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Abstract. In this paper we propose a class of so-called two-grid hp-version

discontinuous Galerkin finite element methods for the numerical solution of a

second-order quasilinear elliptic boundary value problem based on the appli-
cation of a single step of a nonlinear Newton solver. We present both the a

priori and a posteriori error analysis of this two-grid hp–version DGFEM as
well as performing numerical experiments to validate the bounds.

1. Introduction

In our recent articles [4, 5] we have considered a class of two-grid finite element
methods for strongly monotone partial differential equations. Here, the underlying
problem is first approximated on a coarse finite element space; the resulting coarse
solution is then used to linearise the underlying problem on a finer finite element
space, so that only a linear system of equations is solved on this richer space. In
this paper we consider an alternative two-grid interior penalty (IP) discontinuous
Galerkin finite element method (DGFEM), based on employing a single step of a
Newton solver on the finer space, cf. [1], [9, Section 5.2], for the numerical solution
of the following quasilinear elliptic boundary value problem:

−∇ · (µ(x, |∇u|)∇u) = f in Ω, u = 0 on Γ,(1.1)

where Ω is a bounded polygonal domain in R2, with boundary Γ and f ∈ L2(Ω).
We assume that µ ∈ C2(Ω̄× [0,∞)) satisfies the condition: there exists positive

constants mµ and Mµ such that the following monotonicity property is satisfied:

(1.2) mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω̄.

For ease of notation we write µ(t) instead of µ(x, t). The outline of this article is
as follows. In Section 2 we state the proposed two-grid IP DGFEM. In Sections 3
and 4 we consider the a priori and a posteriori error analysis, respectively, of the
two-grid IP DGFEM. Finally, in Section 5 we present some numerical results to
validate the theoretical error bounds.
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2. Two-Grid hp–Version IP DGFEM

We consider shape-regular meshes Th that partition Ω ⊂ R2 into open disjoint
elements κ such that Ω =

⋃
κ∈Th κ. By hκ we denote the element diameter of

κ ∈ Th, h = maxκ∈Th hκ, and nκ signifies the unit outward normal vector to κ. We
allow the meshes Th to be 1-irregular ; further, we suppose that Th is of bounded local
variation, i.e., there exists a constant ρ1 ≥ 1, independent of the element sizes, such
that ρ−1

1 ≤ hκ/hκ′ ≤ ρ1, for any pair of elements κ, κ′ ∈ Th which share a common
edge e = ∂κ∩∂κ′. To each κ ∈ Th we assign a polynomial degree pκ ≥ 1 and define
the degree vector p = {pκ : κ ∈ Th}. We suppose that p is also of bounded local
variation, i.e., there exists a constant ρ2 ≥ 1, independent of the element sizes and
p, such that, for any pair of neighbouring elements κ, κ′ ∈ Th, ρ−1

2 ≤ pκ/pκ′ ≤ ρ2.
With this notation, we introduce the finite element space

V (Th,p) = {v ∈ L2(Ω) : v|κ ∈ Spκ(κ) ∀κ ∈ Th},
where Spκ(κ) = Ppκ(κ) if κ is a triangle and Spκ(κ) = Qpκ(κ) if κ is a parallelogram.
Here, for p ≥ 0, Pp(κ) denotes the space of polynomials of degree at most p on κ,
while Qp(κ) is the space of polynomials of degree at most p in each variable on κ.

For the mesh Th, we write EIh to denote the set of all interior edges of the
partition Th of Ω, EBh the set of all boundary edges of Th, and set Eh = EBh ∪EIh . Let
v and q be scalar- and vector-valued functions, respectively, which are sufficiently
smooth inside each element κ ∈ Th. Given two adjacent elements, κ+, κ− ∈ Th
which share a common edge e ∈ EIh , i.e., e = ∂κ+ ∩ ∂κ−, we write v± and q±

to denote the traces of the functions v and q, respectively, on the edge e, taken
from the interior of κ±, respectively. With this notation, the averages of v and q
at x ∈ e are given by {{v}} = 1/2(v+ + v−) and {{q}} = 1/2(q+ + q−), respectively.
Similarly, the jumps of v and q at x ∈ e are given by [[v]] = v+nκ+ + v−κ−nκ− and
[[q]] = q+ ·nκ+ +q− ·nκ− , respectively, where nκ± denotes the unit outward normal
vector on ∂κ±, respectively. On a boundary edge e ∈ EBh , we set {{v}} = v, {{q}} = q,
[[v]] = vn and [[q]] = q · n, with n denoting the unit outward normal vector on the
boundary Γ. For e ∈ Eh, we define he to be the length of the edge; moreover, we
set pe = max(pκ, pκ′), if e = ∂κ ∩ ∂κ′ ∈ EIh , and pe = pκ, if e = ∂κ ∩ Γ ∈ EBh .

2.1. Standard IP DGFEM discretisation. Given a fine mesh partition Th
of Ω, with the corresponding polynomial degree vector p, the standard IP DGFEM
is defined as follows: find uh,p ∈ V (Th,p) such that

(2.1) Ah,p(uh,p, vh,p) = Fh,p(vh,p)

for all vh,p ∈ V (Th,p), where Fh,p(v) =
∫

Ω
fv dx and

Ah,p(u, v) =

∫
Ω

µ(|∇hu|)∇hu · ∇hv dx−
∑
e∈Eh

∫
e

{{µ(|∇hu|)∇hu}} · [[v]] ds

+ θ
∑
e∈Eh

∫
e

{{µ(h−1
e |[[u]]|)∇hv}} · [[u]] ds+

∑
e∈Eh

∫
e

σh,p[[u]] · [[v]] ds.

Here, θ ∈ [−1, 1], ∇h is the element-wise gradient operator and σh,p = γp2
e/he,

where γ > 0 is a sufficiently large constant. We define the energy norm on V (Th,p):

‖v‖2DG = ‖∇hv‖2L2(Ω) +
∑
e∈Eh

∫
e

σh,p|[[v]]|2 ds.
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Lemma 2.1 (See [6]). The semilinear form Ah,p(·, ·) is strongly monotone in
the sense that, there exists γmin > 0, such that for any γ ≥ γmin

(2.2)
Ah,p(w1, w1 − w2)−Ah,p(w2, w1 − w2) ≥ Cm‖w1 − w2‖2DG ∀w1, w2 ∈ V (Th,p),

where Cm is a positive constant, independent of the discretisation parameters.

2.2. Two-grid IP DGFEM discretisation. We now introduce a two-grid
IP DGFEM based on employing a single step of the Newton iteration on the fine
mesh. To this end, we consider two partitions Th and TH of Ω, with granularity h
and H, respectively. We assume that Th and TH are nested in that sense that for
any element κh ∈ Th there exists an element κH ∈ TH such that κh ⊆ κH . Moreover
for each mesh, Th and TH , we have a corresponding polynomial degree vector p =
{pκ : κ ∈ Th} and P = {pκ : κ ∈ TH}, respectively, where given an element κh ∈ Th
and an element κH ∈ TH , such that κh ⊆ κH , the polynomial degree vectors satisfy
the condition that pκh ≥ pκH . Thereby, the finite element spaces V (Th,p) and
V (TH ,P ) satisfy the following the condition: V (TH ,P ) ⊆ V (Th,p).

Using this notation we introduce the hp-version two-grid IP DGFEM discreti-
sation of (1.1) based on a single Newton iteration step, cf. [1], [9, Section 5.2]:

(1) Compute the coarse grid approximation uH,P ∈ V (TH ,P ) such that

(2.3) AH,P (uH,P , vH,P ) = FH,P (vH,P ) for all vH,P ∈ V (TH ,P ).

(2) Determine the fine grid solution u2G ∈ V (Th,p) such that

(2.4) A′h,p[uH,P ](u2G, vh,p) = A′h,p[uH,P ](uH,P , vh,p)−Ah,p(uH,P , vh,p)+Fh,p(vh,p)

for all vh,p ∈ V (Th,p).

Here, A′h,p[u](φ, v) denotes the Fréchet derivative of u→ Ah,p(u, v), for fixed v, eval-

uated at u; thereby, given φ we have A′h,p[u](φ, v) = limt→0
Ah,p(u+tφ,v)−Ah,p(u,v)

t .

Remark 2.2. For simplicity of presentation, throughout the rest of this article
we shall only consider the incomplete IP variation of the DGFEM, i.e., when θ = 0.

Lemma 2.3. Under the assumptions on µ, the following inequality holds:

A′h,p[u](v, v) ≥ Cm‖v‖2DG ∀u, v ∈ V (Th,p).

Proof. Setting w1 = u+ tv and w2 = u in Lemma 2.1, u, v ∈ V (Th,p), t > 0:

Ah,p(u+ tv, v)−Ah,p(u, v)

t
≥ Cm‖v‖2DG.

Taking the limit as t→ 0, we deduce the statement of the Lemma. �

3. A Priori Error Analysis

For simplicity of presentation, in this section we assume that the mesh is qua-
siuniform with mesh size h and that p is uniform over the mesh, i.e., p ≡ p.

Theorem 3.1. Assuming that u ∈ C1(Ω) and u ∈ Hk(Ω), k ≥ 2, the solution
of u2G ∈ V (Th,p) of the two-grid IP DGFEM satisfies

‖uh,p − u2G‖DG ≤ C
p7/2

h

H2S−2

P 2k−3
‖u‖2Hk(Ω),(3.1)

‖u− u2G‖DG ≤ C
hs−1

pk−3/2
‖u‖Hk(Ω) + C

p7/2

h

H2S−2

P 2k−3
‖u‖2Hk(Ω),(3.2)
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with 1 ≤ s ≤ min{p+ 1, k}, p ≥ 1 and 1 ≤ S ≤ min{P + 1, k}, P ≥ 1, where C > 0
is independent of the discretisation parameters.

3.1. Auxiliary Results. We first state the following auxiliary results.

Lemma 3.2. For a function v ∈ V (Th,p) we have the inverse inequality

‖v‖L4(Ω) ≤ Cph−1/2‖v‖L2(Ω),

where C is a positive constant, independent of the discretisation parameters.

Proof. Given κ ∈ Th, employing standard inverse inequalities, see [8], gives∫
κ

|v|4 dx ≤ ‖v‖2L∞(κ)‖v‖
2
L2(κ) ≤ Cp

4h−2‖v‖2L2(κ)‖v‖
2
L2(κ) = Cp4h−2‖v‖4L2(κ).

Summing over κ ∈ Th, employing the inequality
∑n
i=1 ai ≤

(∑n
i=1

√
ai
)2

, ai ≥ 0,
i = 1, . . . , n, and taking the fourth root of both sides, completes the proof. �

Lemma 3.3. For any v, w, φ ∈ V (Th,p),

(3.3) Ah,p(w, φ) = Ah,p(v, φ) +A′h,p[v](w − v, φ) +Q(v, w, φ),

where the remainder Q satisfies

|Q(v, w, φ)| ≤ Cp2h−1
(
1 + ‖∇w‖L∞(Ω) + ‖∇v‖L∞(Ω)

)
‖∇(w − v)‖2DG‖∇φ‖DG,

and C is a positive constant, independent of the discretisation parameters.

Proof. We follow the proof outlined by [9, Lemma 3.1]; to this end, setting
ξ(t) = v+ t(w− v) and η(t) = Ah,p(ξ(t), φ), we note that the first equation follows
from the identity

η(1) = η(0) + η′(0) +

∫ 1

0

η′′(t)(1− t) dt,

whereQ(v, w, φ) =
∫ 1

0
η′′(t)(1−t) dt and η′′(t) = A′′h,p[ξ(t)](w−v, w−v, φ). Thereby,

Q(v, w, φ) = 2

∫ 1

0

∫
Ω

µ′∇u(|∇ξ(t)|) · ∇(w − v)∇(w − v) · ∇φ dx(1− t) dt

+

∫ 1

0

∫
Ω

µ′′∇u(|∇ξ(t)|)|∇(w − v)|2∇ξ(t) · ∇φdx(1− t) dt

− 2

∫ 1

0

∑
e∈Eh

∫
e

{{µ′∇u(|∇ξ(t)|) · ∇(w − v)∇(w − v)}} · [[φ]] ds(1− t) dt

−
∫ 1

0

∑
e∈Eh

∫
e

{{µ′′∇u(|∇ξ(t)|)|∇(w − v)|2∇ξ(t)}} · [[φ]] ds(1− t) dt

≡T1 + T2 + T3 + T4.

Here, µ′∇u(|·|) and µ′′∇u(|·|) denote the first and second derivatives of µ(|·|), respec-
tively. First consider T1: given that µ ∈ C2(Ω̄× [0,∞)), Lemma 3.2 gives

T1 ≤ C‖∇(w − v)‖2L4(Ω)‖∇φ‖L2(Ω) ≤ Cp2h−1‖∇(w − v)‖2L2(Ω)‖∇φ‖L2(Ω).

Secondly, term T2 is bounded in an analogous fashion as follows:

T2 ≤ C
(
‖∇w‖L∞(Ω) + ‖∇v‖L∞(Ω)

)
‖∇(w − v)‖2L4(Ω)‖∇φ‖L2(Ω)

≤ C
(
‖∇w‖L∞(Ω) + ‖∇v‖L∞(Ω)

)
p2h−1‖∇(w − v)‖2L2(Ω)‖∇φ‖L2(Ω).
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Term T3 is bounded via the inverse trace inequality, see [8], and Lemma 3.2:

T3 ≤ C

∑
e∈Eh

hep
−2
e ‖{{|∇(w − v)|2}}‖2L2(e)


1
2
∑
e∈Eh

∫
F

p2
eh
−1
e |[[φ]]|2 ds


1
2

≤ C‖∇(w − v)‖2L4(Ω)‖φ‖DG ≤ Cp2h−1‖∇(w − v)‖2L2(Ω)‖φ‖DG.

We can bound T4 in an analogous manner as follows:

T4 ≤C

∑
e∈Eh

hep
−2
e ‖{{|∇(w − v)|2|∇w|}}‖2L2(F )


1
2
∑
e∈Eh

∫
F

p2h−1|[[φ]]|2 ds


1
2

+ C

∑
e∈Eh

hep
−2
e ‖{{|∇(w − v)|2|∇v|}}‖2L2(F )


1
2
∑
e∈Eh

∫
F

p2h−1|[[φ]]|2 ds


1
2

≤C
{
‖|∇(w − v)|2|∇w|‖L2(Ω) + ‖|∇(w − v)|2|∇v|‖L2(Ω)

}
‖φ‖DG

≤Cp2h−1
{
‖∇w‖L∞(Ω) + ‖∇v‖L∞(Ω)

}
‖∇(w − v)‖2L2(Ω)‖φ‖DG.

Combining these bounds for terms T1, T2, T3 and T4 completes the proof. �

Lemma 3.4. Let u ∈ H2(Ω) be the analytical solution of (1.1), such that ∇u ∈
[L∞(Ω)]

2
, and uh,p ∈ V (Th,p) be the IP DGFEM defined by (2.1), we have that

‖∇uh,p‖L∞(Ω) ≤ Cp3/2,

where C is a positive constant, independent of the discretisation parameters.

Proof. Writing Pu to denote the projection of u onto the finite element

space V (Th,p) defined in [2], we have that ‖u− Pu‖Hq(Ω) ≤ C h2−q

p2−q ‖u‖H2(Ω) and

‖∇(u− Pu)‖L∞(Ω) ≤ C‖u‖H2(Ω) for all q ≤ 2. Exploiting these bounds, standard
inverse inequalities, [8], and the a priori bound for the IP DGFEM, [6], gives

‖∇uh,p‖L∞(Ω) ≤ ‖∇(uh,p − Pu)‖L∞(Ω) + ‖∇Pu‖L∞(Ω)

≤ Cp2h−1‖∇(uh,p − Pu)‖L2(Ω) + ‖∇(u− Pu)‖L∞(Ω) + ‖∇u‖L∞(Ω)

≤ Cp3/2
{
‖u‖H2(Ω) + ‖∇u‖L∞(Ω)

}
.

Since u ∈ H2(Ω) and ∇u ∈ [L∞(Ω)]
2
, the quantities ‖u‖H2(Ω) and ‖∇u‖L∞(Ω) are

both bounded uniformly by a constant; this then completes the proof. �

3.2. Proof of Theorem 3.1. We now exploit the above results to prove
Theorem 3.1. For the first bound (3.1), we employ Lemma 2.3, (2.1), (2.4) and
(3.3); thereby, with φ = uh,p − u2G, we deduce that

Cm‖uh,p − u2G‖2DG ≤ A′h,p[uH,P ](uh,p − u2G, φ)

= A′h,p[uH,P ](uh,p − uH,P , φ) +A′h,p[uH,P ](uH,P − u2G, φ)

= A′h,p[uH,P ](uh,p − uH,P , φ) +Ah,p(uH,P , φ)− Fh,p(φ)

= A′h,p[uH,P ](uh,p − uH,P , φ) +Ah,p(uH,P , φ)−Ah,p(uh,p, φ)

= −Q(uH,P , uh,p, φ).
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Hence, from Lemma 3.3 we get that

‖uh,p − u2G‖DG ≤ Cp2h−1
(

1+‖∇uh,p‖L∞(Ω)+‖∇uH,P ‖L∞(Ω)

)
‖uh,p − uH,P ‖2DG.

Applying Lemma 3.4, noting that p3/2 ≥ P 3/2 ≥ 1, and the a priori bound for the
standard IP DGFEM, cf. [6, Theorem 3.3], gives

‖uh,p − u2G‖DG ≤ Cp2h−1
(

1 + p3/2 + P 3/2
){
‖u− uh,p‖2DG + ‖u− uH,P ‖2DG

}
≤ Cp7/2h−1

{
h2s−2

p2k−3
‖u‖2Hk(Ω) +

H2S−2

P 2k−3
‖u‖2Hk(Ω)

}
.

Noting that h ≤ H and p ≥ P completes the proof of the first bound (3.1). To
prove the second inequality (3.2), we first employ the triangle inequality

‖u− u2G‖DG ≤ ‖u− uh,p‖DG + ‖uh,p − u2G‖DG.

Thereby, applying the a priori error bound for the standard IP DGFEM, together
with the bound (3.1), completes the proof of Theorem 3.1.

4. A Posteriori Error Analysis

Here, we state an a posteriori error bound for the two-grid IP DGFEM.

Theorem 4.1. Let u ∈ H1
0(Ω) be the analytical solution of (1.1), uH,P ∈

V (TH ,P ) and u2G ∈ V (Th,p) the numerical approximations obtained from (2.3)
and (2.4), respectively; then the following hp–a posteriori error bound holds

(4.1) ‖u− u2G‖2DG ≤ C
∑
κ∈Th

(
η2
κ + ξ2

κ

)
,

with a constant C > 0, which is independent of h, H, p and P . Here, for κ ∈ Th,

η2
κ = h2

κp
−2
κ ‖Πκ,pκf +∇ · {µ(|∇uH,P |)∇u2G}‖2L2(κ)

+ hep
−1
e ‖[[µ(|∇uH,P |)∇u2G]]‖2L2(∂κ\Γ) + γ2h−1

e p3
e‖[[u2G]]‖2L2(∂κ),

ξ2
κ = ‖(µ(|∇uH,P |)− µ(|∇u2G|))∇u2G‖2L2(κ)

+ ‖(µ′∇u(|∇uH,P |) · (∇u2G −∇uH,P ))∇uH,P ‖2L2(κ)

+ hep
−1
e ‖(µ′∇u(|∇uH,P |) · (∇u2G −∇uH,P ))∇uH,P ‖2L2(∂κ),

and Πκ,pκ denotes the (elementwise) L2-projection onto V (Th,p).

Proof. The proof of this error bound follows in an analogous manner to the
a posteriori proof presented in [5], cf. also [7]. For details, we refer to [3]. �

5. Numerical Experiments

In this section we perform numerical experiments to validate the a priori error
bound, Theorem 3.1 and demonstrate the performance of the a posteriori error
bound, Theorem 4.1; here, we set γ = 10 and θ = 0. Throughout this section,
we let Ω be the unit square (0, 1)2 ⊂ R2 and define the nonlinear coefficient as
µ(x, |∇u|) = 2+(1+|∇u|)−1. We select the right-hand forcing function f so that the

analytical solution to (1.1) is given by u(x, y) = x(1−x)y(1−y)(1−2y)e−20(2x−1)2 .
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Figure 1. Convergence of error between u2G and uh,p.
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Figure 2. (a) Comparison of the error in the DGFEM norm, us-
ing both the IP DGFEM (u∗ = uh,p) and the two-grid IP DGFEM
(u∗ = u2G); (b) Effectivity indices of the two-grid IP DGFEM.

5.1. Validation of Theorem 3.1. We first validate the bound given in The-
orem 3.1; to this end we first solve the standard IP DGFEM on a 256 × 256 uni-
form mesh of quadrilaterals to compute uh,p for a fixed constant polynomial degree
p = 1, 2, 3. We then compute the solution u2G to (2.3)–(2.4), for p = 1, 2, 3, on
a fixed fine 256 × 256 mesh, while performing uniform h-refinement of the coarse
mesh, starting from a 4 × 4 mesh with polynomial degree P = p. Figure 1 shows
the convergence rate of the error between uh,p and u2G, measured in the DG norm,
compared to the size of the coarse mesh. Here, we observe that ‖uh,p − u2G‖DG

tends to zero at the optimal rate O(H2P ), for each fixed P , cf. Theorem 3.1.

5.2. Adaptive Refinement using Theorem 4.1. For this experiment we
use the two-grid mesh adaptation algorithm from [5], with the local error indicators
ηκ and local two-grid error indicators ξκ from Theorem 4.1, to automatically refine
the coarse and fine meshes employing both h– and hp–adaptive mesh refinement.
Figure 2 shows ‖u− u2G‖DG compared to the third root of the degrees of freedom,
as well as the effectivity indices of the error estimator. As can be seen for both h–
and hp–adaptive refinement, the effectivity indices are roughly constant, indicating
that the error bound overestimates the error by a roughly constant factor. For
reference purposes, we also calculate the standard IP DGFEM solution uh,p, using
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Figure 3. CPU timing of the IP DGFEM (u∗ = uh,p) and the
two-grid IP DGFEM (u∗ = u2G) employing h– and hp–refinement.

both h– and hp–adaptive refinement; cf. Figure 2(a). Finally, in Figure 3 we
compare the error in the standard and two-grid IP DGFEMs against the cumulative
CPU time when both h– and hp–adaptive refinement are employed; here, we observe
that the two-grid IP DGFEM is more efficient than the standard IP DGFEM.
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