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Abstract

Juxtacrine signalling mechanisms are known to be crucial in tissue and or-
gan development, leading to spatial patterns in gene expression. We investi-
gate the patterning behaviour of a discrete model of juxtacrine cell signalling
due to Owen & Sherratt (Math. Biosci., 1998, 153(2):125–150) in which lig-
and molecules, unoccupied receptors and bound ligand-receptor complexes are
modelled. Feedback between the ligand and receptor production and the level
of bound receptors is incorporated. By isolating two parameters associated
with the feedback strength and employing numerical simulation, linear stability
and bifurcation analysis, the pattern-forming behaviour of the model is anal-
ysed under regimes corresponding to lateral inhibition and induction. Linear
analysis of this model fails to capture the patterning behaviour exhibited in
numerical simulations. Via bifurcation analysis we show that, since the major-
ity of periodic patterns fold subcritically from the homogeneous steady state,
a wide variety of stable patterns exists at a given parameter set, providing an
explanation for this failure. The dominant pattern is isolated via numerical
simulation. Additionally, by sampling patterns of non-integer wavelength on
a discrete mesh, we highlight a disparity between the continuous and discrete
representations of signalling mechanisms: in the continuous case, patterns of
arbitrary wavelength are possible, while sampling such patterns on a discrete
mesh leads to longer wavelength harmonics being selected where the wavelength
is rational; in the irrational case, the resulting aperiodic patterns exhibit ‘local
periodicity’, being constructed from distorted stable shorter-wavelength pat-
terns. This feature is consistent with experimentally observed patterns, which
typically display approximate short-range periodicity with defects.

1 Introduction

Cell-to-cell communication plays a key role in the development of multicellular or-
ganisms (Hartenstein & Posakony, 1990; Keener & Sneyd, 1998; Mitsiadis et al.,
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1999), leading to spatial patterns in gene expression that impact upon cell differ-
entiation, the determination of cell fate and, ultimately, the development of tissues
and organs. The activity of cell signalling molecules is typically divided into four
distinct groups, termed autocrine, paracrine, endocrine and juxtacrine. The first
three refer, respectively, to scenarios in which a cell produces a signalling molecule
which is free to move within the tissue and acts (i) on the same cell, (ii) on a group of
neighbouring cells (typically via diffusion) and (iii) on all cells within a tissue (as is
the case with hormones). In contrast, juxtacrine signalling refers to the case where
the signalling molecule is anchored in the cell membrane and acts only on neigh-
bouring cells. The efficacy of such a mechanism is accordingly limited to closely
packed structures such as epithelia.

Due to their importance in tissue development, cell signalling mechanisms have
been the subject of a large number of theoretical studies. In this paper, we con-
centrate on a discrete mathematical model for juxtacrine signalling; a review of
alternative cell signalling models is therefore omitted (see, e.g., Pribyl et al. (2003)
and Muratov & Shvartsman (2004) for discrete analyses of autocrine signalling).

The study of Turing (1952), which showed that reaction and diffusion of chemi-
cals can produce spatial patterning in chemical concentration that consequently de-
termines cell fate, has inspired many authors to employ continuum reaction-diffusion
models to study patterning in biological systems (though we note that Turing (1952)
exploited both discrete and continuous formulations) – see, for instance, Wolpert
(1969), Painter et al. (1999) and Lander et al. (2002). Such models are posed in
terms of partial differential equations and as such analytic or asymptotic solutions
may sometimes be obtained, as well as numerical-simulation approaches undertaken.
However, the above continuum studies are inappropriate for small numbers of cells
or for the study of fine-grained patterns in which variation takes place over few cell
diameters. For these reasons discrete models are often used, taking the form of sys-
tems of ordinary differential equations (ODEs) defined at discrete points in space,
representing individual cells. The ease with which short range patterns and individ-
ual cell behaviour or movement may be captured in such models has led them to be
widely exploited to model many aspects of cell behaviour. The analysis of discrete
models can rely heavily on numerical simulation, leading to an upper limit on the
size of the problem that can be investigated; additionally, analytical results may be
difficult or impossible to obtain from a discrete model considering realistic numbers
of cells. Some authors have therefore attempted to derive continuum models based
upon an underlying discrete system. Examples include Turner et al. (2004), who
showed that, in the continuum limit, a Potts model of cell movement may be rep-
resented by a diffusion equation, and O’Dea & King (2011a,b) in which multiscale
continuum models capable of describing certain short-range patterns in square and
hexagonal cells brought about by a simple juxtacrine signalling were formulated.
We note that the techniques presented in these studies may be applied to the more
complex model analysed herein; the calculation is summarised within the Appendix.

A mathematical model for juxtacrine signalling was first considered by Collier
et al. (1996), concentrating on the activity of a transmembrane protein, Delta, and its
receptor, Notch. Lateral inhibition, a negative feedback mechanism by which a cell
adopting a particular fate inhibits neighbouring cells from doing likewise (Goriely
et al., 1991; Heitzler & Simpson, 1991; Appel et al., 2001), was considered and
shown to generate fine-grained patterns robustly. This mechanism is a fundamental
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cell fate control mechanism (Mitsiadis et al., 1999), creating fine-grained patterns
in developing tissue which determine subsequent cell development.

Plahte (2001) provided a comprehensive analysis of pattern formation in contin-
uous and discrete systems, with application to the model of Collier et al. (1996) and
concluded that linear analysis may not provide sufficient information to explain pat-
terning behaviour. Plahte & Øyehaug (2007) suggests that in one spatial dimension,
travelling waves invading an unstable homogeneous state may only generate period-
two patterns, providing an explanation for the robustness of fine-grained patterning
in this system.

Owen & Sherratt (1998) analysed a more complicated juxtacrine signalling model,
considering the numbers of ligand and free and bound receptors. Lateral induc-
tion (positive feedback between ligand-receptor binding and subsequent ligand pro-
duction) was accommodated and the range over which juxtacrine signals may be
transmitted was studied. Lateral induction is well-documented for a number of
ligand-receptor interactions, including, for instance, the binding of cAMP to Dic-
tyostelium cells (Owen & Sherratt (1998) and references therein). In a subsequent
paper, Owen et al. (1999) employed both a discrete (identical to that presented in
Owen & Sherratt (1998)) and a continuous formulation to investigate the propa-
gation of signals in a juxtacrine signalling system, demonstrating that arbitrarily
large signal half-lives are achievable and showing good agreement between the dif-
ferent modelling strategies. Wearing et al. (2000) analysed the model of Owen &
Sherratt (1998) further, performing an extended linear analysis to describe the pat-
terning behaviour of the model and derived an approximation to the fastest-growing
patterning modes (i.e. those which one might expect to observe in nonlinear simula-
tions) for different regions of parameter space. However, the linear predictions failed
to capture the qualitative behaviour of the nonlinear system. Motivated by this,
Wearing & Sherratt (2001) performed a nonlinear analysis of a two-cell system, to-
gether with bifurcation analysis to gain insights into the behaviour of larger systems,
highlighting that linear analysis alone is unable to predict the model’s behaviour.
Furthermore, this study concluded that the fine-grained patterns with approximate
periodicity one sees in early development are due to the patterning dynamics rather
than environmental inhomogeneity. Webb & Owen (2004) extended this signalling
model, considering lateral induction and inhibition (up- and down-regulation of lig-
and or receptor production in response to binding) in systems of varying geometry;
specifically, one-dimensional strings and arrays of square or hexagonal cells were
considered. Via linear analysis, the fastest growing modes were again calculated
explicitly.

In this paper, we extend the work of Wearing et al. (2000) and Wearing & Sher-
ratt (2001) to present a thorough investigation of the pattern-forming behaviour of
the model of Owen & Sherratt (1998) in which ligand molecules, unoccupied re-
ceptors and bound ligand-receptor complexes are modelled. Lateral induction and
lateral inhibition are considered so that ligand production may either increase or
decrease with the current level of occupied receptors. We present a linear stability
and bifurcation analysis of the model equations, as well as numerical simulations, to
both illustrate and to provide new insight into the failure of the linear analysis to
capture the patterning behaviour of the nonlinear system. Our analysis also high-
lights the variety of stable patterns that exists at a given choice of parameter values
associated with feedback strength; additionally, by analysing the results of numer-
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ical simulations run to steady state (from a variety of initial signalling profiles) in
both the spatial and frequency domains, the dominant pattern for a given parame-
ter choice is discerned. Finally, by sampling patterns of non-integer wavelength on
a discrete mesh, we show how the continuous and discrete representations of such
signalling mechanisms may differ: in the continuous case, patterns of arbitrary wave-
length may be generated which do not necessarily fit onto a discrete lattice, while in
the discrete case such patterns result in longer wavelength harmonics being selected
where the wavelength is rational; in the case of initial conditions of irrational pattern
wavelength, the resulting pattern is found to be aperiodic.

The remainder of the paper is organised as follows. In §2.1, the model of Owen &
Sherratt (1998) is recapitulated; the linear stability properties presented in Wearing
et al. (2000) are summarised in §2.2. In §3 bifurcation diagrams and numerical
simulations, together with spatial and spectral analyses, are presented to illustrate
the emergence and dominance of different patterning modes in parameter space. In
§4, the evolution of patterns of non-integer wavelength is considered, showing how
the continuous and discrete representations of such systems may deviate. In §5, a
discussion of our results is given together with directions for future research.

2 A mathematical model of juxtacrine cell signalling

with feedback

2.1 Formulation

In Owen & Sherratt (1998), a model of juxtacrine cell signalling is presented. Such
signalling is known to be of importance within closely packed cell populations, al-
lowing membrane-bound signalling molecules to bind to receptors in adjacent cell
membranes.

The mathematical model comprises ODEs which describe ligand-receptor bind-
ing on each cell and is expressed in terms of the numbers of ligand molecules aj(t),
unoccupied receptors fj(t) and bound receptor-ligand complexes bj(t) on each cell j.
A generic model is employed to represent ligand binding in which it is assumed that
a single ligand molecule binds reversibly to a receptor on the cell surface, giving rise
to an occupied receptor which is subsequently internalised within the cell. In prac-
tice new ligand and receptors are produced via recycling, release from intracellular
stores, and de novo production; however, in Owen & Sherratt (1998), the simpli-
fying assumption was made that the cell’s ligand and receptor production depends
upon the level of occupied receptors in a prescribed way. By varying parameters
associated with the feedback between ligand or receptor production and the level of
bound receptors on a cell, up- or down-regulation of ligand and receptor production
(known as lateral induction and inhibition) may be modelled.

The equations governing the evolution of ligand and free and bound receptors
on each cell j are, respectively (Owen & Sherratt, 1998):

ȧj = −kaaj〈fj〉 + kd〈bj〉 − daaj + Pa(bj), (1)

ḟj = −ka〈aj〉fj + kdbj − dffj + Pf (bj), (2)

ḃj = ka〈aj〉fj − (kd + ki) bj , (3)

wherein dots denote differentiation with respect to time, ka and kd represent the
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rates of ligand binding and dissociation, ki the rate of ligand-receptor complex in-
ternalisation and da and df are the rates of decay of ligand and free receptors. The
average over neighbouring cells is denoted 〈·〉 and defined by

〈ψj〉 =
ψj−1 + 2ψj + ψj+1

4
, (4)

corresponding to an average over a two-dimensional array of square cells with vari-
ation in one dimension only. The functions Pa(bj), Pf (bj) represent the production
of ligand and free receptors and are specified as follows:

Pa(x) =
Cm

1 x
m

Cm
2 + xm

, Pf (x) = C3 +
Cn

4 x
n

Cn
5 + xn

, (5)

so that lateral inhibition or induction is captured by appropriate choice of the pa-
rameters C1 −C5 and the exponents m, n and was exploited in Wearing & Sherratt
(2001); e.g. Cm

2 < 0 leads to inhibition of ligand production in response to ligand-
receptor binding.

The data available on production rates of ligand and receptors are typically ex-
tremely limited; however, the parameters in (5) may be specified to some extent, as
follows (see Owen & Sherratt (1998)). Equilibrium levels of free and bound receptors
are frequently known for specific biological systems; defining background receptor
expression r0 and spatially-homogeneous steady-states (f∗, b∗) specifies the remain-
ing steady-state, a∗, and three relations between the parameters in (5), leaving four
parameters unspecified C2, m and C5, n, which reflect the strength of feedback
in ligand and free receptor production, respectively. We choose C2 and C5 as free
parameters with which to investigate the model’s patterning behaviour in regimes
corresponding to both lateral induction and inhibition, and fix the exponents to take
the values n = m = 3; similar behaviour may be obtained by varying the exponents
m and n. In vivo, ligand-receptor binding and the resulting ligand expression are
dependent on the cell’s biochemical and biophysical environment; experimental ev-
idence suggests that such environmental inhomogeneities are significant, providing
motivation for the consideration the range of patterns produced by this model under
variation of the feedback parameters.

2.2 Linear stability analysis

By expanding around the homogeneous steady states Owen & Sherratt (1998) and
Wearing et al. (2000) showed that the values of P ′

a(b
∗), P ′

f (b∗) (here denoted A , F ,
respectively) dictate the behaviour of solutions; varying the parameters C2 and C5

allows us to proceed in A -F space to obtain different model behaviour. Curves
separating different patterning solutions were defined in the A -F plane as follows
(see Wearing et al. (2000) for details).

Linearising about the steady state via (aj , fj , bj) = (a∗, f∗, b∗) + δ(a1j , f1j , b1j)
and seeking solutions of the form a1j = aeσt+ikj (where a is constant, σ is the
temporal growth rate and k is the wavenumber), yields a cubic dispersion relation:

σ3 + α1σ
2 + α2(K )σ + α3(K ) = 0, (6)

wherein α1, α2 and α3 are functions (omitted; see equation (6), Wearing et al.
(2000)) of the model parameters ka, kd, ki, da, df , of the steady states a∗, f∗, b∗,
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of the gradients A , F and (except for α1) of the wavenumber k, via:

K (k) =
cos(k) + 1

2
. (7)

Contours of neutral stability and of maximal instability in A -F space for each
wavenumber may easily be obtained from equation (6), indicating the regions of
feedback parameter space in which the homogeneous state becomes linearly unstable
to different pattern wavelengths. Maximal instability contours for a similar system
are presented in Webb & Owen (2004) and an approximation to those corresponding
to equation (6) in Wearing et al. (2000).

The regions of parameter space in which linear analysis predicts spatial pattering
are determined by analysis of the dispersion relation (6). This analysis was previ-
ously presented in Owen & Sherratt (1998) and Wearing et al. (2000) so we omit
the details. Referring to Figure 1, the results are summarised as follows:

1. Stability to homogeneous perturbations demands that the roots of (6) have
negative real part, requiring α1 > 0, α3(1) > 0 and α1α2(1) − α3(1) > 0.
These conditions define two straight lines in the A -F plane (denoted L1 and
L2, respectively) delimiting the stable region.

2. Instability to inhomogeneous perturbations requires at least one positive root
of (6), corresponding to α1α2(K ) < 0 or α3(K ) < 0. These conditions yield
a straight line L3 as well as a curve, C which bounds the region in which
complex roots are obtained. A further line L4 divides the stable region into
two parts. This line bounds the region in which the smallest root of α3(K ) is
zero.

3. The wavelength of the fastest growing modes in region II is bounded along
the line L4, above which K ∈

[

0, 1
2

]

; i.e. the fastest growing wavelength is
λ ∈ [2, 4). Wavelengths of two or three cells are therefore expected to dominate
the pattern form; no such restriction is found for values of F lying below the
line L4.

Figure 1(a) shows a sketch of the A -F plane illustrating the regions defined
by the lines L1–L4 and the curve C . Figure 1(b) shows a numerically calculated
version of this stability diagram with neutral stability contours superimposed (cal-
culated from equation (6)). Below each of these contours, the homogeneous steady
state is linearly stable to periodic perturbations of that period; above, the linear
analysis predicts patterns forming. Figure 1(c) shows contours of the fastest grow-
ing patterning modes. We remark that the neutral stability contours shown in Figure
1(c), which indicate that longer range patterns are expected to emerge as the rate
of free receptor production increases, are also consistent with the linear analysis of
Wearing et al. (2000), in which it is predicted that patterns of period 2 or 3 will
dominate in region II. By considering an alternative form for the nearest neighbour
interaction (4), Webb & Owen (2004) obtained qualitatively different behaviour to
that shown in Figure 1(c); however, by suitable re-definition of K , we may reproduce
their results (omitted).
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Figure 1: (a) A sketch of the A -F plane denoting the regions of stable homogeneous
solutions (I), stable periodic patterns (II) and instability of the homogeneous steady
state to homogeneous perturbations (III). Adapted from Wearing et al. (2000); (b)
neutral stability contours in the A -F plane for patterns of increasing period λ = 2–8
(solid lines: period increases clockwise) and (c) contours of fastest-growing pattern-
ing modes λ = 2–7 (solid lines: period increases clockwise) together with the curves
L1, L3, L4 and C delimiting the regions in parameter space in which patterns may
be formed (dashed lines). Parameter values taken from Owen & Sherratt (1998):
ka = 0.0003molecules−1min−1, kd = 0.12min−1, ki = 0.019min−1, da = 0.006min−1,
df = 0.03min−1, f∗ = b∗ = 3000, except r0 = 2850, m = n = 3. The dotted box
in (b) shows the region of parameter space investigated in more detail in §3; the
asterisk indicates the parameter value employed in the numerical simulations shown
in Figure 2.

3 Numerical simulations and bifurcation analysis

3.1 Pattern emergence and stability

The linear analysis of Wearing et al. (2000) and Webb & Owen (2004) enables
partitioning of parameter space into regions in which stable patterns are generated
from the homogeneous steady state, and enables determination of the fastest-growing
modes. However, the applicability of such a linear analysis depends on whether the
bifurcation at which the pattern under consideration is created is of supercritical
type; in the case of subcritical patterning bifurcations, the linear approximation fails
to reflect the patterning dynamics. Indeed, numerical simulation of the nonlinear
system reveals that the linear predictions fail (unsurprisingly) to capture even the
qualitative patterning behaviour of the system. In the following section, we present
numerical simulations, together with bifurcation diagrams, for parameter values
corresponding to both lateral inhibition and induction to demonstrate the emergence
of different regular patterning modes; furthermore, since the analysis of the fastest
growing mode has proved a poor predictor of which patterns will dominate, we
calculate via numerical simulation the dominant patterns for each parameter set for
a range of initial data.

The system (1)–(3) is solved using the initial value problem solver ode15s in
MATLAB. A typical numerical simulation for parameter values such that ligand
and receptor production are both upregulated (lateral induction) and stable pat-
terns exist is shown in Figure 2; such approximately periodic patterns are typical
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in the simulations performed and observed in early tissue development (Wearing &
Sherratt, 2001).
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Figure 2: The steady-state pattern obtained from numerical simulation of the system
(1)–(3) at t = 1000h in a line of 80 cells with periodic boundary condition indicating
that the patterns typically obtained from (1)–(3) display approximate periodicity
with defects. Parameter values are as in Figure 1 with C2 and C5 chosen such that
A , F lie in region II (as indicated by the asterisk in Figure 1(b)), in which stable
patterns are predicted by linear analysis. Initial conditions are random perturbations
about the homogeneous steady states.

We now investigate the emergence of different regular pattering modes. The
system may, in principle, be driven towards a mode of arbitrary integer period λ by
choosing suitable periodic or near-periodic initial conditions and domain size, for an
appropriate parameter choice at which such a mode is stable. We remark that tacit
in the below is the assumption that only one such patterning mode exists (up to
cyclic permutation); our numerical investigations suggest this to be the case. Figure
3 depicts sample bifurcation diagrams (together with sample simulation results)
for the system (1)–(3). Figures 3(a) and (c) illustrate the stability of the λ = 3
and λ = 4 patterns as the free receptor production parameter C5 is varied in the
lateral induction regime. In each case the solution branches indicate the number
of free ligand molecules on each cell in the periodic unit; the homogeneous state is
indicated by the horizontal solution curve, and the patterned states by the remaining
branches. For example, in the period three regime (Figure 3(a)), the number of
ligand molecules on two of the three cells follows the upper solution branch, the
remaining cell tracking the lower branch. Similarly, in the period four regime, one
cell tracks each of the upper and lower branches, the remaining two cells following
the intermediate branch. Longer wavelength patterns display qualitatively similar
behaviour; however, the behaviour becomes highly complex for larger patterns, with
many solution modes coexisting (see Wearing & Sherratt (2001) in which bifurcation
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diagrams on 8 cells are shown).
Figures 3(a) and (c) give an insight into why the linear analysis fails to give a

complete description of the patterning behaviour of the system (1)–(3). Patterns
may be formed in regions of parameter space below the relevant neutral stability
curve predicted by the linear analysis (shown in Figure 1(b)) since the solution
branches can fold subcritically from the homogeneous steady-state to form stable
patterning regimes in regions of parameter space where the homogeneous state is
linearly stable to periodic perturbations. An alternative mechanism for this phenom-
ena is that the non-fastest-growing patterning mode is stable as a nonlinear pattern.
We emphasise that since the uniform state is linearly stable to non-uniform pertur-
bations, the competition between states that we are describing should be viewed in
terms of bistability, rather than of a Turing pattern, for example, arising through
propagation over an unstable state.

We pause here to note that, not only do the linear instability curves shown in
Figure 1(b) fail to represent the emergence of patterns in the nonlinear system, but
the fastest-growing modes shown in Figure 1(c) (often good predictors of observed
patterning behaviour) are similarly inaccurate.

The supercritical pitchfork bifurcation which branches from the homogeneous
steady-state in Figure 3(c) represents the λ = 2 bifurcation which occurs as the
receptor production is increased across the line L4; see Figure 1(b) (separate plot
omitted for concision). This supercritical bifurcation, which exists for a wide range of
parameter values corresponding to lateral inhibition, is exploited in the Appendix,
in which a multiscale analysis is employed to demonstrate that complex discrete
pattern-forming models of this type may be accommodated within tissue-scale rep-
resentations; subcritical bifurcations typically preclude useful application of such an
analysis since the unstable solutions reflected in the multiscale asymptotic equations
will not be observed in nonlinear simulations. For values of C5/b

∗ corresponding to
F lying above the line L4 in the A −F plane, the λ = 4 pattern branches subcrit-
ically from the λ = 2 solution. Figure 4 shows how the λ = 4 pattern is generated
from the λ = 2 solution under variation of the ligand production parameter C2 in
the lateral inhibition regime: again, the λ = 4 solution branches subcritically from
the shorter period pattern.

3.2 Dominant patterning modes

As remarked above, linear analysis of the fastest growing modes proves a poor in-
dicator of the pattern wavelengths generated by the full nonlinear system. We wish
to determine the dominant pattern period for a given parameter choice; these were
determined via numerical simulation as follows. Solutions to (1)–(3) were obtained,
from a series of initial states consisting of a patch of stable pattern of period λ
(of width 10λ cells) surrounded by the homogeneous state (so that a wide array
of pattern wavelengths are admitted, 120 additional cells are used). The resulting
steady-state solutions were analysed in both the frequency and the spatial domains.

Spectral analysis (or frequency domain analysis) provides a simple and power-
ful way to identify the (spatial) frequency components in patterned solutions and
is widely used in signal processing applications (though in these applications, the
data usually take the form of a time-series, rather than a spatial distribution; see,
e.g., Broughton & Bryan (2009)). The patterning energy at each spatial frequency
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Figure 3: (a) and (c): Bifurcation diagrams illustrating the subcritical bifurca-
tion of the λ = 3, λ = 4 patterns for the number of ligand molecules a from the
homogeneous state for system (1)–(3) (solutions for bound and free receptors are
omitted for brevity); (b) and (d) show sample numerical simulation illustrating the
corresponding patterns generated in a line of 120 cells with periodic boundary con-
ditions and t = 1000h. Parameters as in Figure 1 except C2 = 1000 and in, (b),
(d), C5 = 1.59b∗. The supercritical pitchfork bifurcation which branches from the
homogeneous steady-state in (c) represents the λ = 2 pattern generation.
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Figure 4: Bifurcation diagrams indicating how the period-4 pattern for ligand con-
centration branches from the period-two solution under variation of C2 on (a) odd
cells and (b) even cells. Stable and unstable period-two and four solutions are indi-
cated by the different line styles. Parameters as in Figure 3 except C5 = 1.6b∗ and
C2 as indicated.

is measured by the power spectral density, calculated as the scaled absolute value of
the square of the discrete Fourier transform of the steady-state solution. The power
spectral density is scaled so that its mean and variance are equal; the discrete Fourier
transform is obtained via the fft function in MATLAB. Energy peaks at distinct
frequencies indicate the presence (and prevalence) of different patterning modes. In
the spatial domain, we calculate separately the stable periodic patterns that exist
at each parameter choice and compare numerically these against the steady-state
solutions obtained from time-dependent simulations, thereby providing an explicit
measure of the appearance of different periodic cycles in the domain. By these two
approaches we may isolate the different patterns that exist in the domain and cal-
culate the dominant patterning mode for each parameter set: we characterise the
dominance by the percentage of the domain occupied by that pattern.

Figure 5(a) shows an illustrative steady state pattern in which both λ = 2 and
λ = 3 patterning modes coexist in the domain; Figure 5(b) indicates the power spec-
trum associated with this pattern, indicating how such an analysis clearly highlights
the patterning modes present via distinct peaks of power spectral density at λ = 2
and λ = 3. We remark further that it is relatively easy to construct patterned solu-
tions whose spatial distribution appears similar but whose spectrum shows distinct
differences. This exemplifies the value of the spectral analysis method and further
motivates the complementary use of both spatial and frequency domain analysis.

Figure 6 shows a plot of the dominant patterns in a region of A -F space (cor-
responding to the region of Figure 1(b) marked with a dotted box), together with
its percentage dominance. For clarity, the axes are labelled with the values of the
feedback parameters C2 and C5 since the corresponding non-uniform A -F mesh
obscures detail near A = 0. Figures 6(c) and (d) show the dominant patterns for
two representative values of free receptor upregulation (C5 = 1.6b∗, 1.95b∗) together
with their percentage dominance. Figure 7 shows the dominant patterns result-
ing from an initial state comprising a region of random, rather than periodic, data
surrounded by the unstable homogeneous state.
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Figure 5: (a) A section of a numerical simulation run to steady state in a periodic
line of 120 cells, in which λ = 2 and λ = 3 patterning modes are present. The
parameter values are as in Figure 3 except C5 = 1.85b∗, C2 = −1850. (b) The power
spectral density estimate corresponding to the simulation shown in (a).

Comparison of Figures 1(b,c) and 6(a) shows clearly that, due to the subcritical
nature of the patterning bifurcations, patterns form in some regions of parameter
space in which the homogeneous steady state is linearly stable to periodic pertur-
bations. Furthermore, the fastest growing modes predicted by the linear analysis
provide a poor description of the nonlinear behaviour, except for very strong ligand
inhibition at which λ = 2 patterns are predicted and observed. As the inhibition is
reduced λ = 3 and λ = 4 solutions achieve dominance. A region of λ = 4 dominance
is observed between the λ = 2 and λ = 3 regions. Under induction, λ = 4 regains
dominance together with other, longer-wavelength patterns (λ = 5, 6, 9). Figures
6(b–d) indicate that the dominance of the patterns is greatly reduced for lateral
induction (A > 0), the resulting patterns containing many defects. Comparison of
Figures 7 and 6(c,d) indicates that the same patterning trends are observed in the
case for which the initial state comprises random perturbations to the homogeneous
steady state: at strong inhibition, short range patterns dominate; longer-range pat-
terns dominate under induction. We note that, apart from the case of very strong
inhibition (in which the alternating pattern is robustly generated), the dominance of
these patterning modes is very greatly reduced, and the resulting steady state pat-
terns display mixtures of stable patterning modes with many defects (figure omitted).
Combined, these results further exemplify that, with the emergence of more stable
patterning modes (as inhibition is decreased), the predictions of the linear analysis
shown in Figure 1 comprehensively fail to capture the nonlinear behaviour.

We pause to remark that, though we are primarily concerned with the system’s
steady-state behaviour, the simulation dynamics provide many interesting features
for investigation. The initial patch of stable pattern may invade the (unstable) ho-
mogeneous state via a travelling wave; alternatively, a travelling wave of a different
mode may invade the homogeneous state and the original stable pattern. In some
cases, propogation failure leads to pinned regions between the original and alterna-
tive, invading, pattern. Lastly, an apparently incoherent mix of (distorted) pattern
modes may evolve. Characterisation of these dynamics in terms of the parameter
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values forms ongoing work, adding to existing investigations by, e.g. Owen (2002) .
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Figure 6: (a) The dominant pattern period in a region of A -F space, (b) the per-
centage of the domain occupied by that pattern as a measure of its dominance, and
the dominant patterns for two representative values of free receptor upregulation
together with their percentage dominance: (c) C5 = 1.6b∗, (d) C5 = 1.95b∗. Sim-
ulations undertaken in a line of 10λ + 120 cells with periodic boundary conditions.
Parameters as in Figure 3 except C2, C5 as indicated.

4 Non-integer patterns

The simulations presented in §3 demonstrate that many different stable patterns
exist at each parameter value; furthermore, the patterns generated from the non-
linear model do not adhere to the linear predictions presented in §2.2. In addition,
the resulting patterns generally contain defects. The linear analysis applies for both
continuous and discrete systems; as such, the wavenumber, k, is arbitrary and may
correspond to non-integer pattern wavelength. In the discrete case, this leads to
patterns which do not fit onto the lattice. Below, we investigate the behaviour of
such patterns, highlighting a point at which the equivalent discrete and continuum
representations of signalling phenomena diverge.

We demonstrate the behaviour of non-integer wavelength patterns in our discrete
framework by simulating the system (1)–(3) with initial conditions comprising a
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Figure 7: Diagrams showing the dominant pattern, together with its percentage
dominance resulting from an initial state comprising a region of random data sur-
rounded by the unstable homogeneous steady state for for two representative values
of free receptor upregulation: (a) C5 = 1.6b∗, (b) C5 = 1.95b∗. Other parameters as
in Figure 3 except C2 as indicated.

pattern of non-integer period sampled on the discrete mesh. Figure 8 shows initial
conditions of period λ = 2.8 together with the resulting steady-state pattern.

Figure 8(a) illustrates how sampling patterns of rational non-integer wavelength
λ (with wavenumber k) on a discrete mesh leads to patterns of longer wavelength λ
(with wavenumber k) given by:

λ =
2

k
; k = min {nk(mod2), 2 − nk(mod2)} ; λ, n ∈ Z. (8)

Equivalently, λ may be interpreted as the shortest integer multiple of the original
pattern that fits onto a discrete mesh; i.e.

λ = min{mλ}; where m ∈ Z satisfies mλ(mod2) = 0. (9)

Returning to the case for which λ = 2.8, we find λ = 14 (n = 50, m = 6); inspection
of Figure 8 readily confirms this. Such wavelength selection ‘errors’ relate to aliasing
effects observed in signal processing applications, in which the sampling frequency
can cause signals of disparate wavelength to become indistinguishable.

We remark that Figure 8(b) indicates that the steady-state pattern of period
λ = 14 can, roughly speaking, be thought of as being constructed from (distorted)
patterns of shorter wavelength (here, patterns of period λ = 5 and λ = 3). We
note further that a straightforward linear analysis reveals that the homogeneous
steady-state is stable to period-14 perturbations in the chosen parameter regime.
We therefore conclude that the λ = 14 pattern bifurcates subcritically from the
homogeneous steady-state in a similar manner to that shown in Figures 3(c) and
4 (we do not present a corresponding bifurcation diagram since the behaviour is
exceedingly complex, with many solution branches).

For patterning modes of irrational period, Equations (8), (9) of course predict
that there is no pattern that fits on the discrete lattice. For initial conditions of
irrational period (in practice meaning that they do not correspond within numerical
error to a rational that would lead under (8), (9) to a period observable within the
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number of grid points used), numerical simulation suggests that the period of the
resulting pattern becomes very large. For example, Equations (8), (9) predict pat-
terns of wavelength λ = 42426 from initial data of period λ = 2

√
2, truncated to 4

decimal places. However, we remark that the resulting pattern is ‘locally periodic’,
consisting of smaller stable patterns that are stable at that choice of parameter value,
as was demonstrated for the λ = 14 pattern and shown in 8(b). Figure 9 shows the
pattern resulting from initial conditions of λ = 2

√
2 (truncated to 4 decimal places).

The simulation was undertaken on an array of 3λ cells. The resulting distribution
of free ligand appears to display short-range periodicity; however, small defects in
the pattern mean that the true period, λ, is very much larger. This highlights a
disparity which can arise between the discrete and continuum representations of the
same patterning system: in the continuum case, period-selection issues do not arise
and the wavenumber k is arbitrary; however, in the discrete model, initial data of
fractional (or irrational) period can result in the system evolving to surprisingly
long-wavelength patterns. These patterns comprise smaller patterns that are stable
at that choice of parameter value, with defects. These ‘locally periodic’ patterns
are consistent with the patterns one observes experimentally; Wearing & Sherratt
(2001) also observed such approximately periodic patterns, concluding that these
are due to the patterning dynamics rather than environmental heterogeneity. The
results presented in this section suggest that being driven towards a non-integer pat-
terning state (via initial conditions and feedback characteristics) provides a simple
explanation for the emergence of such patterns.
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Figure 8: (a) Initial conditions corresponding to period λ = 2.8 demonstrating the
λ = 14 periodicity on the discrete lattice, and (b) the eventual λ = 14 pattern
comprising distorted λ = 5 and λ = 3 patterns. C2 = 0, C5/b

∗ = 2.8; other
parameters as in Figure 2.

5 Discussion

In this paper, we have presented an investigation into the patterning behaviour
of a discrete model of juxtacrine cell signalling due to Owen & Sherratt (1998).
The model comprises ODEs describing ligand-receptor binding activity on discrete
cells. Three populations are considered: ligand molecules, unoccupied receptors and
bound ligand-receptor complexes. Feedback between the number of bound receptors
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Figure 9: The steady-state ligand pattern resulting from an initial state with period
λ = 2

√
2 (truncated to 4 decimal places). C2 = 0, C5 = 2.8/b∗; other parameters as

in Figure 2.

on a cell and its production of new receptors and ligand was incorporated and, by
varying two free parameters controlling the strength of this feedback, up- and down-
regulation of receptor production (known as lateral inhibition or induction) were
modelled.

Via a linear analysis, bifurcation analysis and numerical simulation, the variety
of stable patterns which exist, for different feedback parameters was characterised.
We demonstrated that the majority of bifurcations which generate different pattern-
ing modes are subcritical (a supercritical pitchfork may be obtained in the period
two case for certain parameter choices) and stable patterns may therefore be formed
in regions of parameter space where the homogeneous state is stable to such periodic
perturbations. This sheds light on the inability of the linear analysis to reflect the
observed behaviour of the nonlinear system, as reported in Wearing et al. (2000),
Wearing & Sherratt (2001) and Webb & Owen (2004) (and remarked in Plahte
(2001) with regards to a simpler signalling model): at a given point in parameter
space, a wide variety of stable patterns of disparate wavelengths exist overriding
the wavelengths predicted by the linear analysis; indeed, we demonstrate that the
fastest-growing linearly unstable modes (often good predictors of nonlinear pattern-
ing behaviour) are inaccurate. By analysing the results of numerical simulations in
the spatial and frequency domains, the dominant pattern in a representative region
of parameter space was determined, showing that shorter wavelengths dominate in
the regime of lateral inhibition (and that the linear analysis is more successful at
predicting the patterning behaviour in this regime), giving way to longer wavelength
patterns with substantial defects under lateral induction.

The linear analysis presented herein may be applied to both continuous and dis-
crete systems and the stability of patterns of arbitrary period may be discerned.
Within a discrete framework, patterns of non-integer period do not have a clear
meaning. We have demonstrated that sampling such (rational) non-integer patterns
on a discrete lattice leads to the generation of longer wavelength harmonics; namely,
the shortest integer multiple of the original pattern which fits onto the lattice. If
patterns of this wavelength are unstable in that region of parameter space, shorter
wavelength stable patterns are used to create it. If the wavelength under consider-
ation is irrational, it will not be periodic on the lattice over any domain size and
aperiodic solutions are obtained. By simulation we showed that for approximately
irrational initial patterning modes the solutions obtained have very large period;
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however, they display ‘local periodicity’, being constructed from stable, shorter-
wavelength patterns with defects. This highlights a disparity between the discrete
and continuum representations of cell signalling systems. In the continuum case,
such period-selection behaviour is not observed and patterns of arbitrary wavelength
may be obtained, and, in general, nonlinearities will generate higher harmonics. Fur-
thermore, other studies of this system (Wearing & Sherratt, 2001) have noted that
the patterns created display, in general, short-range periodicity with many defects
and that such patterns are consistent with those observed experimentally. Our anal-
ysis of non-integer patterns indicates that such patterns emerge naturally when the
system is driven towards a non-integer patterning mode via initial conditions and
feedback characteristics.

Our results illustrate the following more general issues in analysing discrete pat-
terning systems. We followed the usual procedure of performing a linear analysis in
order to partition parameter space into regions in which different patterning modes
might be expected to exist. However, given that many of the bifurcations in ques-
tion are (as we have highlighted) subcritical, such a linear analysis does not provide
an accurate description of the nonlinear behaviour; a thorough bifurcation analysis
is thus required to indicate patterning behaviour. It is worth noting that the lin-
ear analysis will be similarly ineffective if many (possibly generated at supercritical
bifurcations) stable patterns exist for a given parameter set. For systems of this
type, the a priori linear analysis is insufficient and a numerical analysis of the type
employed herein is required. Numerical simulation of the model equations from a
range of initial states together with a spatial- and/or frequency-domain analysis
of the resulting steady-state patterns seem to represent the most effective ways to
characterise the patterning behaviour.

The linear analysis summarised in this paper employs standard techniques. Wear-
ing et al. (2000) noted that it is the specific form of the juxtacrine averaging term
employed in this model (which corresponds to striped patterns in a square array)
which distinguishes this patterning mechanism from Turing models, and that a term
corresponding to discretised diffusion does not make sense biologically. However, it
is markworthy that O’Dea & King (2011a,b) employed a homogenisation technique
to a simpler model of Delta-Notch signalling (Collier et al. (1996)) to show that,
on the tissue scale, the juxtacrine interaction does indeed manifest itself as linear
diffusion, at least in the short-range patterning regime. In the Appendix, we show
that the technique is applicable to more complex signalling models, paving the way
for their incorporation into tissue-scale studies, by applying it to Equations (1)–(3).
We further remark that this technique may only be usefully applied to patterns
formed at supercritical bifurcations; the predominance of subcritical bifurcations in
Equations (1)–(3) has, therefore, implications for the application of such methods
to cell signalling models.

In this paper, we have attempted to characterise the range of patterns produced
by a specific cell signalling model. The model chosen is of fairly generic type and,
for simplicity, we have considered striped patterns only. Interesting avenues of in-
vestigation include the influence of cell shape on the resulting dominant patterns,
extending the work of Webb & Owen (2004), and the characterisation of patterning
dynamics in terms of the parameter values in such signalling systems.
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A A multiscale analysis of period-two patterns

In this appendix, we demonstrate that, in the period-two patterning regime, the
discrete juxtacrine signalling mechanism manifests itself as linear diffusion on the
macroscale. The method employed is that presented by O’Dea & King (2011a,b);
the details are therefore omitted for brevity.

The results presented in this paper suggest that introducing appropriate spatial
variation in the feedback parameters results in different patterning behaviour in cer-
tain regions of the domain. In a specific biological context, such parameter variation
would correspond to differences in the sensitivity of the cells to Delta-Notch binding,
leading to the adoption of a particular programme of gene activation by a subset of
the cell population according to spatial position.

To construct such a continuum model, a homogenisation process is required. We
assume that the spatial variation of the chosen parameter is slow compared to the
variation of ligand and free and bound receptor numbers, thereby preserving the
local periodicity in the patterning regime; that is, we construct a two-scale model.
Biologically, this corresponds to analysis of microscale pattern formation in response
to macroscale variation in cell-signalling activity (e.g. that induced by tissue-level
chemical or physical stimulation). Considering a line of cells, we denote the dis-
tance between cells by δ ≪ 1 (see Figure 10), introduce a slowly-varying continuum
variable X = δj and slow timescale T = δct (where c > 0 is as yet unspecified)
and represent the numbers of ligand, free and bound receptors in the multiple-scales
form aj = a(j,X, T ), fj = f(j,X, T ) and bj = b(j,X, T ), in which j and X rep-
resent the rapidly-varying and the slow spatial scales, respectively. Additionally,
since in the period-two patterning regime, neighbouring cells are expected to differ
significantly in the numbers of ligand and free/bound receptors, we introduce the
following notation to differentiate between “odd” and “even” cells:

ψ(j;X,T ) = ψ+(X,T ) j = 2i+ 1, (10)

ψ(j;X,T ) = ψ−(X,T ) j = 2i, (11)

where ψ represents the numbers of ligand, bound and free receptors (a, f , b) and i
is an integer. Exploiting this notation and on expanding in Taylor series, the spatial
coupling term 〈ψj〉 defined by equation (4) may be written:

〈ψ±〉 =
1

2

(

ψ±(X,T ) + ψ∓(X,T ) +
δ2

2

∂2

∂x2
ψ∓(X,T ) + O(δ4)

)

. (12)

In the following we derive coupled equations governing receptor and ligand activity
in odd and even cells separately, facilitating the inclusion of fine-grained patterning
phenomena within our continuum model.

The variation in feedback strength due to biochemical or biophysical conditions
is for definiteness modelled by introducing a slow spatial variation to the parameters
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Figure 10: Definition sketch: a line of cells and the spatial coordinates employed in
the multiscale analysis.

C2 and C5, leading to variations in the gradient of the ligand and receptor production
functions, which control the patterning behaviour. Figure 3 shows that (for suitable
values of C2) period-two solutions are created at a supercritical pitchfork bifurcation
on the line L4 (see Figure 1(a)); correspondingly, we expand about L4 such that:

P
(k)
f (b∗,X; δ) = P

(k)∗
f + δ2Fk(b

∗,X) + · · · , (13)

ψ±(X,T ; δ) = ψ∗ + δψ±
1 (X,T ) + δ2ψ±

2 (X,T ) + · · · , (14)

wherein the superscript (k) denotes the kth derivative of Pf with respect to b (a
corresponding expansion is used for the ligand production rate Pa), and asterisks
denote the values of the feedback functions (and their derivatives) at the bifurcation
point on L4 at which ψ achieves its homogeneous steady-state ψ∗. Exploiting the

notation introduced in §2.2, we have A = P
(1)∗
a + δ2A1(b

∗,X) and F = P
(1)∗
f +

δ2F1(b
∗,X); the points

(

P
(1)∗
a , P

(1)∗
f

)

lie on the line L4. For parameter choices
such that F1(b

∗,X) 6 0, we therefore expect, as t → ∞, spatially-homogeneous
solutions to be approached; for F1(b

∗,X) > 0, period-two solutions (generated at
the supercritical pitchfork) exist.

For clarity, we note further that the supercritical bifurcation under consideration
exists for a range of parameter values corresponding to lateral inhibition; the analysis
below may only be usefully applied in this case.

Combining the above expansions and choosing c = 2 (in order that both temporal
and spatial coupling appears in the O(δ) perturbation), and after some lengthy
algebra, we obtain the following partial differential equation for the number of bound
receptors on odd cells:

∂b+1
∂T

= Λ
∂2b+1
∂X2

+ µb+3
1 + νb+1 . (15)

The remaining variables are calculated via f+
1 = φb+1 and a+

1 = χb+1 and ψ+
1 = −ψ−

1 .
The parameters Λ, µ, ν, φ, ψ and χ are cumbersome functions of the model parame-
ters (ka, kd, da, df , ki), the steady-states (a∗, f∗, b∗) and associated branch point
feedback values and the perturbations to the feedback strength and are therefore
omitted for brevity. We remark, however, that the signs of µ and ν dictate the pat-
terning behaviour of the model. In particular, for constant µ, ν, the steady states
of (15) are b+1 = (0,±

√

−ν/µ); for model parameter choices corresponding to F

below L4, only the trivial state exists (corresponding to the maintenance of the
homogeneous steady state); the change in sign of µ, ν for parameter values at which
F > L4 leads to the generation of patterned states: b ∼ b∗ ± δ

√

−ν/µ.
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