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Abstract—Performance measurement of robotic controllers
based on fuzzy logic, operating under uncertainty, is a sub-
ject area which has been somewhat ignored in the current
literature. In this paper standard measures such as RMSE
are shown to be inappropriate for use under conditions where
the environmental uncertainty changes significantly between
experiments. An overview of current methods which have been
applied by other authors is presented, followed by a design
of a more sophisticated method of comparison. This method
is then applied to a robotic control problem to observe its
outcome compared with a single measure. Results show that
the technique described provides a more robust method of
performance comparison than less complex methods allowing
better comparisons to be drawn.

Keywords: Interval Type-2 Fuzzy, Robot Boat control, Fuzzy
Control, Performance measures, Uncertainty

I. INTRODUCTION

Fuzzy logic, was initially described by Zadeh in [1] as
a generalisation of crisp set theory in which membership to
a set is defined as a continuous variable between 0 and 1.
Fuzzy logic has been applied to a great number of different
applications including: classification, industrial applications
[2], and many mobile robotics application, such as those
by Astudillo et al [3]. One of the main stated advantages of
fuzzy logic as an approach over less sophisticated techniques
such as PID (Proportional, Integral, Derivative) is that it is
able to maintain higher performance in uncertain situations.

The initial early work on fuzzy logic in the field of
robotics focused on the simplest variety of fuzzy logic,
termed type-1. This is often for reason of the low hardware
requirements, which can be a considerable benefit when
operating in highly resource constrained environments such
as embedded systems. In type-1 fuzzy logic the membership
functions, are simple 2-dimensional shapes, shown in Figure
1(a), such as triangles which are fixed during run time.
This can cause problems when operating in highly dynamic
environments where optimal placement of these functions
change over time.

Type-2 fuzzy logic is considered the next step in the
development of fuzzy logic systems, described by Zadeh
in 1975 [4], in which the membership functions allow
greater flexibility. This is achieved by using either: upper
and lower bounds (termed Interval Type-2 shown in 1(b)),

or an additional dimension to create a fully 3-dimensional
surface (termed general type-2). Both of these are considered
improvements over type-1 fuzzy systems. In this paper
only interval type-2 is considered in which the upper and
lower bounds together form an area termed the Footprint
of Uncertainty (FOU). Whether the advantage of increased
flexibility of type-2 fuzzy logic offsets its additional cost in
the terms of processing requirements is still very much an
open question.

As the resources available to embedded systems such as
robots has increased, the viability of type-2 based systems
has similarly increased and has led to it becoming a more
frequent subject of study in the field. Often, the reasoning
given for the selection of type-2 over type-1 fuzzy logic is
the ability of type-2 fuzzy logic to better handle uncertainties
present in the environment in which it operates [5]. However
without in-depth study of the effect of uncertainty upon the
different controller types, it is argued that this statement is
unjustified. Additionally in many cases the metric used for
comparison of different controller types and experiments is
insufficient to make a strong case.

Several studies of the effect of uncertainty upon fuzzy
systems have been performed such as Sepulveda et al [6]
who performs a comparative work of type-1 and type-2
fuzzy systems both with and without uncertainty. The main
shortcoming with this work is that there are only two levels
of uncertainty considered “With Uncertainty” and “Without
Uncertainty” which we believe is insufficient to obtain a
thorough understanding of its effect. A gradual increase of
the amount of uncertainty present would be allow a much
stronger case to be made and further, will allow identification
of the specific point at which the uncertainty present is
sufficient for type-2 control to out-perform type-1. Mendel
in [7] and Mendel et al. [8] perform similar preliminary
comparisons between type-1 and type-2 fuzzy systems under
differing levels of uncertainty, however they are restricted in
scope.

This paper is organised as follows: Section II provides
background and an introduction into the subject of perfor-
mance measurement under uncertainty. Section III describes
the process of the design of the comparative method which is



the focus of this paper. Section IV discusses the experimental
methodology that will be used in order to evaluate the design
and utility of the final method. Section V is where our
numerical results are stated and is followed by Section VI
in which these results are discussed in detail with reference
potential shortcomings, we also draw some conclusions
along with directions for future work.
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(b) Interval Type-2 Membership Function

Fig. 1. Example membership functions for type-1 and interval type-2 fuzzy
logic systems

II. BACKGROUND

In order to show that type-2 based controllers perform
better than type-1 under increased levels of uncertainty,
performance measures must be carefully considered. One
of the most common metrics used for the performance mea-
surement of robotic systems is RMSE (Root Mean Squared
Error), which is the total cumulative square of the difference
between the measured and desired values. With experiments
under differing levels of environmental uncertainty however,
RMSE alone becomes a less meaningful measure. This is
because two separate experiments may have considerably
different levels of uncertainty present but achieve the same

RMSE value, this may occur for example, when conditions
such as weather change between different experiments. Us-
ing the RMSE alone as a performance measure would lead to
performance being judged equal, even though one controller
was operating in a more difficult, which would imply it is
a better controller configuration, we feel that this should be
reflected in the performance measure selected.

Uncertainty is a very general term and has a large
number of different usages with subtly different meanings
in each. In this paper, environmental uncertainty is the main
subject of consideration. It is defined as any physical process
which alters the environment during an experiment, with a
prominent example being physical processes such as weather
conditions. Environmental uncertainty can cause the same
set of actions to have considerably different results during
an experiment and so should be taken into account when
trying to compare experiments where the uncertainty levels
are different.

In order to take the uncertainty present into account when
trying to measure performance it must be first quantified.
Because of the wide application and usages of the term
uncertainty, Uncertainty Quantification (UQ) has matured
into its own field. Several different approaches have been
described such as by Lee and Chen [9] who focus on
the how uncertainty propagates through a system. This is
in contrast to the work by Booker and Mayer [10] who
present guidelines to approach the problem of uncertainty
quantification with mixed results.

Fuzzy logic based controllers tend to be more commonly
applied to uncertain environments than other controller types
such as PID. Specifically, a significant number of authors
look to uncertainty to help design type-2 fuzzy logic sys-
tems, including Wu and Mendel in [11] who present a
technique in which forms of uncertainty are defined and it is
investigated how these can be used to generate parameters
for interval type-2 systems. Greenfield et al [12] uses what
is termed meta statements and meta-meta statements to
quantify and describe the different types of uncertainty that
can be modeled by type-1, interval type-2 and general type-
2 fuzzy logic systems. These types of approaches are high
level and relatively generic, allowing them to be applied to
the many different applications, which can be both a benefit
and a shortcoming as in order to implement such a system
it must be fitted into the specific application area. [?]

In contrast to these more generic works above there
are several approaches that are more focused on robotics
applications. Saffiotti [13] presents one such approach for
handling uncertainty with the intention of developing robots
of increasing levels of autonomy. Lynch et al [14] use the
concept of uncertainty bounds to define parameters of an
interval type-2 fuzzy logic system for the use in diesel
engines — a very specific concept which is difficult to apply
to different problem spaces.

The problem of performance evaluation under uncertain
situations has been addressed by a variety of authors, how-
ever not many publications exist in which uncertainty is con-
sidered as part of the performance measure. As previously



noted Sepulveda et al [6] discusses a study in which perfor-
mance of type-1 and type-2 fuzzy logic under uncertainty
is considered, however uncertainty is only considered as a
binary yes or no, rather than at different levels such as ‘low’
‘medium’ and ‘high’, as done by Das et al [15]. However the
task under consideration by Das is very specific, involving
coverage of a given area under differing levels of sensor
uncertainty which is not strictly environmental in nature
making it less applicable to our problem.

From the discussion of the existing literature we have
identified a gap in the field of performance measurement
under increasing levels of environmental uncertainty. This
has led to the decision to develop a method for the perform-
ing comparisons of experiments run under differing levels of
environmental uncertainty. The eventual aim is to be able to
answer questions such as “At what level of uncertainty does
a type-2 fuzzy controller out perform a type-1 controller?”
with an answer such as “At a Environmental uncertainty
level of 0.75 a type-2 controller will outperform a type-1
controller with a confidence of 0.9”.¡¿

III. METRIC DESIGN

In order to develop a performance measure that incor-
porates uncertainty we must first analyse the uncertainty
present in the application under consideration. Based on
previous work [16] it has been shown that the FLOATS
(Fuzzy Logic Operated AuTonomous Sailing Boat) platform
provides a good base for which such development can
be built on. The application is, as the name suggests, a
simulated autonomous boat that is designed to move between
defined way points using the wind in the same way a human
sailor would — by controlling the rudder and sail positions.

The simulator used as part of the FLOATs platform
provides one main source of uncertainty — a wind source
which is defined by four parameters, the maximum and
minimum wind speed (specified in m/s) and the maximum
and minimum wind directions (specified in degrees with 0
indicating due north). The wind speed and direction will
be considered separate sources in this context as in this
simulation they are controlled independently. They will be
the basis of the Uncertainty measure that will be used
to weight the overall performance of a given experiment.
While real world situations will involve considerably more
sources with potentially greater magnitude and complexity,
for development purposes the simulated process is consid-
ered sufficient, especially as it gives fine grain control over
each uncertainty source, which is a very desirable property in
this developmental phase. From a contextual point of view,
a value of 0 will indicate that there is no uncertainty i.e.
the environment is deterministic and increasing value will
indicate a larger amount of uncertainty, a maximum value
has been defined as 1, forced by normalisation.

The environmental sources of uncertainty present dur-
ing the experiments will be quantified into two variables
termed “Uncertainty Measure” and “Base Difficulty”. The
total uncertainty when the two sources described above are
considered, can be obtained by calculation of the product of

if ( Wind Speed == 0 )
Wind Speed Value = 0
else

if ( Wind Speed > 14 )
Wind Speed Value = 1

else
Wind Speed Value = 0.5

endif

Fig. 2. Method for selecting Wind Speed Value

their standard deviations. The “Base Difficulty” is intended
to quantify how difficult a given environment is if no
uncertainty was present. This can be derived in this situation
by looking at the mean wind direction and speeds, and is
best illustrated using the wind direction: If the wind did
not change and was blowing directly into the boat, it would
not be possible to move towards the target causing the
“Base Difficulty” to be high. Conversely, if the wind was
blowing from directly behind the boat it would be easy to
move towards the goal, meaning “Base Difficulty” would be
correspondingly low. We have observed during preliminary
tests the mean wind speed within limits does not make a
significant effect on the boat performance which has led to
use applying the filtering method shown in Figure 2.

One of the most commonly used performance measures
for this variety of application as previously stated is RMSE
(Root Mean Square Error), which measures how far from
an ’optimal course’ a particular experiment lies. As this
is the goal of the experiment being conducted here, the
RMSE will serve as a basis for what is termed “Absolute
Performance”, which aims to provide a raw, unweighted
measure of performance. The standard way of looking at
RMSE is that a lower value (closer to 0) indicates better
performance and this ordering will be maintained for the
Absolute Performance value with a value of 0 indicating
best possible performance.

Figure 3 shows the flow of information used in the
development of the performance metric from the source
through to final Relative Performance value. This leads us to
being able to define Equations 3, 2, 4 and 5 which illustrates
each input into the system and how they are fed into the final
measure, Relative Performance. The method for combining
each input into of the formulae must also be defined before
this technique can be applied to data.

In order to keep the formulae as simple as possible all
functions within each of the shown equations will be defined
as the product its inputs. The only exception to this rule will
be the relative performance equation, in which the absolute
performance will be divided by the product of the uncer-
tainty measure and base difficulty meaning the final relative
performance will be the absolute performance weighted by
the uncertainty present as intended and which gives the
final relative performance formulae shown in Equation 6.
It should be noted that we maintain the ordering of RMSE
i.e. a lower value indicates better overall performance.



Fig. 3. Data Flow for Metric Design Process. The left-most values in green indicate values that can be calculated from basic data collected by the boat.
Purple and orange objects indicate values which combine aspects (either mean or standard deviations) of the basic values. This, then flows into the final
measure, ‘Relative Performance’ which will be used for comparisons between numerous different experimental set-ups.

Figure 4 shows the standard deviations of the Wind Speed
(Figure 4(a)) and Wind Direction (Figure 4(b)) in order
to ensure that the inputs used in the calculation of the
uncertainty measure are correct. It can be observed that in
both figures three different levels of uncertainty are obvious,
indicated by overdrawn red (low), green (medium), and blue
(high) lines. In the case of the wind direction, the saw-tooth
pattern can be explained by looking at Table II and reading
it row by row, giving configurations ‘A’, ‘D’ and ‘G’ one
value indicating no uncertainty, configurations ‘B’, ‘E’, ‘F’
the next value and finally configurations ‘C’, ‘F’ and ‘I’
the highest level of uncertainty. In a similar manner, the
pattern present in the wind speed graph can be explained by
reading the table in a column by column manner, meaning
configurations ‘A’, ‘B’ and ‘C’ would have the similar values
as would configurations ‘D’, ‘E’ and ‘F’ and so forth.

RMSEBoat =

√
(BearingDesired −BearingActual)2

n
(1)

PerfAbsolute = f(RMSEBoat) (2)

UncertaintyMeasure = h(σ(WindDirection), σ(WindSpeed))
(3)

BaseDifficulty = g(µ(WindDirection), µ(WindSpeed))
(4)

PerfRelative = i(UncertaintyMeasure, PerfAbsolute)
(5)

PerfRelative =
PerformanceAbsolute

UncertaintyMeasure ∗BaseDifficulty
(6)

It is anticipated that the newly deigned metric will, as
wind configuration increases from ‘A’ to ‘I’, and therefore
uncertainty is increased, exhibit a downwards curve as the
denominator shown in Equation 6 will increase. Previous
studies have shown that RMSE does not follow a fixed
pattern as the uncertainty is varied and it is hoped the relative
performance will show a more regular output.

IV. EXPERIMENTAL METHODOLOGY

As previously discussed, the FLOATS platform will be
used as a test bed for generating data that can be used in
order to evaluate the use of this technique. Previous work
[17] has shown that FLOATs is viable for this sort of data,
but that using RMSE as a performance metric does not give
a strong correlation or any obvious patterns over all the
different combinations that have been tested. It is anticipated
that the results found using the Relative Performance will
enable better comparisons and stronger conviction as to the
conclusions made than when RMSE alone is used.

A. Experimental Design

In this paper the type-2 footprints of uncertainty used in
the interval type-2 controllers will be derived from the type-
1 by introducing a horizontal movement with the degree of
movement altered to give six different widths and therefore
FOU sizes: 0, 5, 10, 15, 20 and 25. This is done in order
ensure that the relative performance metric is robust and
operates with different FOU values, FOU sizes 0 and 10 are
show in Figures 1(a) and 1(b) respectively.



(a) Change of standard deviation of wind speed

(b) Change of standard deviation of wind direc-
tion

Fig. 4. Standard deviations of wind speed and directions as wind
configurations are changed

The controller set-up is the same that has been used
in previous work by the authors ([17]and [16]. Two input
variables are used (error and delta error) each with five
associated fuzzy sets, which leads to 25 rules being used.
The output fuzzy sets are five singletons with the exact
values shown in the previous work.

Uncertainty in these experiments is introduced using a
simulated wind process which is controlled from within the
simulator and which can be assigned limits in the form of a
parameter file. Table I outlines the different values of wind
speed and direction that will be used in this experiment
while Table II enumerates how these are combined to give
environmental uncertainty configurations ‘A’ through ‘I’.
This gradual change should cause the uncertainty measure to
start at a value of 0 for configuration ‘A’ to the highest value
on configuration ‘I’ and this fine grained control should
allow and observation as to what the effect of uncertainty is
upon each experiment. In this case the uncertainty score is
only used to allow ordering of the different configurations.

Figure 5 shows the three different course layouts that
will be used in these experiments which vary by the angle
required to complete the course defined as either 25, 50
or 100 metres. This equates to turns of 5.71◦, 11.42◦

and 21.84◦ for 25, 50 and 100 meters vertical movements

TABLE I
WIND SPEED AND DIRECTION UPPER AND LOWER VALUES AND

UNCERTAINTY SCORE. SPEED MEASURED IN M/S AND DIRECTION IN
DEGREES

Direction Uncertainty Score Lower Limit Upper Limit
None 0 180 180
Low 1 160 200
High 2 140 220

Speed Uncertainty Score Lower Limit Upper Limit
None 0 7 7
Low 1 4 10
High 2 1 13

TABLE II
WIND CONFIGURATION DEFINITIONS

Wind Speed → None Low High
Direction ↓ None A D G

Low B E H
High C F I

respectively. It is anticipated that a larger turn angle would
be more difficult to perform meaning that we would expect
to see performance get worse as it is increased.

Fig. 5. Each coloured line represents a course layout under test. The white
circles represent end points and the black circle the start point. The angles
required for the first turn are 5.71◦, 11.42◦ and 21.84◦ for 25, 50 and 100
meters vertical movements respectively. Not to scale.

Every combination of course and wind configurations will
be tested with each different FOU size with the mean of
30 repeats being used for each calculation. We will start
with no noise (configuration ‘A’) and move towards the
most uncertain environment (Configuration ‘I’). Every four
seconds a wind change will be triggered by the simulator
using a Gaussian random number generator to change the
values of the wind speed and direction.



V. RESULTS

Table IV shows raw data from an experiment in which
a controller with an FOU size of 10 controls the boat
on a course in which the vertical movement is 50m and
which each wind configuration is used. We can see that the
uncertainty measure matches our hypothesis and increases
in a regular manner with Configuration ‘I’ showing the
largest, and configuration ‘A’ the smallest values. The ab-
solute performance is essentially just the raw RMSE value
and therefore follows the same lines in that over all the
different configurations combinations there are in general
few patterns which hold true at every point. In the final
column, the relative performance is shown and it can clearly
be seen that it decreases in a regular pattern as the wind
configuration transitions from ‘A’ to ‘I’, indicating that when
uncertainty is taken into account the relative performance
actually improves.

TABLE III
CALCULATED VARIABLE VALUES FOR ALL WIND CONFIGURATIONS FOR

EXPERIMENTS WITH A HORIZONTAL MOVEMENT OF 50M AND A FOU
SIZE OF 0

Wind Uncertainty PerfAbsolute Base PerfRelative

Config. Measure Difficulty ×102
A 14.05 6.54 33.38 139.54
B 23.98 7.67 30.48 104.81
C 32.37 6.83 28.41 74.22
D 42.36 6.59 34.40 45.22
E 61.14 6.14 30.34 33.09
F 88.40 5.79 28.08 23.31
G 81.60 7.14 35.42 24.69
H 120.76 7.32 32.70 18.53
I 152.34 6.20 28.89 14.09

TABLE IV
CALCULATED VARIABLE VALUES FOR ALL WIND CONFIGURATIONS FOR

EXPERIMENTS WITH A HORIZONTAL MOVEMENT OF 50M AND A FOU
SIZE OF 10

Wind Uncertainty PerfAbsolute Base PerfRelative

Config. Measure Difficulty ×102
A 14.21 6.76 33.68 141.23
B 24.29 7.53 30.60 101.33
C 33.85 7.26 29.07 73.76
D 43.19 6.70 34.44 45.03
E 67.21 6.69 31.17 31.93
F 94.31 6.11 28.61 22.65
G 85.08 7.46 35.90 24.42
H 125.42 7.39 33.00 17.85
I 161.64 6.36 29.31 13.43

Figures in 6 shows, row by row: Absolute Performance
(RMSE), followed by Uncertainty Measure and finally Rela-
tive Performance which is composed of the top two (as well
as the Base difficulty which is not shown here) inputs. Each
graph shows the specified output as the wind configuration
changes from ‘A’ to ‘I’ with each line representing a different
footprint of uncertainty configuration in the fuzzy controller
under consideration. Several things can be observed: Firstly
in each set of figures, the vertical positioning of each
graph increases. This indicates that overall performance, as
measured by both Relative Performance and RMSE gets
worse as the vertical movement is increased. We believe this

TABLE V
CALCULATED VARIABLE VALUES FOR ALL WIND CONFIGURATIONS FOR

EXPERIMENTS WITH A HORIZONTAL MOVEMENT OF 50M AND A FOU
SIZE OF 20

Wind Uncertainty PerfAbsolute Base PerfRelative

Config. Measure Difficulty ×102
A 13.51 6.48 33.73 142.08
B 24.61 7.40 30.71 97.97
C 34.39 7.06 29.39 69.87
D 41.03 6.33 34.27 45.03
E 70.75 6.88 31.80 30.58
F 96.74 6.04 28.95 21.55
G 83.85 7.28 36.02 24.09
H 123.39 6.77 32.97 16.65
I 165.83 6.25 29.63 12.71

is a logical conclusion that can be made as a greater vertical
movement is more difficult to complete. Secondly we can
observe that in the case of Relative Performance every line
is very close together indicating that in fact the FOU does
not seem to affect the relative performance as much as the
Uncertainty present in the environment in these experiments.

Tables III IV V show the three input variables and
resulting Relative Performance values for a single course
in which 50m of vertical movement is required to complete.
Each Table enumerates the values for different FOU sizes, 0,
10 and 20 respectively and it can be observed that the uncer-
tainty values remain relatively constant, an expected result
as in each experiment the wind conditions are repeated. The
fact that the values do not change in the different tables
give further evidence that FOU does not in fact affect the
performance of type-2 controllers in these experiments.

VI. DISCUSSION

We have shown that the technique described in this paper
gives different results to the more traditional method of
comparing runs of simply using the RMSE as has been
done in previous investigations [17]. The resultant relative
performance calculations show that the FOUs used in the
experiment does not cause a significant difference in the
conditions tested. It is possible that the uncertainty levels
used in this investigation are not sufficient for this to occur
will be considered further in future work. However the use
of multiple different FOU sizes increases our confidence that
this method is robust over different levels of FOU size.

The use of RMSE as shown in the graphs as the only
performance metric is shown to have some issues, firstly
Figure 6(a) shows a flat line, which indicates that the RMSE
does not change as the wind configuration changes in this
experimental set-up, which is counter intuitive as logically
under more difficult conditions performance should change
in some way, specifically in the majority of cases decrease.
As the course is made more difficult by increase the angle of
the turn required, the spread of results increases and several
peaks become apparent most significantly in Figure 6(c),
specifically at wind configurations ‘E’ and ‘F’, this is an
issue as these peaks are unanticipated and do not appear
in the corresponding relative performance graph Figure 6(i)
and at the moment the reasons for this are not understood.
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(g) Relative Performance for 25 Turn
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(h) Relative Performance for 50 Turn
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(i) Relative Performance for 100 Turn

Fig. 6. Absolute Performance (RMSE) (top) and uncertainty measure (middle) used calculate Relative Performance (Bottom). Values are scaled betwen
0 and 1.

The increasing spread of results shown in the RMSE
graphs and discussed above does not occur in the relative
performance graphs as shown in Figures 6(g) to 6(i). If
the relative performance is considered to be accurate then
the FOU does not effect the performance of a controller
at a given environmental set-up. Additional work would be
required to show if this is really the case or if the type or
magnitude of the environmental uncertainty used here is not
sufficient to cause significant differentiation.

As an initial attempt at developing a more sophisticated

technique we believe that the idea and concepts involved in
the calculation of relative performance holds merit. As this is
the first application in which it has been applied it is believe
that there are still some shortcomings present which should
be investigated in future work and are discussed below.

One of the large potential short comings with this tech-
nique is that if applied to real world applications, it could be
difficult to identify and then measure each of the potential
sources of environmental uncertainty. Real life wind for ex-
ample is a much more complicated physical process than the



simulated process and measuring it is much more difficult,
with behaviours such as gusting occurring and the fact that
two accurate sensors located in different locations may give
significantly different readings.

From the flow of data shown in Figure 3 we have
observed that at this point only the mean values are used
from the “Raw Metrics” data source. In future work it needs
to be investigated if inclusion of the standard deviation of
the “raw metrics” further improves the behaviour metric.
This will be done by defining an additional input to relative
performance termed “Performance Strength” to create a
symmetrical data flow from each data source, “Uncertainty
Sources” and “Raw Metrics”. The use of average speed as
an additional piece of data from the “Raw Metrics” will also
be considered.

In this paper both of the sources of uncertainty, the
wind direction and wind speed under study are given equal
weighting and this may not be a true assumption. It may be
that an increasing standard deviation of the wind direction
is considerably harder to cater for by the controller than the
wind speed. Further study is required in order to see if this
is the case and it is possible that a scaling measure may
be required in order to give one source greater influence
than the other in this application. This reasoning may also
be applied to the base difficulty and absolute performance
metrics, though in the latter case an additional input would
be required — another avenue for future investigation.

A. Future Work

The types of uncertainty studied in this paper are also
not the only sources that are important in a the chosen
application, especially when a real world environment is
considered as instead of simulation. The FLOATs platform
can also be run on a physical robot, and in this case the effect
of a number of additional sources of uncertainty must be
considered. For example the robot in question has a simple
motor encoder based wind vane that is only able to give a
wind direction to a single degree of accuracy and at a certain
rate, which means the reading of the wind direction taken
may be a considerable source of uncertainty.

Additionally, each of the inputs that are used in the
final calculation should be the subject of its own in depth
investigation in order to ensure that it is modelled in the most
accurate and meaningful way possible. This is especially
true of the uncertainty measure, as uncertainty is such an
important idea in the field of fuzzy logic and a greater under-
standing of its effect upon these sorts of systems is required
in order to allow logical reasoning when considering such
questions as the selection of the appropriate fuzzy variety in
a given application.
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