
A new creep law for crushable aggregates
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The authors have recently proposed a new equation for the one-dimensional (1D) normal
compression line, which contains a parameter controlling the size effect on average strength. They
showed that the equation held for a wide range of discrete-element modelling (DEM) simulations of
crushable aggregates. This paper incorporates the time-dependence of particle strength. A new
equation is proposed and examined using DEM of 1D creep. The simulations show that while the
plots may seem linear on a plot of voids ratio against the logarithm of time in the traditional way, the
new proposed law, which is linear when the voids ratio is also plotted on a logarithmic scale, is more
appropriate. The simulations examine the influence of the size effect hardening law, the time
dependence on strength and stress level. It is shown that the new equation holds for each case.
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NOTATION

b size effect on strength for a material
C creep coefficient
d particle diameter
e voids ratio
e0 initial voids ratio
ec voids ratio under an applied stress sc

ey voids ratio corresponding to yield stress on log e–
log s plot

F force
m Weibull modulus
n slow-crack growth exponent
q octahedral shear stress in a particle
q0 value of octahedral shear stress such that 37% of

particles are stronger for a given particle size
t time
t0 time from which creep strains are measured
t(test) time taken to measure tensile strength sTS

e creep strain
l slope of normal compression line in ln e – ln s space
s stress
s1 major principal stress in a particle
s2 intermediate principal stress in a particle
s3 minor principal stress in a particle
sav average particle strength
sc applied stress at a voids ratio of ec

ss strength of the smallest particle
ss0 strength of the smallest particle at time t0

sTS tensile strength
sy yield stress on log e – log s plot

INTRODUCTION
McDowell (2003) proposed a theoretical explanation for
observed creep behaviour, which will be briefly described
again here. Granular materials creep under constant
effective stress (Leung et al., 1996; Lade & Liu, 1998),
such that creep strain is usually reported to be proportional
to log time

e~C log t=t0 (1)

where t0 is the time from which creep strains are measured. It
is known (Leung et al., 1996; Lade & Liu, 1998) that creep of
granular materials is accompanied by particle crushing.
McDowell & Bolton (1998) proposed that a linear normal
compression line in voids ratio–log stress space

e~ec{l ln(s=sc) (2)

was consistent with equation (1) for a granular material
subjected to creep at constant stress under one-dimensional
(1D) conditions. The assumptions were that the current
macroscopic stress should be proportional to the average
strength of the smallest particles in the aggregate: these
particles continue to crush under increasing stress levels,
becoming statistically stronger and filling voids. According
to equation (2), an aggregate should be in equilibrium with
a voids ratio ec under an applied stress sc, where sc is
proportional to the average strength of the current smallest
particles ss, so that

sc~kss (3)

where k is independent of particle size due to self-similarity
across different orders of particle size. Substituting
equation (3) into equation (2) gives

e~ec{l ln(s=kss) (4)

The law for time-dependent strength of ceramics is that, for
a tensile test on a ceramic specimen, if the standard test
used to measure the tensile strength sTS takes time t(test),
then the stress that the sample will support safely for a time
t is given by (Davidge, 1979; Ashby & Jones, 1986)

s

sTS

� �n

~
t(test)

t
(5)

where n is the slow-crack growth exponent. Data for n are
very limited, but n 5 10–20 for oxides at room temperature.
It is widely accepted that the failure of a spherical body
under diametral compression is in fact a tensile failure (e.g.
Jaeger, 1967). Hence, if ss0 is the average particle strength
that can be measured at time t 5 t0, then the average
strength ss after time t, according to equation (5) would be
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ss~ss0(t0=t)1=n (6)

Substituting equation (6) into equation (4) gives

e~ec{l ln(s=kss0){
l

n
(t=t0) (7)

Hence the reduction in voids ratio De as a function of time
after time t0 is simply

De~
l

n
ln(t=t0)~

2:3l

n
log(t=t0) (8)

so that the log time effect is observed. Taking an initial
voids ratio e0 of 0?5, say, at the onset of creep, the creep
coefficient in equation (1), given by

C~
2:3l

n

1

1ze0

(9)

ranges typically from about 0?0015 (taking l 5 0?1, n 5 100)
to 0?03 (taking l 5 0?2, n 5 10). Most of the values of creep
coefficients reported by Leung et al. (1996) for 1D compres-
sion of sand at high stress levels fall within this range.

A NEW CREEP LAW FROM A NEW NORMAL
COMPRESSION LINE
McDowell & de Bono (2013) have shown, analytically and
using discrete-element modelling (DEM), that the 1D
normal compression law is actually given by

log e~log ey{
1

2b
log

s

sy

� �
(10)

where b controls the particle size effect on average particle
strength sav

sav!d{b (11)

ey is the value on a linear log–log plot at a stress
corresponding to the yield stress sy and sy is proportional
to the average particle strength for an initially uniformly
graded aggregate. In this case, if the analysis in the previous
section is reapplied to the new McDowell & de Bono (2013)
normal compression line, then

log e~log e0{
1

2bn
log

t

t0

� �
(12)

0.8

n = 10

n = 5

n = 1

0.7

0.6

Vo
id

s 
ra

tio

0.5

0.4
0.001 0.01

Time: s

(a)

(b)

0.1

Vo
id

s 
ra

tio

0.8

y = 0.5481x –0.051

y = 0.3827x –0.106

y = 0.021x –0.529

= –0.055
–1
2bn

= –0.11
–1
2bn

= –0.55

Predicted
slope

–1
2bn

0.4
0.001 0.01

Time: s
0.1

n = 10

n = 5

n = 1

Fig. 1. Voids ratio as function of time for various time exponents n, plotted on conventional semi-logarithmic axes (a) and double
logarithmic axes (b)
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which is the new creep law for crushable granular materials
proposed here. This paper uses the simple crushing model
proposed by McDowell & de Bono (2013) to establish
whether equation (12) applies to a simple sample of
crushable particles subjected to normal compression and
subsequently creep, using DEM.

DEM OF CREEP OF CRUSHABLE AGGREGATES
A dense random sample of 620 spheres of diameter 2 mm
was created in a scaled-down oedometer of diameter
30 mm and height 7 mm and the sample was loaded one-
dimensionally, in the same manner as described by
McDowell & de Bono (2013). Using a larger oedometer is
impractical due to the very large numbers of particles
generated progressively throughout the simulations. To
determine whether fracture should occur or not, the
octahedral stress within each particle was used. This is
given by

q~
1

3
½(s1{s2)2z(s2{s3)2z(s1{s3)2�1=2 (13)

This provides a simple criterion to facilitate breakage,
taking into account multiple contacts on a particle surface

while avoiding the use of agglomerates. For PFC3D
(Itasca, 2005), for a sphere compressed diametrically
between two walls, the value of q generated using equation
(13) is equivalent to

q~0:9
F

d2
(14)

and so is 0?9 times the induced characteristic stress.
Therefore, the assumption was made that for particles
loaded under multiple contacts, the particle would break if
the octahedral shear stress was greater than or equal to its
‘strength’. In this paper, the strengths of the particles
satisfy a Weibull distribution of q values and, according to
McDowell & de Bono (2013), if the Weibull modulus is m
and the failure is governed by bulk fracture, then

b~
3

m
(15)

Particle strength was also assumed to follow the time-
dependent law given in equation (6). When a particle was
found to have an induced value of q greater than or equal
to its strength, it was replaced by two equal-sized fragments
within the parent sphere, which overlapped so that the
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Fig. 2. Voids ratio as function of time for simulations with various values of Weibull modulus m, plotted on conventional semi-
logarithmic axes (a) and double logarithmic axes (b)
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particles moved in the direction of the minor principal
stress – as described by McDowell & de Bono (2013). The
total volume of two fragments was equal to that of the
parent sphere to ensure conservation of mass.

To simulate creep, a strength–time dependency was
introduced to the model, as used and described in detail by
McDowell & de Bono (2013). The oedometer sample was
compressed beyond yield until the applied axial stress was
10 MPa for a sample of spheres having a Weibull modulus
m of 3?3 and a 37% q0 strength of 37?5 MPa, which were
the parameters previously used to model experimental data
(McDowell, 2002). Then, using a value of t0 5 0?001 s,
particle strengths were decreased according to equation (6).
The simulation was cycled while continuously monitoring
the octahedral shear stresses within each particle. When the
stress within a particle was found to exceed the individual
strength, it was replaced with two new fragments.
Immediately afterwards, a number of computational cycles
were required to dissipate the artificial pressure increase
due to the overlap between new fragments, the same
method as used by McDowell & de Bono (2013) to model
1D compression. During this period time was not
considered. The top platen was then gradually reloaded
to maintain a constant axial stress of 10 MPa. The stresses

were checked again and if any particles were found to be in
a state of breakage, this process was repeated; that is,
particles were replaced with new fragments, energy was
allowed to dissipate and then the platen was reloaded to a
stress of 10 MPa. Once no more particles were in a state of
breakage under a constant axial stress of 10 MPa, the
current voids ratio and elapsed time were recorded, after
which consideration of time was resumed, and the
strength–time dependency was applied.

Figure 1(a) shows the results for voids ratio as a function
of log time for three different time exponents n. Figure 1(b)
shows the same data plotted on a log–log scale according to
equation (12). The slopes are shown and the predicted
values according to equation (12) are also shown. If a
larger value of t0 is used, any plots of voids ratio against log
time would have the same slope according to equation (12),
with the curve simply shifted to the right due to the higher
starting value. However, larger increments of time would
necessitate a higher number of computational timesteps to
complete the simulations.

Figure 2 shows results for the same initial sample, with a
time exponent n 5 1 and three different Weibull modulus
values of 1?0, 2?0 and 3?3 (all with q0 5 37?5 MPa).
Figure 2(a) shows the conventional plot of voids ratio
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against log time and Fig. 2(b) shows the results on the log–
log plot, with the calculated slopes and the predicted values
according to equation (12).

Figure 3(a) shows the creep response for the sample with
q0 5 37?5 MPa, m 5 3?3 and n 5 10, one-dimensionally
loaded to stresses of 10 and 15 MPa. The results are plotted
in the log–log space in Fig. 3(b). The simulation loaded to
15 MPa underwent a higher degree of compression, so has
a lower voids ratio at the start of creep. Although the initial
voids ratios are different, the slopes are the same and agree
with the predicted value according to equation (12). The
data points on the log e–log s plots in all three figures do
not fall on perfectly straight lines; this is simply because the
initial sample contained only 620 spheres. However, the
figures show clearly that equation (12) holds for each time
exponent, size effect on strength and stress level considered.

CONCLUSIONS
DEM has been used to show that the time-dependent law
for the strength of ceramics gives rise to the correct creep
behaviour under 1D conditions. The results agree with the
hypothesis that the creep should be linear when the
logarithm of voids ratio is plotted against the logarithm
of time. The slope of the line has been shown to be given by
a new equation (equation (12)), which also includes the size
effect on average strength as well as the exponent for the
time-dependent strength. Therefore, by performing stan-
dard tests to obtain the size effect on average tensile
strength of grains of a material by crushing between flat

platens, and if the exponent for time-dependent strength
can be measured by allowing particles to be loaded under
constant stress and measuring the time to failure, then the
creep behaviour of an aggregate of such grains can be
predicted.
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WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion.
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