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We investigate the behaviour of solutions of the recently proposed extended Volterra lat-
tice. A variety of methods are used to determine the effects of the new terms on small
amplitude equations, and, following approximation of the partial differential delay equa-
tions by PDEs we also determine similarity reductions.
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1. Introduction

The integrability of the basic or standard Volterra lattice utðn; tÞ ¼ uðn; tÞ½uðnþ 1; tÞ � uðn� 1; tÞ� has been known for some
time, and important properties such as Miura maps, modified systems, Hamiltonian structures, Lax pairs, Bäcklund transfor-
mations, Hirota bilinear form and N-soliton solutions have been derived [8,12,16,5,20,9,10,6]. Integrable extensions of the
Volterra lattice have also been discovered, such as ð2þ 1Þ-dimensional versions [15] or ð1þ 1Þ-dimensional non-isospectral
extensions [11,21].

In [2,3] an integrable non-isospectral ð2þ 1Þ-dimensional extension of the Volterra lattice hierarchy was constructed, this
consisting of a sequence of equations in uðn; t; yÞ with n being discrete and t and y continuous. The consideration of reduc-
tions to ordinary difference equations allowed the derivation of discrete Painlevé hierarchies. Other reductions of this
ð2þ 1Þ-dimensional hierarchy included an extended ð1þ 1Þ-dimensional Volterra lattice hierarchy, the members of which
are evolution equations in uðx; tÞ, both x and t being continuous but with the equations involving derivatives with respect
to x as well as shifts in x. The autonomous versions of such equations were subsequently placed within a suitable modifica-
tion of the usual algebraic structure associated with completely integrable evolution equations (recursion operators and
hierarchies of commuting flows) in [4], this in turn giving rise to a new interpretation of the lattice hierarchies which appear
in the literature within the broader context of differential-delay hierarchies.

In this paper we investigate this extended ð1þ 1Þ-dimensional Volterra lattice hierarchy, to determine the types of solu-
tion it supports, and how these compare with those supported by the basic Volterra lattice. We focus on the first equation of
the hierarchy.

In Section 2 we introduce the basic Volterra lattice equation and show how it may be approximated. Section 3 describes
the extended Volterra differential-delay system. In Section 4 we formulate a family of partial differential equations (PDEs)
ribution,

is).
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which approximate the extended Volterra lattice in certain continuum limits [17–19]. The behaviour of these approximating
PDEs is then described and discussed. The similarity solutions of these are also explored. One equation arising in this context
is a nonisospectral extended KdV equation, whose solutions merit further investigation. These are detailed in Section 5,
where we also explain connections to integrable systems. Finally Section 6 concludes the paper, where we summarise the
results and discuss their wider implications.

2. The Volterra equation

The basic Volterra equation is
utðx; tÞ ¼ uðx; tÞ½uðxþ 1; tÞ � uðx� 1; tÞ� ð2:1Þ
which, as commented earlier, is completely integrable. Here we take as independent variables x and t instead of n and t since
later we will be considering the integrable ð1þ 1Þ-dimensional non-isospectral extension of (2.1) introduced in [2], this
being an evolution equation in two continuous variables x and t involving both derivatives with respect to x and shifts in
x. We begin here by considering the standard Volterra lattice (2.1).

In the following sections we will consider asymptotic approximations of the extended Volterra equation. Here we analyse
the basic Volterra Equation (2.1), and outline some results of the type which we might expect to derive later for the extended
system. This section also serves as an introduction to the techniques we use later. Whilst these methods are more commonly
applied to continuous systems, they are applicable for discrete problems see, for example, Remoissenet [14].

Initially we consider the evolution of small amplitude disturbances from some uniform background state, that is, we as-
sume uðx; tÞ ¼ Uð1þ �2wðx; tÞÞ where �� 1 and U;w ¼ Oð1Þ. The leading order equation for w is then
wt ¼ Uðwðxþ 1; tÞ �wðx� 1; tÞÞ; ð2:2Þ
We obtain the dispersion relation for this equation by seeking a solution of the form w ¼ eiðkx�xtÞ where x ¼ xðkÞ, whence
we obtain
xðkÞ ¼ �2U sin k: ð2:3Þ
This relationship determines the behaviour of linear waves.
Clearly Eq. (2.1) is nonlinear and so should be expected to have a more complex family of solutions than (2.2), which is a

linear. Nonlinear terms become relevant at higher order in �, and also over long timescales and at large space scales. To
investigate these latter two regimes, we rescale space and time using the scalings x ¼ ��1y and t ¼ ��1s. The substitution
uðx; tÞ ¼ Uð1þ �2wðy; sÞÞ yields a partial differential equation (PDE) which approximates (2.1), namely
ws ¼ 2Uwy þ
1
3
�2Uwyyy þ 2�2Uwwy: ð2:4Þ
Here we have retained both leading order and first correction terms, neglected terms are Oð�4Þ.
As a side issue, we confirm that small amplitude waves in (2.4) exhibit the same behaviour as those in (2.2) provided that

the wave number is small. This condition is equivalent to requiring k� 1 in (2.3). If we seek the dispersion relation of (2.4)
using w ¼ deiKy�iXs with X ¼ XðKÞ and d� 1, then we find
X ¼ �2KU þ 1
3
�2UK3: ð2:5Þ
Noting that Xs ¼ X�t ¼ xt and jy ¼ kx, we write k ¼ j� and x ¼ �X. Thus the dispersion relation (2.5) is simply the small
wavenumber limit (k� 1) of (2.3).

However, to consider the evolution of weakly nonlinear waves in (2.2) we return to (2.4) and consider the effects of all the
terms. The leading order terms of (2.4) have the form of a simple wave equation ws ¼ 2Uwy, which has the solution
w ¼ wðy� csÞ where the speed is given by c ¼ �2U. The evolution of the shape of the wave is due to terms of higher order
in �. To assess the rôle of these terms, we introduce a moving coordinate frame z ¼ y� cs and rescale time via T ¼ �2s ¼ �3t.
Together with the substitution wðy; sÞ ¼ vðz; TÞ, these transformations lead to
vT ¼ 2Uvvz þ
1
3

Uvzzz; ð2:6Þ
which is the familiar KdV equation. Thus we expect small amplitude solutions of (2.2) to include both linear waves and sol-
itary pulse waves, which interact elastically, as well as similarity solutions.

3. The extended Volterra lattice

Eqs. (93) and (94) of [2] introduces the nonisospectral extension of the Volterra lattice hierarchy
utðx; tÞ
uðx; tÞ ¼ ½uðx; tÞwðx; tÞ þ uðx� 1; tÞwðx� 1; tÞ � uðx; tÞwðxþ 1; tÞ � uðxþ 1; tÞwðxþ 2; tÞ� þ a½uðx� 1; tÞ � uðxþ 1; tÞ�

þ b0½ðx� 1Þuðx� 1; tÞ � ðxþ 1Þuðxþ 1; tÞ� � b0½uðx; tÞ þ uðx� 1; tÞ� þ b1; ð3:1Þ



Fig. 1.
b1 < 0.
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jðlog uÞx ¼ j
uxðx; tÞ
uðx; tÞ ¼ wðxþ 1; tÞ �wðx; tÞ: ð3:2Þ
The case of (3.1) and (3.2) with b0 ¼ 0 ¼ b1, a ¼ �1; j ¼ 0, corresponds to the basic Volterra Equation (2.1). Setting
b0 ¼ 0 ¼ b1 removes terms from (3.1). Taking the limit j! 0, gives an equation for w, which we solve by wðxÞ ¼W . These
simplifications mean that (3.1) reduces to
utðx; tÞ
uðx; tÞ ¼ ðW þ aÞ½uðx� 1; tÞ � uðxþ 1; tÞ�: ð3:3Þ
The factor W þ a can be removed by rescaling time, t, which yields the basic Volterra Equation (2.1).
In the derivation of the integrable hierarchy, Eq. (3.2) arises as a compatibility condition between linear systems. The

quantity wð�Þ can be thought of as a potential which mediates other nonlocal interactions in uðx; tÞ. As will be seen in the
next section, nonzero j values introduce new behaviour into the system, through wðxÞ being non-constant.

We will work with a shifted wð�Þ function, bwð�Þ, and suppress the t argument and the x argument when it is not shifted, so
that
D bw ¼ bw xþ 1
2

� �
� bw x� 1

2

� �
¼ j

ux

u
¼ jðlog uÞx: ð3:4Þ
A more complex redefinition of variables of the form uðxÞ ¼ euðx� 1
2Þ ¼ euðexÞ;wðxÞ ¼ ewðx� 1Þ; ex ¼ x� 1

2 simplifies the equa-
tion slightly, by making the functions premultiplying terms involving b0 symmetric. However, we will not work with such
a formulation of the system here, since the added complexity only slightly simplifies the resulting PDEs.

We use the relation (3.2) to simplify (3.1), which can be rewritten as
ut

u
¼ b1 � a½uðxþ 1Þ � uðx� 1Þ� � b0½ðxþ 1Þuðxþ 1Þ � ðx� 1Þuðx� 1Þ� � b0½uþ uðx� 1Þ�

� j½uxðxþ 1Þ þ ux þ uxðx� 1Þ� þ uðx� 1Þ bw x� 1
2

� �
� uðxþ 1Þ bw xþ 1

2

� �
: ð3:5Þ
We would like to test stability against a variety of perturbations, in a similar fashion to finding the dispersion relation of
waves, by substituting uðx; tÞ ¼ U þ �eikx�ixðkÞt þ c:c. for some constant U, and hence find stability. However, this is not pos-
sible due to the b0 term which is nonautonomous. Hence we use the simpler and less general stability analysis, considering
uðx; tÞ ¼ U þ vðtÞ. For U ¼ b1=4b0 we obtain v t ¼ �b1v � 4b0v2, which for v � U implies the linear equation v t ¼ �b1v thus
this is linearly stable when b1 > 0 and unstable for b1 < 0. Whilst for U ¼ 0 we find v t=v ¼ b1 � 4b0v , which has the opposite
stability properties. These stability results are summarised in Fig. 1.
3.1. The special case b1 ¼ 0 ¼ b0

In the case where b1 ¼ 0 ¼ b0 then we return to the situation in which uðx; tÞ ¼ U, with U being any constant, is a steady-
state solution.

In this case the stability of small amplitude linear waves can be established by substituting uðx; tÞ ¼ U þ �eikx�ixt þ c:c.,
which leads to
bw ¼ jk�eikx�ixt

2U sin 1
2 k
þ c:c: ð3:6Þ
and x ¼ 2Uða sin kþ jk cos kþ jkÞ. We thus have stability for all wavenumbers k.
U

β1

U
β1
4β0

U 0 st U 0 unst

unst

st

U

β1

U
β1
4β0

U 0 unst U 0 st

st

unst

Illustration of steady-state solutions of the extended Volterra equation, and their stability. The left figure is for the case b1 > 0 and the right for



592 A. Pickering et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 589–600
3.2. Quasi-continuum approximations

Now we consider the behaviour of solutions which are slowly varying in x and have small deviations in the u (and w)
variables. Hence we start by rescaling
y ¼ �x; u ¼ u0ð1þ �2vðy; sÞÞ; ð3:7Þ
where s ¼ �rt for some r > 0 is the timescale of evolution of v, then consider the leading order problem for vðy; sÞ. Invoking
the relationship
bw yþ 1
2
�

� �
� bw y� 1

2
�

� �
¼ � bwy þ

1
24
�3 bwyyy þ

1
1920

�5 bwyyyyy; ð3:8Þ
together with the transformation (3.7), Eq. (3.4) becomes
�@y 1þ 1
24
�2@2

y þ
1

1920
�4@4

y

� �bw ¼ �@yj log u � �@yj �2v � 1
2
�4v2 þ 1

3
�6v3

� �
þOð�8Þ; ð3:9Þ
hence
bw ¼ j 1� 1
24
�2@2

y

� �
�2v � 1

2
�4v2 þ 1

3
�6v3 � 1

4
�8v4

� �
;

¼ j �2v � 1
2
�4v2 þ 1

3
�6v3 � 1

4
�8v4 � 1

24
�4vyy þ

1
24
�6ðvvyÞy

� �
þOð�6Þ: ð3:10Þ
The asymptotic approximation (3.7) to the solution of D bw ¼ jux=u will be substituted into the equation for u, namely
ut

u
¼ b1 � b0ð1þ e�@x Þu� ðe@x � e�@x Þau� ðe@x � e�@x Þb0ðxuÞ � jðe@x þ 1þ e�@x Þux þ ðe�@x uÞðe�@x=2 bwÞ � ðe@x uÞ

� ðe@x=2 bwÞ: ð3:11Þ
Various PDEs are generated, depending on the relative sizes of the parameters b0; b1, j; a; each PDE corresponding to a par-
ticular scaling of time and parameters.

4. Asymptotic reductions

Here, with u ¼ u0ð1þ �2vÞ Eq. (3.10) reduces to
bw ¼ j�2v � 1
2
j�4v2 � 1

24
j�4vyy þ

1
3
j�6v3 þ 1

24
j�6ðvvyÞy þOð�

8Þ: ð4:1Þ
Substituting this into (3.5) we find
v t

�u0ð1þ �2vÞ ¼
b1 � 4b0u0

�3u0
�

2b0ð2v þ yvyÞ
�

þ b0vy �
3
2

b0�vyy þ
1
6

b0�
2vyyy �

1
3

b0�yvyyy � ð2aþ 4jÞvy

� 1
3
aþ j

� �
�2vyyy � j�2vvy: ð4:2Þ
The dominant terms are clearly those of Oð��3Þ, which yield u0 ¼ b1=ð4b0Þ, and this is what we shall assume hence forth (un-
less b0 ¼ 0 ¼ b1, when u0 can be chosen arbitrarily, this case has been analysed already, in Section 3.1).

Clearly in (4.2), we have a variety of terms of differing magnitudes and the behaviour of the solution will depend on their
relative sizes. Hence we consider a variety of scalings of the parameters and examine the evolution of the resulting leading
order PDE over the relevant timescales.

4.1. The case b0 ¼ Oð1Þ and t ¼ Oð1Þ

In the most obvious case, we take all parameters (j, a; b0) to be Oð1Þ and then at leading order we have
v t

u0
¼ �4b0v � 2b0yvy: ð4:3Þ
Here the time-evolution occurs on the u0t ¼ Oð1Þ scale, and so no further scaling is required. This PDE has solutions which
decay to zero, via
vðy; tÞ ¼ e�4b0u0tv0ðye�2b0u0tÞ; ð4:4Þ
where v0ðyÞ is the initial data vðy;0Þ. The solution (4.4) exhibits self-similar behaviour, with all solutions decreasing expo-
nentially to zero. We also note that the solution and Eq. (4.3) only depends on the parameter b0 and not on a or j.
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4.2. The case b0 ¼ Oð�Þ and t ¼ Oð��1Þ

In the above approximating PDE (4.3) only the effects due to the parameter b0 are evident. We consider this scenario by
writing b0 ¼ �b with b ¼ Oð1Þ and again assume j; a ¼ Oð1Þ, then other terms enter the leading order balance, and we ob-
tain a more complicated PDE
25

Fig. 2.
logarith
v t

�u0
¼ �4bv � 2byvy � vyð2aþ 4jÞ: ð4:5Þ
Although this does not immediately look like a consistent leading order balance, if we rescale time with s ¼ �u0t we find the
LHS is simply vs. The solution of (4.5) is then
vðy; tÞ ¼ e�4b�u0tv0 e�2b�u0t yþ ðaþ 2kÞ
b

� �� �
: ð4:6Þ
Thus we observe once again, an exponential decay in the solution (4.6), albeit over a slow timescale; furthermore, as shown
in the example in Fig. 2, the position of the peak moves, due to the advective terms in vy and yvy. For the example in this
figure, the function v0ð�Þ initially has a maximum at y ¼ 3, and at later times, the location of the maximum occurs at
ym ¼ 3e2b�u0t þ ðaþ 2kÞðe2b�u0t � 1Þ
b

: ð4:7Þ
The only differences between Eq. (4.5) and the previous PDE (4.3) is the rescaling of time and the additional advection term,
which adds a simple Galilean shift to the solution (4.4). In contrast with (4.4), the solution (4.6) depends on all the param-
eters a; b0 and j.

4.3. The case b0 ¼ Oð�2Þ and t ¼ Oð��2Þ

With the scalings b0 ¼ �2b and b ¼ Oð1Þ; a ¼ Oð1Þ;j ¼ Oð1Þ, Eq. (4.2) becomes
v t

�u0
¼ �4�bv � 2�byvy � 2avy � 4jvy: ð4:8Þ
We introduce z ¼ y� ��1sðsÞ and s ¼ �2t with z; s ¼ Oð1Þ to obtain
�u�1
0 vs ¼ �4b�v � vz 2�bzþ 2aþ 4jþ 2bsðsÞ � u�1

0 s0ðsÞ
� �

: ð4:9Þ
Hence if we choose sðsÞ to be given by
sðsÞ ¼
ðaþ 2jÞ e2bu0ðs�s0Þ � 1

� �
b

; ð4:10Þ
then solving 2v þ zvz þ vs=2bu0 ¼ 0, which is identical in form to (4.3), hence we have
vðz; sÞ ¼ e�4bu0sv0ðze�2bu0sÞ; ð4:11Þ
which in turn is equivalent to
vðy; tÞ ¼ e�4b�2u0tv0 ye�2b�2u0t � ðaþ 2jÞð1� e�2b�2u0tÞ
b�

 !
; ð4:12Þ
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these results are similar to those obtained earlier, see equation (4.4) for example. Hence, for this choice of parameters the
system exhibits similar kinetics to the examples shown earlier, only on a slower timescale due to the smaller size of b0.

4.4. The case b0 ¼ Oð�3Þ and t ¼ Oð��3Þ

With the scalings b0 ¼ �3b; b ¼ Oð1Þ, j ¼ Oð1Þ; a ¼ Oð1Þ, equation (4.2) becomes
v t

�u0ð1þ �2vÞ ¼ �2bð2v þ yvyÞ�2 þ b�3vy �
3
2

b�4vyy þ
1
6

b�5vyyy �
1
3

b�4yvyyy � ð2aþ 4jÞvy

� 1
3
aþ j

� �
�2vyyy � j�2vvy: ð4:13Þ
Again, although the dominant terms appear to be those due to advection, that is, the vy terms, these can be adsorbed by a
change of variables, after we have multiplied through by the factor 1þ �2v . We write y ¼ z� �psðsÞ with s being a rescaled
time variable, choosing the exponent p and timescale to simplify the equation governing the shape of the profile vðz; sÞ. We
consider appropriate values for p in turn.

4.4.1. The subcase p ¼ �2.
The transformation
z ¼ y� ��2sðsÞ; s ¼ �3u0t; ð4:14Þ
yields, at leading order, an equation governing the motion of the wave
ds
ds
¼ 2bsþ 2aþ 4j: ð4:15Þ
Provided that sðsÞ satisfies (4.15), the next order terms give a PDE governing the evolution of the wave
0 ¼ vs þ 4bv þ 2bzvz þ ð2aþ 5jþ 2bsðsÞÞvvz þ jþ 1
3
aþ 1

3
bsðsÞ

� �
vzzz: ð4:16Þ
Eq. (4.15) has the general solution
sðsÞ ¼ Ce2bs � ðaþ 2jÞ
b

; ð4:17Þ
for some constant C. In general this gives a new coordinate frame z which is accelerating with respect to the old space var-
iable y. There are two subcases worthy of more detailed consideration, namely when C ¼ 0 and s is a constant, and the case
C ¼ ðaþ 2jÞ=b so that sð0Þ ¼ 0.

If we choose C ¼ 0, then s ¼ �ðaþ 2jÞ=b, and any solution is centred on z ¼ 0 which, by (4.14), corresponds to
y ¼ �ðaþ 2jÞ=b�2, which is in the far field (�y� 1). The shape of the profile vðz; sÞ is then governed by
0 ¼ vs þ 4bv þ 2bzvz þ jvvz þ
1
3
jvzzz: ð4:18Þ
We return to this case later, see Section 5.
If we choose C ¼ ðaþ 2jÞ=b then the moving coordinate frame z is related to y through (4.14), which implies
y ¼ zþ sðsÞ
�2 � zþ 2ðaþ 2jÞu0�t þO �4t2� �

: ð4:19Þ
Thus, even at moderately large times, t ¼ Oð1Þ up to t � Oð��2Þ, the relationship has, at leading order, the form of a travelling
wave with a small speed.

Eq. (4.16) is the first leading-order equation we have derived that has the characteristic terms from the KdV equation,
namely the third spatial derivative and the quadratic nonlinearity. However, we also have the complicating factors of a v
and a zvz term in the PDE, and the coefficients of the vzzz and vvz terms containing sðsÞ, which in turn depends on time s
in an exponential fashion. These time-dependencies make the PDE nonintegrable.

4.4.2. The subcase p ¼ �1
In (4.13) we now use the transformation
z ¼ y� sðsÞ=�; s ¼ �3u0t: ð4:20Þ
Both the leading order and first correction terms only involve terms of the form vz with coefficients
ds
ds
¼ 2bsþ 2ðaþ 2jÞ

�
; ð4:21Þ
with solution
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sðsÞ ¼ Ce2bs � ðaþ 2jÞ
b�

: ð4:22Þ
The governing equation for vðz; sÞ is then
0 ¼ vs þ ð2aþ 5jÞvvz þ 2bzvz þ 4bv þ jþ 1
3
a

� �
vzzz; ð4:23Þ
for whatever value of C is chosen in (4.22). The PDE (4.23) is of the form considered in Section 5.

4.5. The case b0 ¼ Oð�4Þ and t ¼ Oð��3Þ

With the scalings b0 ¼ �4b and b; a; j ¼ Oð1Þ, Eq. (4.2) becomes
v t

�u0ð1þ �2vÞ ¼ �2bð2v þ yvyÞ�3 þ b�4vy �
3
2

b�5vyy þ
1
6

b�6vyyy �
1
3

b�5yvyyy � ð2aþ 4jÞvy

� 1
3
aþ j

� �
�2vyyy � j�2vvy: ð4:24Þ
Only the first few orders of Oð�Þ are relevant for later calculations, hence we ignore the higher order correction terms, retain-
ing only
�v t

�u0ð1þ �2vÞ ¼ 4�3bv þ 2�3byvy þ ð2aþ 4jÞvy þ
1
3
aþ j

� �
�2vyyy þ �2jvvy: ð4:25Þ
Now we multiply through by ð1þ �2vÞ, and transform to remove the vy terms. This can be done in various ways, using
z ¼ y� �psðsÞ and s ¼ �3u0t, with differing values of p considered in turn below.

4.5.1. The subcase p ¼ �3.
The transformation
z ¼ y� ��3sðsÞ; s ¼ �3u0t; ð4:26Þ
gives the leading order equation
s ¼ �ðaþ 2jÞ
b

; ð4:27Þ
and then the first correction terms give the KdV equation 0 ¼ vs þ jvvz þ 1
3 jvzzz.

4.5.2. The subcase p ¼ �2.
We now use the transformation
z ¼ y� ��2sðsÞ; s ¼ �3u0t; ð4:28Þ
As in Case 4.4.1 we find both the leading order and the first correction terms involve only vz, so we consider them together
and obtain
ds
ds
¼ 2b�sþ 2aþ 4j; ð4:29Þ
which has the solution
sðsÞ ¼ Ce2b�s � aþ 2j
b�

� �
; ð4:30Þ
for some constant C. Note that with C ¼ 0 here and (4.30) substituted into (4.28) yields the same solution as (4.27) substi-
tuted into (4.26).

The second correction terms involve many different derivatives of v, from which we obtain the leading order equation
0 ¼ vs þ ð2aþ 5jÞvvz þ ðjþ
1
3
aÞvzzz; ð4:31Þ
where s ¼ �3u0t. This has the form of the classic KdV equation, without any perturbing terms. It is also worth noting that b0 is
now so small that it does not enter the leading-order Eq. (4.31).

Although the KdV equation has similarity solutions in which vðy; tÞ ! 0 as t !1 uniformly, it also has solutions vðy; tÞ
which do not decay, for example travelling waves in which vðy; tÞ ¼ vðy� ctÞ.

The subcase p ¼ �1 is almost identical to the above.
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4.6. The case b0 ¼ Oð�5Þ and t ¼ Oð��3Þ

With the scalings b0 ¼ �5b and b; a; j ¼ Oð1Þ, Eq. (4.2) becomes
v t

�u0ð1þ �2vÞ ¼ �2bð2v þ yvyÞ�4 þ b�5vy �
3
2

b�6vyy þ
1
6

b�7vyyy �
1
3

b�6yvyyy � ð2aþ 4jÞvy

� 1
3
aþ j

� �
�2vyyy � j�2vvy: ð4:32Þ
As with earlier calculations presented in the previous subsections, it is not necessary to retain all these terms. Neglecting the
higher order corrections, we will proceed with
�v t

�u0ð1þ �2vÞ ¼ 4�4bv þ 2�4byvy þ ð2aþ 4jÞvy þ
1
3
aþ j

� �
�2vyyy þ �2jvvy: ð4:33Þ
As above, we multiply through by ð1þ �2vÞ, and transform to a moving coordinate frame to remove the first spatial deriv-
ative terms. This can be done in various ways, using z ¼ y� �psðsÞ and s ¼ �3u0t, with the differing values of p considered in
turn below.

4.6.1. The subcase p ¼ �3.
Using
z ¼ y� ��3sðsÞ; s ¼ �3u0t; ð4:34Þ
combining the leading order and first correction terms, we obtain
ds
ds
¼ 2b�2sþ 2�ðaþ 2jÞ; ð4:35Þ
from the coefficients of vz. This ODE is solved by
s ¼ Ce2b�2s � aþ 2j
b�

� �
; ð4:36Þ
and whatever value for C is chosen, the equation for vðz; sÞ is
0 ¼ vs þ ð2aþ 5jÞvvz þ kþ 1
3
a

� �
vzzz; ð4:37Þ
which is the KdV equation with no perturbing terms.

4.6.2. The subcase p ¼ �2.
In this case we apply
z ¼ y� ��2sðsÞ; s ¼ �3u0t; ð4:38Þ
which yields the equation for sðsÞ
sðsÞ ¼ 2ðaþ 2jÞsþ C: ð4:39Þ
The shape of the profile vðz; sÞ is determined by
0 ¼ vs þ ð2aþ 5jÞvvz þ kþ 1
3
a

� �
vzzz þ 2bvzðC þ 2asþ 4jsÞ; ð4:40Þ
which is a perturbed KdV equation, the perturbation being the final term. This can be removed by the transformation
v ¼ w� 2bð4jsþ 2asþ CÞ
2aþ 5j

; ð4:41Þ
for some constant, C, which yields the integrable forced KdV equation
0 ¼ ws þ ð2aþ 5jÞwwz þ jþ 1
3
a

� �
wzzz �

4bðaþ 2jÞ
ð2aþ 5jÞ : ð4:42Þ
To demonstrate the integrability of this equation, we show how it can be transformed to the standard KdV equation.
The substitution wðz; sÞ ¼ VðZ; sÞ � Cs with Z ¼ zþ 1

2 CNs2 maps the constantly-forced KdV equation 0 ¼ wsþ
Nwwz þ Dwzzz þ C onto the classic form 0 ¼ Vs þ NVVZ þ DVZZZ .

4.6.3. The subcase p ¼ �1
Here we substitute
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z ¼ y� ��1sðsÞ; s ¼ �3u0t; ð4:43Þ
into (4.33), and by combining the leading order and first correction terms we obtain the equation
�
ds
ds
¼ 2aþ 4j ð4:44Þ
for sðsÞ. This equation has the solution
sðsÞ ¼ ð2aþ 4jÞs
�

þ C: ð4:45Þ
The second order correction terms from (4.33) then yield the KdV equation
0 ¼ vs þ ð2aþ 5jÞvvz þ kþ 1
3
a

� �
vzzz; ð4:46Þ
for the evolution of the shape of the wave. Thus there are travelling wave solutions, interacting soliton solutions, as well as
more complex phonon-nonlinear wave interactions.

4.7. Summary

As b0 takes progressively smaller values, whilst we hold a;j ¼ Oð1Þ, we have observed a shift from the stable solution
v ¼ 0 which is approached exponentially in time, according to an advective PDE with a self-similar structure (4.3) and
(4.5), to the KdV Eq. (4.46), which supports travelling waves and solitons which interact elastically. There is also a slowing
of the kinetics due to these being dominated by the b0 terms, whereas the KdV behaviour is caused by the a;j terms which
have a reduced impact in the long wave length limit.

Only the a terms are in the original Volterra equation, though the effect of the j terms is to leave the form of the equation
unchanged, and only to alter the strength of the nonlinearity, the size of the dispersion and the speed of the wave (in the
transformation from y ¼ �x to z). However, the effect of the b terms changes the form and behaviour of the solution consid-
erably, since the terms involving b give rise to a moving coordinate frame which accelerates exponentially in time. The ef-
fects (j;a, and b) are balanced when one considers b ¼ Oð�3Þ and timescales of Oð��3Þ as exemplified in equation (4.16) and
(4.23).

5. Solutions of Eqs. (4.18) and (4.23)

In this section we summarise various methods for solving Eqs. (4.18) and (4.23), namely
0 ¼ vs þ 4bv þ 2bzvz þ ð2aþ 5jÞvvz þ jþ 1
3
a

� �
vzzz: ð5:1Þ
As well as the trivial solution v ¼ 0, there is clearly a spatially uniform solution vðsÞ ¼ v0e�4bs; further general similarity
solutions of this equation can be found by using Lie group methods, we also detail the derivation of more complicated solu-
tions through the application of methods from integrable systems theory.

5.1. Lie group methods

We aim to find solutions of the general equation
v t þ 4bv þ 2bzvz þ avvz þ bvzzz ¼ 0; ð5:2Þ
where a ¼ 2aþ 5j and b ¼ jþ a=3, through the use of Lie group techniques [13]. The infinitesimal generators are given by
n ¼ 2c2bze6bt þ c3e2bt þ c4e�4bt ; ð5:3Þ

s ¼ c1 þ c2e6bt ; ð5:4Þ

g ¼ �4b
a

3
2

c4e�4bt þ ac2ve6bt

� �
; ð5:5Þ
where ci are constants. We consider all cases in turn.

5.1.1. The case c2 ¼ 0.
Without loss of generality we can assume c1 ¼ 1. This generates the solution
v ¼ 3c4e�4bt

2a
þ pðfÞ; f ¼ z� c3e2bt

2b
þ c4e�4bt

4b
; ð5:6Þ
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where pðfÞ is given by the second order equation
Fig. 3.
a ¼ 1;
2bfp0 þ 4bpþ app0 þ bp000 ¼ 0: ð5:7Þ
This equation integrates to give the so-called P34 equation referred to by Ince [7].

5.1.2. The case c1 ¼ 0; c2 ¼ 1.
Here we find
v ¼ c4e�10bt

a
þ e�4btpðfÞ; f ¼ e�2bt zþ c3e�4bt

6b
þ c4e�10bt

12b

� �
; ð5:8Þ
where pðfÞ satisfies the equation
bp00 þ 1
2

ap2 � c2p� 6bc4f
a
¼ K: ð5:9Þ
This equation is equivalent to the first Painlevé equation, PI [7].

5.1.3. The case c3 ¼ c4 ¼ 0; c2 ¼ 1; c1 – 0.
In this case we obtain the solution
v ¼ pðfÞ
ðc1 þ e6btÞ2=3 ; f ¼ zðc1 þ e6btÞ�1=3

; ð5:10Þ
where
c1 2bfp0 þ 4bpð Þ þ app0 þ bp000 ¼ 0; ð5:11Þ
which also integrates to P34 [7].

5.2. Mapping of (5.2) to KdV

Eq. (5.2) can be mapped onto the KdV equation via
vðz; tÞ ¼ e�4btwðZ; TÞ; ð5:12Þ
where Z ¼ ze�2bt ; T ¼ e�6bt , which yields
6bwT ¼ awwZ þ bwZZZ : ð5:13Þ
Hence all the integrable structures associated with the KdV equation, such as Darboux transformations, Backlund transforms
apply to (5.2).

The one-soliton solution of the KdV Eq. (5.13) produces the solution
v ¼ 2le�4bt

a
sech2 e�2bt

ffiffiffiffiffiffi
l
6b

r
zþ le�4bt

9b

� �� �
; ð5:14Þ
where l is an arbitrary constant. This is a special case of similarity solution (5.8) when c4 ¼ 0. However, (5.13) also has two-
soliton solutions, hence (5.2) has two-soliton solutions too, for example
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Illustration of the evolution of a solution vðz; tÞ from (5.2) using the two-soliton solution of the KdV equation. The parameters are given by
j ¼ 1; b ¼ 0:1; k1 ¼ 1:5, k2 ¼ 2; c1 ¼ 0; c2 ¼ �5.
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v ¼ 12be�4bt

a
N
D

� �
;

N ¼ k2
1eh1 þ k2

2eh2 þ 2ðk2 � k1Þ2eh1þh2 þ ðk2 � k1Þ2ðk2
2eh1 þ k2

1eh2 Þeh1þh2=ðk2 þ k1Þ2;

D ¼ ð1þ eh1 þ eh2 þ ðk2 � k1Þ2eh1þh2=ðk2 þ k1Þ2Þ
2
;

ð5:15Þ
where hi ¼ kize�2bt þ bk3
i e�6bt=6b� ci (i ¼ 1;2). This gives rise to more complicated decay expressions for vðz; tÞ as t increases

(assuming b > 0; there are growing solutions for b < 0). An example is shown in Fig. 3.

5.3. Summary

In this section we have analysed Eq. (5.2) using a variety of techniques from classical and modern theories of differential
equations. We have obtained a range of solutions, which may be relevant for various parameter ranges.

6. Conclusions

We have performed a basic stability analysis of the extended Volterra system. The parameters b0 and b1 impose signif-
icant new features into the system, including a unique steady-state. This is partly due to the fact that non-autonomous terms
are introduced into the equations. We have considered a variety of scalings for the relative sizes of the parameters
b0; b1; a; j and derived a number of PDEs in the continuum limit. These show a range of behaviour from self-similar con-
vergence to the zero solution to KdV kinetics. In the case of b0 ¼ 0 ¼ b1, more standard kinetics are observed.

These all occur for the case of large-wavelength waves, where x � ��1 and u � �2 for �� 1. We derived a variety of per-
turbed KdV equations many of which are integrable, and we have shown how they can be transformed to the standard KdV
equation. For larger values of the parameter b, we found that the governing equation is of a simpler form, and typically per-
mits similarity solutions.

More specifically, in this case, the a and j terms give rise to KdV-type terms. The wave-like behaviour of this equation is
changed by the b terms, which give rise to growth or decay of waves in a moving coordinate frame which is accelerating. The
steady-state solution vðx; tÞ ¼ constant is thus stable or unstable depending on the sign of b1. When the b terms dominate,
self-similar behaviour is observed in the approach to the steady-state solution. The effects of the a; b; j terms balance when
we assume the asymptotic limit y ¼ �x ¼ Oð1Þ with �� 1; b0; b1 ¼ Oð�3Þ and the timescale of Oð��3Þ is considered.

We also investigated the possibility of mKdV-type scalings where x � ��1 and u � �, however, no such equations could be
derived, since the condition for the quadratic nonlinearity to vanish (leaving the cubic as leading-order) also causes the dis-
persion term to vanish.

These results have shown once again the deep connection between integrable discrete systems and integrable continuous
systems. Whilst taking the continuum limit appears in many cases to preserve the properties of integrability, the reverse
process remains difficult, in that ‘natural’ discretisations of continuous systems are rarely integrable, meaning that it is nec-
essary to resort to sophisticated techniques to construct more complex discrete integrable systems, for example, the noniso-
spectral techniques used in [2]. In future work we propose to analyse the extended Toda lattice [1] in a similar fashion.
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