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Abstract. Prognostics and Health Management/Monitoring (PHM) are methods
to assess the health condition and reliability of systems for the purpose of
maximising operational reliability and safety. Recently, PHM systems are
emerging in the automotive industry. In the commercial vehicle sector, reducing
the maintenance cost and downtime while also improving the reliability of
vehicle components can have a major impact on fleet performance and hence
business competitiveness. Nowadays, telematics and GPS are used mainly for
fleet tracking and diagnostics purposes. Increased numbers of sensors installed
on commercial vehicles, advancement of data analytics and computational
intelligence methods, increased capabilities for on-board data processing as
well as in the cloud, are creating an opportunity for PHM systems to be
deployed on commercial vehicles and hence improve the overall operational
efficiency. This paper surveys and analyses the nature of PHM as well as
progress and challenges towards achieving integrated and intelligent PHM
systems for commercial vehicles.
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1 Introduction

Telematics have traditionally been used to track the position of vehicles using the
Global Positioning System (GPS), but with the power of cloud data storage and
computing, telecommunication and data analytics, various other services such as: fuel
saving, fleet performance management, driving behaviour monitoring, dynamic
routing, diagnostics and prognostics are being offered by telematics providers.
Therefore, the number of fleet operators and Original Equipment Manufacturers
(OEM’s) that have started to use telematics has increased considerably in recent
years. The main aim is to reduce costs and the impact on the environment as well as
improving resource productivity, efficiency and asset management.

Moreover, as a result of advances in the automotive industry, commercial vehicles
have become more advanced in technology and hence, reliability of individual critical
components is an important factor for improving the overall reliability and quality of
the vehicle. Commercial vehicle can be defined as “any motorized road vehicle which



by its type of construction and equipment is designed for, and capable of,
transporting, whether for payment or not: (a) more than nine persons, including the
driver; or (b) goods” [6]. Therefore, trucks, coaches, buses, vans and trailers are
categorised as commercial vehicles.

Telematics-based on-board tracking systems are comprised of three core parts: a
GPS location tracking system, a CAN-bus (controller area network) interface and a
supplement data collector. The GPS location tracking system transmits the location of
the vehicle at a regular timed interval, distance or after predefined event triggers. The
system interface to the CAN-bus is used to read, decode and pre-process the data from
the vehicle bus. The supplementary data includes the on-board unit state-of-health,
state-of-function data and external information such as ambient temperature.

The server-side of a tracking system is responsible for collecting, processing and
storing all data transmitted by the on-board tracking system and displaying the status
of the vehicle as well as statistical reports to the users (e.g. fleet managers, fleet
operators, and drivers) via a web portal, smart phone apps or in-cab screen. On-board
and server side systems can communicate via various networks such as cellular
wireless (e.g. 2G/3G/4G) and Wireless LANs.

Recently, Prognostics and Health Management/Monitoring (PHM) is becoming
more important to fleet managers because it plays an important role in improving
profit margins. PHM systems aim to predict the future behaviour, state-of-health and
remaining useful life (RUL) of individual vehicle components based on assessing the
current and past health (diagnosis) and future health (prognosis) [26]. The feasibility
of designing and implementing PHM systems has increased with the wider
availability of low cost and more accurate sensors in commercial vehicles, powerful
on-board telematics systems, fast mobile data communication and cloud computing.

PHM systems in commercial vehicles can help to meet several critical goals:
o Eliminate or at least minimise the risk of unexpected breakdowns and

unscheduled downtime
o Minimise unscheduled and/or unnecessary periodic maintenance
o Reduce maintenance costs (including spare parts and labour)
o Improve the reliability of the fleet
o Keep the fleet in top performance condition
o Reduce warranty costs
o Improve customer service

On-Board Diagnostics (OBD) systems can be used to evaluate the health of vehicle
components. Various legislations state that all manufactured HGV’s in Europe after
the 1st of October 2006 should be equipped with an OBD system [7]. Therefore, OBD
became a standard component of modern vehicles.

This paper conducts a brief literature review of PHM systems in commercial
vehicles in order to identify key development and challenges. Section 2 makes a
review of the main maintenance strategies and then Section 3 discusses the literature
on vehicle predictive maintenance. Section 4 discusses some of the key challenges for
the further application of PHM in the automotive industry. Finally, Section 5 looks
into the future of telematics-based PHM systems for commercial vehicles.



2 Repair and maintenance strategies

Several maintenance strategies can be identified in the literature and they can be
classified into two main types: corrective and preventive. In a corrective, run-to-
failure or reactive maintenance strategy, the equipment is repaired after a breakdown
or an obvious fault occurs without performing any scheduled maintenance. Within
preventive or proactive maintenance strategies, three categories can be identified:
scheduled, condition-based maintenance (CBM), and predictive maintenance (PdM).

In scheduled preventive maintenance (also known as time-based or periodic),
inspections and (possibly) repairs are performed at specific interval times given by a
pre-specified schedule. Time intervals are usually calculated based on age, usage or
failure distribution [3]. In CBM, the performance of the system is monitored in real
time and maintenance tasks are triggered when some reading measurement goes
beyond a predefined limit (threshold) or tolerance. The PdM strategy is based on
collecting measurements about the state of the systems in order to analyse and find
trends and patterns. This type of analysis is then used to predict the RUL, and hence
the degradation and the failure time of the system [4], [9], [13], [21]. The PdM
strategy aims to reduce the risk of unexpected failures, which may occur before the
next scheduled maintenance, as well as unnecessary scheduled maintenance activities
[17]. In fact, CBM and PdM can be considered maintenance strategies of the same
type because both are based on monitoring the system status [9]. However, CBM can
be considered mainly a reactive strategy while PdM can be considered as a more
proactive strategy.

Prognostics usually refers to a process carried out to prognosticate or predict a
failure in advance [11]. There are mainly four categories: experience-based, model-
based, data-driven based and hybrid [13], [25]. The experience-based or statistical
approach is mainly based on historical service failure data and expert judgment for
developing a rule-based model. The model-based or physical degradation approach is
based on the physical fundamentals of a system. Although, this approach is highly
accurate for a specific system, any minor changes in the component and operating
conditions require the model to be updated. The data-driven approach requires large
amount of historical failure data to capture the system behaviour using data analytics
and machine learning techniques. The main disadvantage of this approach is that it
highly depends on quality and quantity of historical data [20].

Fig 1 Hierarchy of prognostic approaches

Physical
models

Computational
Intelligence

methods

Statistical Models

Range of System Applicability

Experience-based
Prognostics

Data-driven
Prognostics

Model-based
Prognostics

In
cr

ea
si

ng
co

st
an

d
ac

cu
ra

cy



The hybrid approach is a combination of one or more of the other approaches and
seeks to benefit from their respective advantages. One of the main applications of the
hybrid approach is in multi-component systems. Figure 1 illustrates the hierarchy of
these main types of prognostic approaches [19]. The pyramid in Figure 1 indicates
that there is a trade-off between the applicability range of the approach and its
accuracy and that as expected, the more accurate the approach the more costly it is.

It is beneficial to note that the e-maintenance concept which has recently been
discussed several times in the literature refers to the integration of information and
communication technologies within the maintenance strategies [12, 24]. Integrated
Vehicle Health Management (IVHM) is another concept which is derived from the
Health and Usage Monitoring System (HUMS) developed for helicopters during the
1980s and 1900s. The IVHM system is originally designed to determine, verify and
solve the aircraft faults [8].

3 An overview of PHM system for vehicle

The amount of literature on prognostics systems for vehicles is much less than on
diagnostics systems as many research studies have focused on fault detection in
mechanical or electrical components of the vehicle which is mainly of interest to the
Original Equipment Manufacturers (OEM’s). However, some of the research studies
that we have identified in the area of vehicle prognostics systems are discussed in this
section.

Grantner et al. [10] introduced a fuzzy model to diagnose the axle fatigue of light
trucks with future applications to military ground vehicles. The load stress, the
number of cycles of the load stress and previous damage are input to the model. Then,
the system predicts the RUL of the axle based on the cumulative damage to the axle,
which is given by the fuzzy model. The expert knowledge and linear damage model
are used to generate the fuzzy rules and membership functions.

Ahmed et al. [2] designed a discrete hidden Markov model to detect manifold air
leakage in the air intake system of gasoline engine and approximate the health status
of inlet manifold. The manifold pressure, engine speed and throttle position are used
as inputs to the model. They identified four states for different health conditions: a
fault free stage, an intermediate fault stage 1, an intermediate fault stage 2 and a fault
stage, quantified based as 0%, 4.5%, 9% and 18% of wide open throttle, respectively.
Results of the experiment performed on a 1.3L production vehicle engine through On-
Board Diagnostic version II (OBD-II) showed that the proposed model can be helpful
for prognosis of air leaks.

Byttner et al. [5] presented the consensus self-organised method that aims to find
and select related sensor data on each vehicle to be used in detecting faults that are
not predefined. The model is generated and adopted on an on-board system while the
vehicle is being used. They used the linear principle encoding analysis to reduce the
volume of data transmitted from on-board systems to the server. Testing on real data
for a cooling system of a city bus showed that their method has the potential to be
used for self-discovery fault detection systems.



Zhang et al. [27] proposed the concept of connected vehicle diagnostics and
prognostics (CVDP), which has been partially deployed in production at General
Motors (GM). This approach aims to demonstrate that fleet-based cross-vehicle
analysis can reduce trouble-shooting time by improving root-cause analysis. CVDP
remotely and continuously collects vehicle engineering data and turns it into
knowledge for the diagnostics and prognostics system. Moreover, CVDP also gathers
data from vehicle assembly lines and repair workshops. Then, once the data is verified
and validated, system faults are detected and RUL of various components are
predicted. It has been reported that the battery monitoring system ECU has been
programmed and implemented in production through OnStar [22] system to evaluate
the benefits of the CDVP based on current-based and voltage-based algorithms.

Last [17] and Last et al. [18] presented data mining models to predict vehicle
failures. Vehicle sensor readings and warranty failure data are used as inputs to
single- and multi-target info-fuzzy network algorithms with minority oversampling
and majority under-sampling techniques to issue the probability and the timing of as a
case study. The data attribute in the model are: state-of-charge, battery age, off asleep
amp hours, temperature, amp-hours during ignition off and travelled distance.

Instead of using classical Monte Carlo simulation methods, Abbas et al. [1] used a
particle filtering-based approach to predict the failure mode in vehicle electrical
power generation and storage systems. The advantages of this approach are that it
needs less number of samples and is also capable of dealing with complex nonlinear
and/or non-Gaussian cases. Their particle filtering-based approach has been
implemented and tested using simulation data to determine the current level of lead-
acid battery grid corrosion and determine the probability of the time-to-failure. The
Arrhenius degradation model and estimation of internal resistance of battery based on
measured voltage and current during cranking are two items required by the suggested
method.

An engine oil quality estimation model based on component analysis and statistical
analysis methods was introduced by Jun et al. [14], [15]. The model estimates the
quality of the oil by analysing its degradation status. To design the model, various
relations between engine mission profile data such as mileage, number of engine start-
up, etc. and oil quality indicator were studied. As the model only requires the mission
profile data, no sampling engine oil is needed. The main drawbacks of the introduced
algorithm are that it only focuses on providing oil viscosity indicator and that there is
a lack of guidance regarding when oil should be changed.

It has to be noted that as the number of electric and hybrid vehicles increased,
PHM of lithium-ion batteries has attracted a lot of research interest in vehicle
prognostics systems [23].

4 Challenges

From this brief literature review, there is some evidence that PHM systems are being
deployed in vehicles, specifically in commercial vehicles, but very slowly despite the
fact that their use could bring considerable cost savings. Some of the main challenges
that we believe remain to be tackled are discussed in this section.



In recent years, the electronics control and software (ECS) systems in vehicles
have become more complicated and this can bring three main challenges for the
development and deployment of diagnostics and prognostics systems:

1. Unexpected new fault root in the interaction between the different
components and/or sub-systems

2. Infrequent and intermittent non-identified faults, which can be reported as
“No Fault Found”

3. High complexity of predicting the system RUL [27]

As many PHM systems have been developed relatively recently, it is difficult to
accurately perform a sound cost-benefit analysis and to identify tangible benefits of
implementing such PHM systems. Although increasing the sensitivity of a PHM
system can reduce the probability of predicting a potential future fault or failure (true
positive), it may also increase the possibility of trigging false alerts (false positive)
when the system is in a reasonable good level of state of health. In contrast, if the
sensitivity of the PHM system is not high, it is more likely that it will not be able to
predict potential failures or faults (false negative). The possibility of giving false
positive and/or false negative alerts seems to be one of the main criticisms of PHM
systems.

PHM concepts were pioneered in the aerospace industry and then they have been
applied in other sectors such as the automotive industry and particularly commercial
vehicles. Although deploying PHM on commercial vehicles is creating an opportunity
to get benefits with predictive maintenance systems, the accuracy of the system can
be affected by the number of sensors that can be located in vehicles, which is
significantly less than in aircraft.

PHM methods proposed in the literature often require more sensors with a high
level of accuracy and/or computing power than is available on-board today’s vehicles
[5]. In addition, although most of the published prognostics studies state the intention
to actually introduce a prognostic system into operation, the focus has been more on
the fault detection and the prognostic system has been left for future work with no
much evidence of this being realised yet. Moreover, a very limited number of research
studies address the application of prognostic systems in maintenance management [3].
These issues can be resolved by efficient communication among theory developers,
practitioners and manufacturers in the area of reliability and maintenance [13].

5 A look to the future

With PHM systems, maintenance work can be scheduled in advance of the failure.
The maintenance and downtime therefore become significantly shorter with
prognostics relative to diagnostics.

Currently, a large volume of data is being provided by the vehicle’s electronic
control unit (ECU’s) which can be extremely valuable to the process of vehicle health
monitoring, but this is not yet widely or proactively used. Typically, each ECU is
responsible for its own diagnostics and fault management, which is not beneficial for
distributed functions. Moreover, system parameters should be monitored relative to



each other. Therefore, an integrated and intelligent approach is appropriate to
diagnose and predict system-wide failure in vehicles.

There has been considerable investment in telematics-based business solutions in
the last few years. This has increased the pace of development and deployment of
telematics-based PHM systems for commercial vehicles as telematics plays a key role
in the PHM system. Moreover, in response to the demand for supplying more accurate
and extensive data by fleet operators, the OEM’s have started installing more
advanced sensors in vehicles which can improve the accuracy and precision of future
PHM systems.

Furthermore, predictive modelling has started to produce some benefits for fleet
operators in various areas such as traffic, available parking spaces and weather. In the
coming years, an even wider adoption of this approach could be used to build a better
and more efficient fleet in terms of maintenance, routing and scheduling.
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