(within 30 days) divided by the proportion of patients given the lowest dosage that
experience the medical event (within 30 days).

Spearman’s rank Dosage The Spearman’s rank correlation coefficient between the patient dosage and {0, 1}
indicating if the patient experienced the medical event within 30 days.

Pearson product-
moment

Dosage The Pearson product-moment correlation coefficient between the patient dosage
and {0, 1} indicating if the patient experienced the medical event within 30 days.

Repeat1 Experiment Number of patients that have medical event in at least two distinct hazard periods
and not in their non-hazard periods divided by the number of patients that have at
least two distinct hazard periods and have medical event in one hazard period.

Repeat2 Experiment Number of patients that have medical event in two distinct hazard periods and not
in their non-hazard periods divided by the occurrence in the non-hazard periods.

results show that the specificity attributes Gender Ratio and
Read Code level can complement the temporal and strength
attributes for ADR signalling. The experiment and dosage
attributes investigated in this paper did not offer sufficient
additional information than what could be gained from the
RD13BNF or the LEOPARD attributes.

4. Conclusion

In this paper we investigated novel attributes based on
the Bradford Hill causality criteria. We found that the speci-
ficity attributes offer additional information for ADR sig-
nalling and it would be advantageous to include them in
future algorithms. Future work could involve investigating
other BHCC based attributes.
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