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1. Introduction

We give a sketch of mirror symmetry for Fano manifolds and we outline a program
to classify Fano 4-folds using mirror symmetry. As motivation, we describe how
one can recover the classification of Fano 3-folds from the study of their mirrors.
A glance at the table of contents will give a good idea of the topics covered. We
take a stripped-down view of mirror symmetry that originated in the work of
Golyshev [Gol07] and that can also be found in [Prz07].

2. Local systems

A local system of rank r on a (topological) manifold B is a locally constant sheaf
V of r-dimensional Q-vector spaces. To give a local system is equivalent to give
its monodromy representation ρ : π1(B, x) → AutVx ∼= GLr(Q) where x ∈ B. We

http://arxiv.org/abs/1212.1722v1
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write r = rkV. The central theme of this note is the detailed comparison of two
different ways that local systems arise in mathematics.

All local systems in this note: (a) support—at least conjecturally—an addi-
tional structure such as a (polarised) variation of (pure) Hodge structure, or a
structure of an l-adic sheaf over a base B defined over a number field. 1; and (b)
have an integral structure, for instance they are local systems of free Z-modules.
In particular we assume throughout that V is polarised, i.e. that it carries a non-
degenerate symmetric or antisymmetric bilinear form ψ : V⊗ V → Q.

Let C be a compact topological surface, S ⊂ C a finite set, and V a local
system on U = C \ S. We denote by x ∈ U a point and by j : U = C \ S →֒ C the
natural (open) inclusion. If s ∈ S and γs ∈ π1(U, x) is a loop around s, then we
write Ts = ρ(γs) ∈ AutVx for the monodromy transformation; Ts is defined only
up to conjugation, but this will be unimportant in what follows.

Definition 2.1. The ramification of V is:

rf V =
∑

s∈S

dim(Vx/V
Ts

x ) .

If V as above is a local system on U = C \ S, and the genus of C is g, then, by
Euler–Poincaré, rf V + (2g − 2) rkV = −χ(C, j⋆V). If V is nontrivial irreducible,

then H0(C, j⋆V) = V
π1(U,x)
x = (0) and, dually, also H2(C, j⋆V) = (0). Thus, if

C = P1 and V is nontrivial irreducible, then:

rf V− 2 rkV = −χ(P1; j⋆V) = h1(P1; j⋆V) ≥ 0 .

We call the quantity rf V− 2 rkV the ramification index of V. Even from a purely
topological perspective, local systems with ramification index zero seem special.
As far as we know, to date there has been no systematic study of l-adic sheaves
on P1 of ramification zero.

3. Local systems from Laurent polynomials

Local systems arise classically in algebraic geometry as the cohomology groups of
the fibers of a morphism f : X → B.

The classical period of a Laurent polynomial. We discuss the special case
where f : (C×)n → C is a Laurent polynomial in n variables, that is, an element
of the polynomial ring C[x1, x

−1
1 , . . . , xn, x

−1
n ] where x1, . . . , xn are the standard

co-ordinates on (C×)n.

1It is natural to imagine that local systems with additional structures (realisations) subject
to natural comparisons would be the object of a category of “quantum” motivic sheaves with a
construction akin to [Del89, Jan90], see [KKP08]. It is interesting to wonder what a Grothendieck-
style definition of such a category might look like, and what it might mean.
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Definition 3.1. Let f : (C×)n → C be a Laurent polynomial. The classical period
of f is:

πf (t) =
( 1

2πi

)n ∫

|x1|=···=|xn|=1

1

1− tf(x1, . . . , xn)

dx1
x1

· · ·
dxn
xn

Theorem 3.2. The classical period satisfies an ordinary differential equation L ·
πf (t) ≡ 0, where L ∈ C〈t,D〉 is a polynomial differential operator and D = t d

dt
.

Proof. In short: our period πf (t) is a specialisation of integrals which are solutions
of the differential systems introduced in [GZK89], for which we recommend the
survey [Sti07]. We next explain this in greater detail. Let P ⊂ Zn be the Newton
polytope of f and denote by m0, . . . ,mN ∈ P ∩ Zn the lattice points in P . If
P does not contain the origin then the classical period is constant and there is
nothing to prove, so we assume that m0 = 0. Write:

f =
N∑

i=0

aix
mi

Reparametrizing t if necessary, we reduce to the case where a0 = 0. Denote
by ι : Zn →֒ Zn+1 the affine embedding “at height 1”: ι(m) = (1,m). Write
mi = ι(mi), 0 ≤ i ≤ N , and let A : ZN+1 → Zn+1 be the homomorphism that
maps the standard basis vector ei to mi, 0 ≤ i ≤ N . If:

g =

N∑

i=0

uix
mi

is the generic Laurent polynomial with Newton polytope P , then it is well-known
[Bat94, Sti07] that the period:

Φg(u0, . . . , uN) =
( 1

2πi

)n ∫ 1

g

dx1
x1

· · ·
dxn
xn

satisfies the holonomic differential system2 gkz(A, c) where c = (−1, 0, . . . , 0)
[Sti07, §2.5]. To get the operator L, restrict the coefficients to ui = ai for i > 0,
change the variable u0 to t = −1/u0, and note that πf (t) = u0Φg(u0, a1, . . . , an).

2That is, the system of differential equations:







0 =
∏

li<0

(

∂

∂ui

)

−li
−

∏

li>0

(

∂

∂ui

)li
for l = (l1, . . . , lN+1) ∈ KerA

0 = −c+m0 u0
∂

∂u0

+ · · ·+mN uN
∂

∂uN

More precisely the period satisfies the extended GKZ system of [HKTY95, §3.3] or, equivalently,
the better behaved GKZ system of [BH]. In the important case when P is a reflexive polytope, the
standard GKZ is the same as the better behaved GKZ. The rank of the local system of solutions
of the better behaved system is always the normalised volume VolP .
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Definition 3.3. The Picard–Fuchs operator Lf ∈ C〈t,D〉 is the operator:

Lf =
k∑

j=0

pj(t)D
j pj ∈ C[t]

such that Lf · πf ≡ 0, where k is taken to be as small as possible and, once k is
fixed, we choose Lf so that deg pk is as small as possible. This defines Lf uniquely
up to multiplication by a constant. We say that the order ordLf of Lf is k, and
the degree degLf is the maximum of deg p0, deg p1, . . . , deg pk.

It is clear from what we said above that ordLf ≤ VolP .

Remark 3.4. The local system SolLf is an irreducible summand of the polarised
variation of Hodge structure grWn−1R

n−1f! Z(C×)n . By [Del71, Thm 4.5], Lf has
regular singularities.

How to compute the Picard–Fuchs operator and the ramification. Con-
sider the period sequence (cm)m≥0, where cm = coeff1(f

m). Expanding πf (t) as a
power series in t and applying the residue theorem n times yields:

πf (t) =

∞∑

m=0

cmt
m

Consider a polynomial differential operator L =
∑
tkPk(D) where Pk(D) ∈ C[D]

is a polynomial in D; then L · πf ≡ 0 is equivalent to the linear recursion relation∑
Pk(m− k)cm−k = 0. In practice, to compute Lf one uses knowledge of the first

few terms of the period sequence and linear algebra to guess the recursion relation;
note that the computation of cm, say for 1 ≤ m ≤ 600, is very expensive. Given
Lf , one can compute rf(SolLf) algorithmically using elementary Fuchsian theory.

Example 3.5. If f(x, y) = x+ y + x−1y−1, then:

πf (t) =
∑

m≥0

(3m)!

(m!)3
t3m

The coefficients satisfy the recursion relation:

m2c3m − 3(3m− 1)(3m− 2)c3m−3 = 0

and, by what we said, this is equivalent to:
[
D2 − 27t3(D + 1)(D + 2)

]
πf = 0

Studying this ODE, one finds that the ramification defect rf(SolLf )− 2 rk(SolLf )
is zero.

Example 3.6. Consider f(x, y) = x+ xy + y + x−1y−1. In this case:

Lf = 8D2 − tD − t2(5D + 8)(11D+ 8)− 12t3(30D2 + 78D + 47)

− 4t4(D + 1)(103D+ 147)− 99t5(D + 1)(D + 2)

and the ramification defect rf(SolLf)− 2 rk(SolLf ) = 1.
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4. Local systems from quantum cohomology

Local systems also arise in the study of quantum cohomology, as solutions of the
regularised quantum differential equation. When X is a Fano manifold, the space
of solutions of the regularised quantum differential equation for X defines a local
system on P1 \ S.

Fano manifolds. Recall that a complex projective manifold X of complex di-
mension n is called Fano if the anticanonical line bundle −KX = ∧nTX is ample.
If n = 2, X is called a del Pezzo surface. It is well-known that a del Pezzo surface
is isomorphic to P1 × P1 or the blow up of P2 in ≤ 8 general points: thus, there
are 10 deformation families of Fano manifolds in two dimensions. There are 105
deformation families of 3-dimensional Fano manifolds: 17 families with b2 = 1 and
88 families with b2 ≥ 2 [Isk77, Isk78, Tak89, MM04]. We state a theorem of Mori
that plays a crucial role in what follows:

Theorem 4.1. Let X be a Fano manifold. Denote by NEX ⊂ H2(X ;R) the
Mori cone of X: that is, the convex cone generated by (classes of) algebraic curves
C ⊂ X. Then NEX is a rational polyhedral cone.

The quantum period of a Fano manifold. When X is Fano, denote by X0,k,m

the moduli space of stable morphisms f : (C, x1, . . . , xk) → X where C is a curve
of genus 0 with k marked points x1, . . . , xk ∈ C, and deg f⋆(−KX) = m. This
moduli space has virtual dimension m− 3 + n+ k. Here we are mainly interested
in X0,1,m and the evaluation morphism at the marked point:

ev : X0,1,m → X

Denote by ψ the first Chern class of the universal cotangent line bundle on X0,1,m,
that is, the relative dualising sheaf ωπ of the forgetful morphism π : X0,1,m →
X0,0,m.

Definition 4.2. The quantum period ofX is the power seriesGX(t) =
∑

m≥0 pmt
m

where p0 = 1, p1 = 0, and pm =
∫
X0,1,m

ψm−2 ev⋆(pt) for m ≥ 2. The sequence

(pm)m≥0 is the quantum period sequence.

Theorem 4.3. The quantum period of a Fano manifold X satisfies a ordinary
differential equation Q ·GX(t) ≡ 0, where Q ∈ Z〈t,D〉 is a polynomial differential
operator and D = t d

dt
.

Proof. In short: our quantum period GX(t) is a specialisation of one component of
the small J-function. The result then follows from general properties of quantum
cohomology going back to Dijkgraaf. We next recall the relevant facts from the
theory of quantum cohomology3 and explain this in greater detail.

In what follows we denote by X0,k,β the moduli space of stable morphisms of
class β ∈ NEX ∩H2(X,Z). Recall that the small quantum product a ∗ b of even

3See [Gue08, Man99] for more comprehensive treatments.
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degree cohomology classes a, b ∈ H•(X ;C) is defined by the following formula,
which is to hold for all c ∈ H•(X ;C):

(a ∗ b, c) =
∑

β∈NEX∩H2(X;Z)

qβ〈a, b, c〉0,3,β

where (a, b) =
∫
X
a∪b is the Poincaré pairing, qβ lies in the group ring C[H2(X ;Z)]4,

and:

〈a, b, c〉0,3,β =

∫

X0,3,β

ev⋆1(a) ∪ ev⋆2(b) ∪ ev⋆3(c)

is the 3-point correlator. The structure of the small quantum product is equivalent
to an integrable algebraic connection ∇ on:

• the trivial bundle with fiber the even part Hev(X ;C) of H•(X ;C), over

• the torus T = SpecC[H2(X,Z)].

In other words T is the torus with character group Homgroups(T,C
×) = H2(X ;Z),

co-character group Homgroups(C
×,T) = H2(X ;Z), and group of C-valued points

T(C) = C×⊗H2(X ;Z). Note that LieT = H2(X ;C). The connection ∇ is defined
by:

∇Xs = X · s−X ∗ s where s : T → Hev(X ;C) and X ∈ LieT = H2(X ;C).

The fact that this connection is algebraic globally on T (in fact, the coefficients
of the connection are polynomials) follows from the fact that quantum coho-
mology is graded and that −KX > 0 on NEX . The fact that the connection
is integrable (flat) is a fundamental property of quantum cohomology: it fol-
lows from the WDVV equations. Integrability means that the action of LieT
on M = {s : T → Hev(X ;C)} extends to an action of the ring D of differential
operators on T: in other words M is a D-module, called the quantum D-module.
M therefore defines a D-module M, that is, a sheaf of modules M over the sheaf
of differential operators D on T. In general, given a D-module M, one can form
the local system HomD(M,O) of solutions5 of M. Sections of this local system
tautologically satisfy algebraic PDEs.

Recall that the small J-function of X is:

JX(q) = 1 +
∑

β∈NEX∩H2(X;Z)
β 6=0

qβJβ ∈ Hev(X ;C)

where Jβ = ev⋆
(

1
1−ψ

)
, ev : X0,1,β → X is the evaluation map at the marked

point, and we expand 1
1−ψ as a power series in ψ. It is well-known that JX(q)

is a solution of the quantum D-module and therefore it tautologically satisfies an

4In general we should work with the subgroup H2(X)alg ⊂ H2(X); here and in the rest of the

paragraph we use the fact that if X is Fano manifold then H2(X) = H
alg
2 (X).

5Here O and M are sheaves of D-modules in the analytic topology on T, and Hom is the sheaf
of homomorphisms.



Mirror Symmetry and Fano Manifolds 7

algebraic PDE. Note that JX(q) is cohomology-valued but it makes sense to take
its degree-zero component J0

X(q) ∈ H0(X ;C); we can regard J0
X(q) as a C-valued

function, because H0(X ;C) is canonically generated by the identity class 1.

Finally, the anticanonical class −KX ∈ H2(X ;Z) is a co-character of T, that is,
−KX gives a group homomorphism which we denote κ : C× → T. Since GX(t) =
J0
X ◦ κ(t), where t is the co-ordinate function on C×, the discussion above makes

it clear that GX(t) satisfies an algebraic ODE.

Definition 4.4. The quantum differential operator of X is the operator QX ∈
Z〈t,D〉 of lowest order, as in Definition 3.3, such that QX ·GX(t) ≡ 0.

How to compute QX . In practice one starts by fixing a basis {T a} ofHev(X ;Z)
with T 0 = 1 the identity class. Let M = M(t) be the matrix of quantum multi-
plication by −KX in this basis, written as a function on C× by composing with
κ : C× → T. Next consider the differential equation on C×:

{
DΨ(t) = Ψ(t)M(t)

Ψ(0) = I

for Ψ: C× → End
(
Hev(X ;C)

)
a matrix. (Note: tautologically, the differential

κ⋆ : LieC× → LieT sends D = t d
dt

to −KX ∈ H2(X ;C) = LieT.) Then the first
column of Ψ is JX ◦ κ(t); the first entry of the first column is our quantum period
GX(t).

Example 4.5. Consider X = P2 with cohomology ring C[P ]/P 3, where P is the
first Chern class of O(1). Choose the basis 1,−KX = 3P,K2

X = 9pt for the
cohomology. The matrix of quantum multiplication by −KX , in this basis, is:

M =



0 0 27t3

1 0 0
0 1 0




where the coefficient of t3 in the upper right corner of the matrix is calculated as
a nontrivial Gromov–Witten number:

〈−KX ∗ (K2
X), pt〉0,3,[line] = 3〈K2

X , pt〉0,2,[line] = 27〈pt, pt〉0,2,[line] = 27

Next we consider the system:

D(s0, s1, s2) = (s0, s1, s2)M

The column s0 is annihilated by the differential operator QX = D3 − 27t3, and so

GX(t) =
∑∞
m=0

t3m

(m!)3 .
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Computing GX using the quantum Lefschetz theorem. We explain how to
calculate the quantum period of a Fano complete intersection in a toric manifold
using the quantum Lefschetz theorem of Kim, Lee, and Coates–Givental. For
us, a toric variety is a GIT quotient X = Cr//χ(C

×)b where (C×)b acts via the
composition of a group homomorphism ρ : (C×)b → (C×)r with the canonical
action of (C×)r on Cr. The group homomorphism ρ is given dually by a b × r
integral matrix:

D = (D1, . . .Dr) : Z
r → Zb

that we call the weight data of the toric variety X . The weight data alone do not
determine X : it is necessary to choose a stability condition, i.e. a (C×)b-linearized
line bundle L on Cr. This choice is equivalent to the choice of a character χ ∈ Zb

of (C×)b; denoting by Lχ the corresponding line bundle, we have:

H0(Cr;Lχ)
(C×)b =

{
f ∈ C[x1, . . . , xr] : f(λx) = χ(λ) f(x) for all λ ∈ (C×)b

}

Having made this choice, the set of stable points is:

Us(χ) =
{
a ∈ Cr : ∃N ≫ 0 and ∃f ∈ H0(Cr;L⊗N

χ )(C
×)b such that f(a) 6= 0

}

The set of χ ∈ Zb for which Us(χ) is non-empty generates a rational polyhedral
cone in Rb equipped with a partition into locally closed rational polyhedral cham-
bers defined by requiring that Us(χ) depends only on the chamber containing χ.
We always choose χ in the interior of a chamber of maximal dimension, and then
define X = Us(χ)/(C×)b. Under the identification Zb = H2(X ;Z) = Pic(X)
the chamber containing χ is identified with the ample cone AmpX ; in this way
too we regard the columns Di of the weight data D as elements of H2(X). The
appropriate Euler sequence shows that −KX =

∑r
i=1Di.

Theorem 4.6. [Giv98] Let X be a toric Fano manifold. Then

GX(t) =
∑

k∈Zb∩NEX

t−KX ·k 1

(D1 · k)! · · · (Dr · k)!
.

Theorem 4.7. Let F be a Fano toric manifold and let L1, . . . , Lc be nef line bundles
on F such that A = −(KF +

∑c
i=1 Li) ∈ AmpF. Let X be a smooth complete

intersection of codimension c in X, defined by the equation f1 = · · · = fc = 0
where fi ∈ H0(F;Li). Let:

FX(t) =
∑

k∈Zb∩NEF

tA·k (L1 · k)! · · · (Lc · k)!

(D1 · k)! · · · (Dr · k)!

and let a1 be such that FX = 1 + a1t+O(t2). Then GX(t) = exp(−a1t)FX(t).

Proof. Combine Theorem 4.6 with [CG07].
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The regularised quantum period and mirror symmetry. The operator QX
has a pole of order 2 (an irregular singularity) at ∞, thus it cannot directly be
compared with Lf . This suggests the following definitions:

Definition 4.8. The regularised quantum period is the Fourier–Laplace transform
ĜX(t) =

∑
(m!)pmt

m of the quantum period GX(t). The regularised quantum

differential operator of X is the operator Q̂X ∈ Z〈t,D〉 of lowest order, as in

Definition 3.3, such that Q̂X · ĜX(t) ≡ 0.

Definition 4.9. The Laurent polynomial f is mirror-dual to the Fano manifold
X if πf (t) = ĜX(t) or, equivalently, if Lf = Q̂X .

With this definition a Fano manifold has infinitely many mirrors if it has any at
all. The relationship between different mirrors of del Pezzo surfaces is investigated
in [GU10, CG12], where it is shown that the different mirror Laurent polynomials
f are related by cluster transformations, and together define a global function on
a cluster variety.

5. Extremal local systems and extremal Laurent polynomials

Which local systems arise from the quantum cohomology of Fano manifolds? Goly-
shev first made the observation that there are effective bounds on the ramification
of the regularised quantum local system V = Sol Q̂X of a Fano manifold X .

Definition 5.1. [Gol] A local system V on C = P1\S is extremal if it is irreducible,
nontrivial, and rf V = 2 rkV. A Laurent polynomial f is extremal if the local
system SolLf of solutions of the ODE Lf · () ≡ 0 is extremal. We write ELP for
“extremal Laurent polynomial”.

The regularised quantum local system of any 3-dimensional Fano manifold is
extremal. We believe that extremal motivic sheaves and Laurent polynomials
are interesting in their own right. It would be nice to work out a topological
classification of integral polarised extremal local systems.

Example 5.2. Consider a semistable rational elliptic surface f : X → C. In
general f has 12 singular fibers. Beauville [Bea82] classified surfaces with the
smallest possible number, 4, of singular fibers. On each of these X , it is easy to
find an open set (C×)2 ∼= U ⊂ X such that f |U is an extremal Laurent polynomial.

6. Examples in low dimensions

We describe two classes of Laurent polynomials: Minkowski polynomials (MPs)
and Hodge–Tate polynomials. (For simplicity we describe these only when the
number of variables involved is 2 or 3.) MPs are especially nice because: (a)
they are, experimentally and conjecturally, of low ramification; and (b) any 3-
dimensional Fano manifold with very ample tangent bundle is mirror-dual to a
MP.
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The Minkowski ansatz. Let P be a lattice polytope. Then P ∩ Zn generates
an affine lattice whose underlying lattice we denote by Lattice(P ).

Definition 6.1. A lattice polytope P is admissible if the relative interior of P
contains no lattice points. A lattice polytope P ⊂ Rn is reflexive if the following
two conditions hold:

(a) IntP ∩ Zn = {0};

(b) the polar polytope:

P ∗ = {f ∈ (Rn)∗ : 〈f, v〉 ≥ −1 for all v ∈ P}

is a lattice polytope.

Definition 6.2. Let Q ⊂ Rn be a lattice polytope. A lattice Minkowski decom-
position of Q is a decomposition of Q as a Minkowski sum Q = R + S of lattice
polytopes R, S such that Lattice(Q) = Lattice(R) + Lattice(S).

Fix a reflexive polytope P ⊂ Rn of dimension ≤ 3. We describe a recipe, the
Minkowski ansatz, to write down Laurent polynomials:

f =
∑

m∈P∩Zn

am xm

with Newt(f) = P . We need to explain how to choose the coefficients am. In all
cases we take a0 = 0; this is a normalisation choice that corresponds to the fact
that p1 = 0. If F ⊂ P is a face of P , the face term corresponding to F is the
Laurent polynomial:

fF =
∑

m∈F∩Zn

am xm

If P is a reflexive polygon then we just need to specify the edge terms. If E =
[µ, µ + eν] is an edge of P , where ν is primitive, we take the corresponding term
to be fE = xµ(1 + xν)e. If P is a reflexive 3-tope, then we treat the edges as just
said. It remains to specify the face terms fF . First, lattice Minkowski decompose
each face into irreducibles:

F = F1 + · · ·+ Fr

We say that such a decomposition is admissible if all Fi are admissible. Assuming
that each face of P has an admissible decomposition, fix such a decomposition:
then we take the face term to be: fF =

∏
fFi

where fFi
is given by putting

coefficients on the edges of Fi exactly as above. Note that the Minkowksi ansatz
can associate to a reflexive 3-tope P more than one Laurent polynomial (if one or
more faces of P admit more than one admissible decomposition), or exactly one
Laurent polynomial (if every face of P admits a unique admissible decomposition),
or no Laurent polynomial (if some face of P admits no admissible decomposition).
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MP in 2 variables. There are 16 reflexive polygons and each supports exactly
one MP. This gives 16 MPs but only 8 distinct (classical) period sequences. These
are the quantum period sequences of the del Pezzo surfaces of degree ≥ 3, that is,
of the del Pezzo surfaces with very ample anti-canonical bundle. The 8 period se-
quences are extremal with two exceptions: the first we already met in Example 3.6
(the mirror of F1), and the other is:

Example 6.3 (the mirror of dP7). f(x, y) = x+ y + x−1 + y−1 + x−1y−1. Here:

Lf = 7D2 + tD(31D− 3)− t2(85D2 + 238D+ 112)− 2t3(358D2 + 785D+ 425)

− 2t4(D + 1)(669D+ 970)− 731t5(D + 1)(D + 2)

and the ramification defect rf(SolLf )− 2 rk(SolLf ) is equal to 1.

MP in 3 variables. In 3 variables, we have (http://www.fanosearch.net):

• there are 4,319 reflexive 3-topes [KS98];

• they have 344 distinct facets, and these have 79 lattice Minkowski irreducible
pieces;

• of these, the admissible ones are An-triangles for 1 ≤ n ≤ 8;

• MPs supported on reflexive 3-topes give rise to only 165 (classical) period
sequences. They are all extremal.

Example 6.4. Consider the reflexive polytope in R3 with vertices given by the
columns of: 


1 0 0 −2 −3 −1
0 1 0 0 −1 −1
0 0 1 −1 −1 1




(This is the polytope with id 519664 in the GRDB database of toric canonical
Fano 3-folds [BK].) The pentagonal facet has two Minkowski decompositions, and
hence the polytope supports two Minkowski polynomials:

f1 = x+ y + z + 3x−1 + x−1y−1z + x−2z−1 + 2x−2y−1 + x−3y−1z−1

f2 = x+ y + z + 2x−1 + x−1y−1z + x−2z−1 + 2x−2y−1 + x−3y−1z−1

The classical periods associated to f1 and f2 begin as:

π1(t) = 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + 1172556t10 + · · ·

π2(t) = 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + 567504t10 + · · ·

and the corresponding Picard–Fuchs operators are:

L1 = 144t4D3 + 864t4D2 + 1584t4D − 40t2D3 + 864t4

− 120t2D2 − 128t2D +D3 − 48t2

L2 = 128t4D3 + 768t4D2 + 1408t4D + 28t2D3 + 768t4 + 84t2D2

+ 88t2D −D3 + 32t2

http://www.fanosearch.net
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Hodge–Tate polynomials. Let f be a Laurent polynomial in 3 variables with
Newton polytope P , let F be a facet of P , and let fF be the corresponding face
term. Let XF be the toric variety corresponding to the polygon F . The equation
fF = 0 defines a curve in XF . If f is a MP then each such curve is of genus zero,
thus MPs are Hodge–Tate in the following sense.

Definition 6.5. A 3-variable Laurent polynomial f with Newton polytope P is
Hodge–Tate if for all facets F ⊂ P , the curve fF = 0 has geometric genus zero.

One might hope that Hodge–Tate polynomials are of low ramification.

Example 6.6. Consider the pictured polygon. This is one of the smallest faces for

· · ·

· · ·

· · ·

•

•

• • •

✁
✁
✁
✁
✁
✁

❆
❆
❆

❆
❆

❆

(1,0)

(0,1)

which the Minkowski ansatz has nothing to say. Consider the Laurent polynomial
with this Newton polygon given by f = y(x−1 + 2 + x) + y−1 + a. For generic
a (the completion of) f = 0 is a curve of geometric genus 1; it becomes of genus
0 exactly when a ∈ {−4, 0, 4}. Let us take a = 4 and use this as a new “puzzle
piece” for assembling a Laurent polynomial.

Consider the 3-dimensional reflexive polytope with id 547363 in the GRDB
database of toric canonical Fano 3-folds [BK]. This polytope has four faces: two
smooth triangles, one A2-triangle, and one face isomorphic to the polygon shown
above. The corresponding Laurent polynomial is:

F = x+ y + z + x−4y−2z−1 + 2x−2y−1 + 4x−1

It has period sequence:

1, 0, 8, 0, 120, 0, 2240, 0, 47320, 0, . . .

and Picard–Fuchs operator:

512t4D3+3072t4D2+5632t4D− 48t2D3+3072t4− 144t2D2− 160t2D+D3− 64t2

The Laurent polynomial F is Hodge–Tate but is not a MP. It is extremal, and is
of manifold type in the sense of §7, but is not mirror-dual to any 3-dimensional
Fano manifold.

7. Minkowski polynomials and Fano 3-folds

Recall that in 3 variables there are 165 Minkowski (classical) period sequences and,
correspondingly, 165 Picard–Fuchs operators. We write Lf =

∑
tkPk(D) where
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Pk(D) ∈ C[D] is a polynomial in D, and denote by Lf(0) = P0(D) the operator at
t = 0. It turns out that, if Lf is one of the 165 Minkowski Picard–Fuchs operators,
then Lf(0) splits as a product of linear factors over the rationals. We say that Lf is
of manifold type if all the roots are integers; otherwise we say that Lf is of orbifold
type. Exactly 98 of the Minkowski Picard–Fuchs operators are of manifold type
and we have verified, by direct computation of invariants on both sides, that they
mirror the 98 deformation families of 3-dimensional Fano manifolds X such that
−KX is very ample. It will be interesting to see if the Minkowski Picard–Fuchs
operators of orbifold type mirror Fano orbifolds.

It is natural to ask what invariants of a Fano manifold X can be computed
from the knowledge of the differential operator Q̂X alone. This is a subtle question
[EHX97, ES06], but in the case of 3-folds we have good numerical evidence for the
following:

Hope 7.1 (Galkin, Golyshev, Iritani, van Straten). Let X be a 3-dimensional Fano
manifold and let JX(t) and J0

X(t) be as defined above (in the proof of Theorem 4.3).
Then:

lim
t→+∞

JX(t)

J0
X(t)

= Γ̂(TX)

where the limit is taken as t tends to +∞ along the real axis. The characteristic
class Γ̂(TX) is defined in [KKP08, Iri09].

We briefly mention a promising line of thought. Consider a 3-fold toric Goren-
stein canonical singularity Xσ, so that σ = R+(ι F ) where F ⊂ Z2 is a a lattice
polygon and ι : Z2 → Z3 is an affine embedding at height one as above. According
to [Alt97], deformation components of the singularity correspond to Minkowski de-
compositions of F . This suggests that Minkowski polynomials f with Newt f = P
may correspond to smoothing components of the singular toric Fano 3-fold X
with fan polytope P . It would be nice to make this precise, and to interpret
the Minkowski polynomials in terms of holomorphic disk counts in the framework
of Hori, Gross–Siebert, or Kontsevich–Soibelman.

8. Fano 4-folds?

In 4 dimensions, there are over 473 million reflexive polytopes. Building on
the Kreuzer–Skarke classification [KS00], we are now in the process of making
a database of facets and of computing their lattice Minkowski decompositions. We
plan to classify: Minkowski polynomials (and more general low ramification Lau-
rent polynomials) in 4 variables; their period sequences; and their Picard–Fuchs
operators. This will give a list of candidate families of Fano 4-folds, and we aim
to: compute the (conjectural) invariants of these Fano 4-folds assuming that they
exist; and construct the Fano explicitly in many cases. Eventually, we hope turn
this story into a classification theory.
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functions and toric varieties. Funktsional. Anal. i Prilozhen., 23(2):12–26,
1989.

[HKTY95] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau. Mirror symmetry, mirror
map and applications to Calabi-Yau hypersurfaces. Comm. Math. Phys.,
167(2):301–350, 1995.

[Iri09] Hiroshi Iritani. An integral structure in quantum cohomology and mirror
symmetry for toric orbifolds. Adv. Math., 222(3):1016–1079, 2009.

[Isk77] V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat.,
41(3):516–562, 717, 1977.

[Isk78] V. A. Iskovskih. Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat.,
42(3):506–549, 1978.

[Jan90] Uwe Jannsen. Mixed motives and algebraic K-theory, volume 1400 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1990. With appendices by S.
Bloch and C. Schoen.

[KKP08] L. Katzarkov, M. Kontsevich, and T. Pantev. Hodge theoretic aspects of mir-
ror symmetry. In From Hodge theory to integrability and TQFT tt*-geometry,
volume 78 of Proc. Sympos. Pure Math., pages 87–174. Amer. Math. Soc.,
Providence, RI, 2008.

[KS98] Maximilian Kreuzer and Harald Skarke. Classification of reflexive polyhedra
in three dimensions. Adv. Theor. Math. Phys., 2(4):853–871, 1998.

[KS00] Maximilian Kreuzer and Harald Skarke. Complete classification of reflexive
polyhedra in four dimensions. Adv. Theor. Math. Phys., 4(6):1209–1230, 2000.

[Man99] Yuri I. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces,
volume 47 of American Mathematical Society Colloquium Publications. Amer-
ican Mathematical Society, Providence, RI, 1999.

[MM04] Shigefumi Mori and Shigeru Mukai. Extremal rays and Fano 3-folds. In The
Fano Conference, pages 37–50. Univ. Torino, Turin, 2004.

[Prz07] Victor Przyjalkowski. On Landau-Ginzburg models for Fano varieties. Com-
mun. Number Theory Phys., 1(4):713–728, 2007.

15



[Sti07] Jan Stienstra. GKZ hypergeometric structures. In Arithmetic and geometry
around hypergeometric functions, volume 260 of Progr. Math., pages 313–371.
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