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Abstract

Interleaved converters with coupled inductors are widely used to share load current in high power

applications. It offers high equivalent switching frequency and reduced output current ripples using small

size magnetic components. Due to smaller common-mode inductance, control system can be designed

to achieve fast dynamic response. This paper proposes 8 channel interleaved DC/DC converter for

interfacing super-capacitor energy storage system to a 400V DC voltage bus. Multi-stage interleaving

magnetic circuit with two-phase coupling inductor as a building block is proposed. A methodology is

developed to construct the model of the multi-stage magnetic circuit from the basic two-phase coupled

inductor model. The derived model is successfully used to evaluate the system power losses and to

design the magnetic circuit parameters and its current controller to fulfil the DC/DC converter steady

state and dynamic performance specifications. A 20kW/four stage/8 channel DC/DC converter laboratory

prototype has been built to connect a super-capacitor stack to 400V DC voltage bus. Experimental

investigation validates the modeling, the system losses calculations and the design specifications of the

system.
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I. INTRODUCTION

Paralleling of DC-DC converters [Fig.1(a)] is the most common solution in high current

applications. The channels can be operated synchronously or interleaved, the latter having the

advantage that harmonic cancellation takes place on the output. Hence interleaved operation can

reduce the switching frequency per channel and/or the smoothing inductance but at the expense

of having high circulating currents caused by the existence of inter-channel differential-mode

PWM voltage.

Regarding the smoothing inductors, there are two options:

• Using independent inductors [1]–[4]: The common-mode current ripple (which is a part

share of the output current) and the differential mode current ripple (multi-channel circu-

lating current) are equally attenuated.

• Using coupled inductors or inter-cell transformers: Though coupled inductor is one of the

key building block in power application from the 1920s [5], its recent application is made

by Ćuk in buck-boost converter [6], [7]. In [8], Witulski has shown how a coupled inductor

differs from normal inductor and transformer. More recently coupled inductors become

more popular in interleaved parallel DC-DC application. Its application in hybrid vehicle

[9], its performance analysis with soft switching technique [10], thermal behaviour study

[11], parasitic ringing phenomenon in discontinuous mode of operation [12], its impact on

improving efficiency and dynamic response of converters [13], associated closed loop control

techniques [14], [15] and optimization and 3-D integration of coupled inductors to improve

system power density [16]–[20] are well reported in the literature. In paralleled converters

with coupled inductors, the mutual or magnetizing inductance attenuates the inter-channel

circulating currents whilst only the leakage inductance attenuates the common mode current.

This means that the design of the inter-cell inductance allows tuning of the magnetizing

and leakage inductance such that each ripple current component can be attenuated to obtain

an optimized performance (current ripple) while minimizing the stress (extra loss due to

switching ripple) and inductor size.

Fig.1(b) shows the topology of a two channel coupled inductor based interleaved system. The

coupled inductor consists of two windings whose mutual inductance Lm1 is high. The total self

inductance of each winding is LS1 . The high mutual inductance of the coupled inductor provides
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(a) Topology of a two channel

DC-DC converter in parallel

(b) Two interleaved channels

with coupled inductor

(c) Three-stage magnetics for four-

interleaved channels

(d) Eight channel interleaved converter with coupled inductors in four stages for super-

capacitor interface

(e) Voltage va with

time

Fig. 1. Interleaved DC-DC converter topologies

high impedance to the differential- mode (DM) PWM voltage component (va − vb). Hence the

DM switching frequency component is attenuated to a small value but the PWM common mode

(CM), having a frequency of twice the switching frequency fsw, interacts only with the leakage

inductance of the coupled inductor. If the inherent leakage inductance is not sufficient to limit
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the CM (2fsw) current component, an additional Ll2 inductance rated for the current cumulated

over two channels is required.

If a higher number of channel is required, there are few options:

• Implementing a complex inter-phase transformer with multiple windings [18] which is

somewhat difficult to build and will always result in a very customised solution.

• Implementing a structure as in [16], [19], which consists of a number of two winding

coupled inductors identical to the number of channels which is much easier to manufacture.

The structure achieves some degree of symmetry by inserting in each channel the windings

from two different inductors interconnected with the next/previous channel in a circular

succession

• Implementing a multi-stage structure [21], [22], with each stage consisting of two coupled

inductor windings with the common point feeding one of the coupled windings of the

next stage [see Fig.1(b)-1(d)]. High dynamic performance and low switching current ripple

in each channel current are the key advantage of the topology. Moreover, it provides

the flexibility to extend the number of parallel channels without modifying the existing

magnetics provided the total number of channels is equal to 2k (k is an integer). In this

paper, the structure will be analysed and modelled for the first time in the literature.

If the number of channels increases to four, a second stage of coupled inductors is necessary as

shown in Fig.1(c), where Lm2 provides the high impedance to the differential mode component,

now having a frequency 2fsw. Unless the leakage inductance present in the two stages is

insufficient, an extra inductance Ll3 is added to limit the 4fsw common mode component. As

the number of channel increases, the number of stages (and the associated leakage inductance

contained in the coupled inductors) increases which decreases the value of the final stage

inductance.

In this paper, an eight-channel interleaved converter consisting of three stages of coupled

inductors (Fig.1(d)) is proposed to implement a controllable interface between a super-capacitor

stack and a voltage regulated DC bus. A detailed mathematical model of the multi-stage in-

terleaved DC-DC converter is derived to enable both steady state and transient analysis of the

system. The model is then used to determine the harmonic current components at various stages

and to calculate the various losses in the system. Finally, the step response/dynamic performance

of the controller and the efficiency of the system are experimentally verified.
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The organization of the paper is as follows. Section II describes the modeling of the state

matrices of the magnetic structure. Section III presents the design of the magnetic components

for an 8-channel/4-stage prototype and provides a comparison of the 4-stage topology with the

1-, 2-, 3- stage topologies in terms of peak-to-peak ripple content in each stages. The design

of the current controller with additional feed-forward term is explained in section IV. Section

V and section VI respectively details harmonics analysis and loss calculation in the magnetics.

The experimental results and conclusion of the work are presented in section VII and section

VIII respectively.

II. MODELING OF THE SYSTEM

In this section modeling of the multi-stage interleaved inductor structure is carried out, starting

from a 2-stage system and extending to the 4-stage system.

A. The modeling of the two-stage interleaved system

The circuit diagram of the interleaved two stage magnetics is shown in Fig.1(b) where va and

vb are the inputs [the converter pole voltages with respect to the negative DC bus terminal ‘O’

in Fig.1(a)] and ia, ib and v0 are the three state variables. The time domain waveform of va is

shown in Fig.1(e), where T is the switching period and ‘d’ is the operating duty ratio. vb will

have similar shape but will be shifted by 180o. The dynamic equations can be written as,
dia
dt

dib
dt

dv0
dt

 =


0 0 − 1

ΣLl

0 0 − 1
ΣLl

1
C

1
C

0



ia

ib

v0

+


N0 N1

N1 N0

0 0


 va

vb

 ⇒ dx

dt
= Ax+BU (1)

N0 = 1
2ΣLl

+ 1
2LT1

N1 = 1
2ΣLl
− 1

2LT1

ΣLl = Ll1 + 2Ll2

LT1 = LS1 + Lm1

x = [ia ib v0]T

U = [va vb]
T

(2)
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LS1 is the self inductance of each winding in the coupled inductor (Ll1 + Lm1) and Ll1 and

Lm1 are the leakage and the mutual inductances. The state matrices A and B can be written as,

A =


0 0 − 1

ΣLl

0 0 − 1
ΣLl

1
C

1
C

0

 ;B =


N0 N1

N1 N0

0 0

 (3)

As the system is linear the small signal model can be written as

˙̂x = Ax̂+ VdcB
[
d̂a d̂b

]T
(4)

where the quantities with hat indicate the linearised small signal quantities. da and db are the

duty ratios of channel a and b respectively.

B. The modeling of the three- and four-stage interleaved system

These stages are considered in order to establish an awareness of the symmetries involved in

the final evaluation. The state matrices for the three-stage system (Fig.1(c)) can be obtained as,

A =



0 0 0 0 − 1
ΣLl

0 0 0 0 − 1
ΣLl

0 0 0 0 − 1
ΣLl

0 0 0 0 − 1
ΣLl

1
C

1
C

1
C

1
C

0


;B =



N0 N1 N2 N2

N1 N0 N2 N2

N2 N2 N0 N1

N2 N2 N1 N0

0 0 0 0


(5)

N0 = 1
4ΣLl

+ 1

4(Ll1
+2LT2)

+ 1
2LT1

N1 = 1
4ΣLl

+ 1

4(Ll1
+2LT2)

− 1
2LT1

N2 = 1
4ΣLl
− 1

4(Ll1
+2LT2)

ΣLl = Ll1 + 2Ll2 + 4Ll3

LTi = LSi
+ Lmi

for i = 1, 2

(6)

The state variables and input to the system are x = [ia ib ic id v0]T and U = [va vb vc vd]
T

respectively. Again the small signal model can be written as,

˙̂x = Ax̂+ VdcB
[
d̂a d̂b d̂c d̂d

]T
(7)

If r1, r2, r3, r4 are the resistances of the coils in the respective stages in the power circuit

[Fig. 1(d)], the state matrices for the four-stage system can be derived as,
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A =



−M0 −M1 −M2 −M2 −M3 −M3 −M3 −M3 − 1
ΣLl

−M1 −M0 −M2 −M2 −M3 −M3 −M3 −M3 − 1
ΣLl

−M2 −M2 −M0 −M1 −M3 −M3 −M3 −M3 − 1
ΣLl

−M2 −M2 −M1 −M0 −M3 −M3 −M3 −M3 − 1
ΣLl

−M3 −M3 −M3 −M3 −M0 −M1 −M2 −M2 − 1
ΣLl

−M3 −M3 −M3 −M3 −M1 −M0 −M2 −M2 − 1
ΣLl

−M3 −M3 −M3 −M3 −M2 −M2 −M0 −M1 − 1
ΣLl

−M3 −M3 −M3 −M3 −M2 −M2 −M1 −M0 − 1
ΣLl

1
C

1
C

1
C

1
C

1
C

1
C

1
C

1
C

0



(8)

B =



N0 N1 N2 N2 N3 N3 N3 N3

N1 N0 N2 N2 N3 N3 N3 N3

N2 N2 N0 N1 N3 N3 N3 N3

N2 N2 N1 N0 N3 N3 N3 N3

N3 N3 N3 N3 N0 N1 N2 N2

N3 N3 N3 N3 N1 N0 N2 N2

N3 N3 N3 N3 N2 N2 N0 N1

N3 N3 N3 N3 N2 N2 N1 N0

0 0 0 0 0 0 0 0



(9)

N0 = 1
8ΣLl

+ 1

8(Ll1
+2Ll2

+4LT3)
+ 1

4(Ll1
+2LT2)

+ 1
2LT1

N1 = 1
8ΣLl

+ 1

8(Ll1
+2Ll2

+4LT3)
+ 1

4(Ll1
+2LT2)

− 1
2LT1

N2 = 1
8ΣLl

+ 1

8(Ll1
+2Ll2

+4LT3)
− 1

4(Ll1
+2LT2)

N3 = 1
8ΣLl
− 1

8(Ll1
+2Ll2

+4LT3)

M0 = Σr
8ΣLl

+ r1+2r2+4r3
8(Ll1

+2Ll2
+4LT3)

+ r1+2r2
4(Ll1

+2LT2)
+ r1

2LT1

M1 = Σr
8ΣLl

+ r1+2r2+4r3
8(Ll1

+2Ll2
+4LT3)

+ r1+2r2
4(Ll1

+2LT2)
− r1

2LT1

M2 = Σr
8ΣLl

+ r1+2r2+4r3
8(Ll1

+2Ll2
+4LT3)

− r1+2r2
4(Ll1

+2LT2)

M3 = Σr
8ΣLl
− r1+2r2+4r3

8(Ll1
+2Ll2

+4LT3)

Σr = rl1 + 2r2 + 4r3 + 8r4; ΣLl = Ll1 + 2Ll2 + 4Ll3 + 8Ll4

LTi = LSi
+ Lmi

for i = 1, 2, 3

(10)
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The state variables and input to the system are X = [ia ib ic id ie if ig ih v0]T and U =

[va vb vc vd ve vf vg vh]
T respectively. The small signal model of the system is,

˙̂x = Ax̂+ VdcB
[
d̂a d̂b d̂c d̂d d̂e d̂f d̂g d̂h

]T
(11)

In the subsequent sections, the above model [(8) - (11)] will be used and/or approximated to

design the magnetics, its current controller and to calculate the harmonic losses in it.

III. DESIGN OF THE MAGNETICS AND COMPARISON

A. Design of the magnetics for the 4-stage structure

For the super-capacitor application there are eight channels in parallel to share the total current.

In this section, the magnetic components for this topology are designed. The design is based on

the restriction of equal maximum peak-to-peak circulating current ripple in the coupled stages

(stage-1, stage-2 and stage-3) and the maximum peak-to-peak ripple in stage-4. From (8), (9)

and Fig.1(d), ignoring the effect of resistances we can write,

dia
dt
− dib

dt
= va−vb

LT1

(12)

If the circulating current in the first stage is separated, Ic1 = ia = −ib then (12) becomes

dIc1
dt

= va−vb
2LT1

(13)

Similarly, the circulating current in stage-2 and stage-3 can be expressed as,

dIc2
dt

= va+vb−vc−vd
2(Ll1

+2LT2)
(14)

dIc3
dt

=
va+vb+vc+vd−ve−vf−vg−vh

2(Ll1
+2Ll2

+4LT3)
(15)

Again, the final stage current can be expressed from (8) and (9) as,

dI4
dt

=
va+vb+vc+vd+ve+vf+vg+vh−8v0

ΣLl
(16)

Now, for different duty ratios d, the peak-to-peak ripple in the circulating currents ∆Ic1, ∆Ic2,

∆Ic3 and in the total current ∆I4 can be expressed as,

∆Ic1 = dTsVdc
2LT1

; 0 < d ≤ 0.5

= (1−d)TsVdc
2LT1

; 0.5 < d ≤ 1
(17)
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∆Ic2 = dTsVdc
2(Ll1

+2LT2)
; 0 < d ≤ 0.25

= (0.5−d)TsVdc

2(Ll1
+2LT2)

; 0.25 < d ≤ 0.5

= (d−0.5)TsVdc

2(Ll1
+2LT2)

; 0.5 < d ≤ 0.75

= (1−d)TsVdc

2(Ll1
+2LT2)

; 0.75 < d ≤ 1

(18)

∆Ic3 = dTsVdc
2(Ll1

+2Ll2
+4LT3)

; 0 < d ≤ 0.125

= (0.25−d)TsVdc

2(Ll1
+2Ll2

+4LT3)
; 0.125 < d ≤ 0.25

. . . . .

(19)

∆I4 = (d− 8d2) TsVdc
ΣLl

; 0 < d ≤ 1
16

=
[
(0.125− d)− 8 (0.125− d)2] TsVdc

ΣLl
; 1

16
< d ≤ 1

8

. . . . .

(20)

In the above equations, the pattern of ∆Ic3 and ∆I4 repeats for the remaining range of duty

ratio (not shown). Ts is the switching period. The expression of maximum peak-to-peak ripple

in each stage (∆Ic1max, ∆Ic2max, ∆Ic3max and ∆I4max) can easily be derived. With design

constraint ∆Ic1max = ∆Ic2max =∆Ic3max =∆I4max = ∆I = 2A, the inductance requirement in

each stage can be evaluated as,

LT1 = VdcTs
4∆Ic1max

= VdcTs
4∆I

Ll1 + 2LT2 = VdcTs
8∆Ic2max

= VdcTs
8∆I

Ll1 + 2Ll2 + 4LT3 = VdcTs
16∆Ic3max

= VdcTs
16∆I

ΣLl = VdcTs
32∆I4max

= VdcTs
32∆I

(21)

In order to complete the inductor design, it is important to evaluate the currents that produce

the maximum flux densities in the cores of each stage (I1m, I2m, I3m, I4m) and the RMS winding

currents through each stage (I1rms, I2rms, I3rms, I4rms). The values of these currents at the worst
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case operating condition can be represented as,

I1m = ∆Ic1max

2

I2m = ∆Ic2max

2

I3m = ∆Ic3max

2

I4m = Iz + ∆I4max

2

I4rms =

√
(Iz)

2 +
(

∆I4max

2
√

3

)2

I3rms =

√(
I4rms

2

)2
+
(

∆Ic3max

2
√

3

)2

I2rms =

√(
I3rms

2

)2
+
(

∆Ic2max

2
√

3

)2

I1rms =

√(
I2rms

2

)2
+
(

∆Ic1max

2
√

3

)2

(22)

where Iz is the cumulative DC current component. Finally, the area product of each inter-cell

transformer (for the first three stages) and the inductor for the final stage can be obtained as,

AcAw =
LImIrms
kwBmJ

(23)

where the inductance L = 4Lm1 , 4Lm2 , 4Lm3 , Ll4 , the peak current Im = I1m, I2m, I3m, I4m and

the RMS currnet Irms = I1rms, I2rms, I3rms, I4rms respectively for the stage-1, stage-2, stage-3

and stage-4 inductor design. Ac and Aw are the cross-section and window area of the core, Kw

is the window fill factor, Bm and J are the peak flux density and current density respectively.

From (23) the magnetic cores are selected. The number of turns (nT ) and air-gap (lg) can be

selected as follows:

nT =
LIm
BmAc

, lg =
µ0nT Im
Bm

(24)

where µ0 is the permeability of the air. The designed air gap needs to be tuned to get the

desired inductance. The details of the inductor values (measured by high precision digital RLC

meter PSM1735) are listed in Table.II in the Appendix.

B. Comparison of 1-, 2-, 3- and 4-stage structure

In this section, the performance in terms of peak-to-peak ripple current in each channel winding

of the various stages is compared of the 1-, 2-, 3-, 4-stage structures (shown in Fig. 2). For the

1-stage case of Fig. 2(a), there are 8 separate inductors. The coefficient of the B matrix in (9)

can be easily derived as, N0 = 1
8Ll1

and N1 = N2 = N3 = 0. Using the same methodology used
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in the last subsection for the 4-stage topology, the peak-to-peak inductors current ripple (∆I1)

and the peak-to-peak ripple in the cumulated current (∆I2) can be derived. Fig.3(a) shows these

peak-to-peak ripple currents with variation in duty ratio. Similarly, for the 2-, 3-, 4-stage case,

the same parameters are plotted with duty cycle in Fig.3(b), Fig. 3(c), Fig. 3(d) respectively. For

the 4-stage case the peak-to-peak ripple in each channel current can be obtained by,

∆I1 = ∆Ic1 + ∆Ic2
2

+ ∆Ic3
4

+ ∆I4
8

∆I2 = ∆Ic2 + ∆Ic3
2

+ ∆I4
4

∆I3 = ∆Ic3 + ∆I4
2

(25)

where ∆I1, ∆I2, ∆I3, ∆I4 are the peak to peak ripple currents through consecutive stage

windings. In Fig.3, the values for various stage currents are calculated for the same peak-to-

peak ripple in the cumulative current. It can be observed that with increasing number of stages

the peak-to-peak ripple in all the stages decreases and the best performance is achieved with the

4-stage case.

Fig. 2. 4 topologies under comparison: (a) 1-stage topology, (b) 2-stage topology, (c) 3-stage topology, (d) 4-stage topology

IV. CONTROLLER DESIGN

The structure of the current controller is shown in Fig. 4(a). The super capacitor current

reference I∗sc is divided equally among eight channels as the reference (i∗a to i∗h). Each channel
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Fig. 3. Peak-to-peak ripple in each channel of various stages in Fig.2: (a) 1-stage topology, (b) 2-stage topology, (c) 3-stage

topology, (d) 4-stage topology

requires an individual PI controller to prevent saturation of the magnetics. The super capacitor

voltage is added as a feed-forward term where G is the gain of the modulator plus inverter.

Fig.4(b) shows the generalized block diagram of the controller plus plant after the feed-forward

addition. The output of each PI controller (duty ratio signal) is passed through the control to

total current transfer function (say, Isc(s)
Da(s)

). The total current isc is obtained by summing the

contributions from each channel. The channel currents can be obtained by multiplying Fa, Fb,

..., Fh with the total current isc. If we ignore the circulating current at each stage, Fa = Fb =

.. = Fh = 1
8
.

The control transfer function Isc(s)
Da(s)

can be evaluated from (8) and (9) as follows:

Isc(s)

Da(s)
= Ca (sI − A)−1 VdcBa (26)

where, Ca is defined as [1 1 1 1 1 1 1 1 0] in y = Cax to make y = isc and Ba is the first column
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of B in (9) (corresponding to channel a duty ratio da). Now due to the super capacitor voltage

feed forward addition, there is no effect of v0 on the current dynamics; hence the order of the

system matrix A reduces to 8 (eight) and (26) can be calculated as,

Isc(s)

Da(s)
= Vdc

N0 +N1 + 2N2 + 4N3

s+M0 +M1 + 2M2 + 4M3

=
Vdc

sΣLl + Σr
(27)

The control functions for the other channels will be same as (27). The overall closed loop transfer

function can be written as,

Isc(s)

I∗sc(s)
=

1

8

Wa(s) +Wb(s) + ..+Wh(s)

1 + FaWa(s) + FbWb(s) + ..+ FhWh(s)
(28)

where the definitions of Wa(s), .. ,Wh(s) are shown in Fig. 4(b). As Wa(s) = Wb(s) = .. =

Wh(s), (28) reduces to,
Isc(s)

I∗sc(s)
=

Wa(s)

1 +Wa(s)
(29)

Thus the control diagram is simplifies to that of Fig.4(c) where the delay of the controller is

considered.

The open loop control transfer function can be written as,

OL(s) =
Isc(s)

Iscerror(s)
=
kp (1 + sTi)

sTi
e−sTd

Vdc
sΣLl + Σr

(30)

where e−sTd models the delay of the controller, kp and Ti are the PI controller gain and time

constant respectively. The consideration of delay e−sTd imposes a limitation on the controller

bandwidth and the stability of the system (as considered in [23]). Please note that Wa(s) and

OL(s) are the same transfer function except that OL(s) considers the delay. At the crossover

frequency ωc the open loop system should have unity gain and a specified phase margin φm.

6 OL (jωc) = −π + φm

= 6
(
kp(1+jωcTi)

jωcTi
e−jωcTd Vdc

jωcΣLl+Σr

)
= tan−1 (ωcTi)− π

2
− ωcTd − tan−1

(
ωc

ΣLl

Σr

)
≈ tan−1 (ωcTi)− π − ωcTd

⇒ tan−1 (ωcTi)− ωcTd = φm

(31)

|OL (jωc) | = 1

= |kp(1+jωcTi)

jωcTi
e−jωcTd Vdc

jωcΣLl+Σr
|

≈ kpVdc
ωcΣLl

⇒ kp =
ωcΣLl
Vdc

(32)
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(a) Block diagram of the current controller

(b) Generalized block diagram of the controller plus plant

(c) Simplified block diagram of the controller plus plant

Fig. 4. Controller structure
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(a) Bode plot of OL(s) with different values of kp (b) Step response with kp = 25mΩ

(c) Step response with kp = 50mΩ (d) Step response with kp = 75mΩ

Fig. 5. Bode plot and simulation results

In (31) and (32), the approximations are justified as ωcΣLl � Σr. With φm = 0, (31) and (32)

can be solved for a given Ti [The value of Ti is given in Appendix (Table.III)]. kp is turns out to

be 0.0696 (kpmax). This kp corresponds to the absolute limit of stability. It can be observed from

the Bode plot of OL(s) with kp = 75mΩ > kpmax in Fig. 5(a) that the phase margin is negative.

However, a slightly smaller value of kp (= 50mΩ) provides stable operation but results in larger
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(a) Closed loop Bode plot (b) Step response with different load variations

(c) Effect of symmetrical parameter variation on stability
(d) A case study: Effect of non-symmetrical parameter

variation on stability

Fig. 6. System performance under different conditions

overshoots. A target phase margin (φm = π
4
) can be achieved with kp = 0.0258 [from (31)

and (32)]. The observation can also be made from the bode plot in Fig. 5(a) with kp = 25mΩ.

In order to verify the above observations a simulation model is studied in MATLAB. In the

simulation, the plant of 8 channel 4 stage topology in Fig. 1(d) and the controller in Fig. 4(a)

are modelled and the equally phase shifted carriers are used to achieve proper ripple cancellation.

A step change in the total current reference I∗sc is made and the current response is observed with

different kp values. In these simulation results, Ia, Ib, ..., Ih are the individual channel currents,

Vca is the output of one of the current controllers, Isc is the combined total current. Fig. 5(b)
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shows the simulation result with kp = 25mΩ which corresponds to a stable operating point. In

steady state, Vca is free from oscillation which is consistent with the damped response. Fig. 5(c)

shows the transient response that corresponds to kp = 50mΩ. Transiently, the current rises faster

than that with kp = 25mΩ but experiences a slight oscillation at steady state. This is due to

small the phase margin of the system. Although this operating point is stable, the small phase

margin can cause a low frequency oscillation in the inductor currents resulting in incomplete

ripple cancellation and even saturation. Hence this operating point is not optimal in terms of

magnetic component stress and leg current balancing. Finally with kp = 75mΩ, the system goes

unstable as seen in Fig. 5(d). At this stage the continuous operation of the controller is lost and

it operates in a similar manner to a bang-bang controller.

Fig. 6(a) shows the bode plot of the closed loop transfer function of the system ( Isc(s)
I∗sc(s)

). The

measured closed loop gains and phase shifts at various discrete frequencies are also shown in

this figure. The measured values from simulation and experiment are quite close to the analytical

values and a slight deviation will not be a serious issue as the designed phase margin (46.3o)

and gain margin (9.1dB) are quite high.

The step responses for different load variations are shown in Fig. 6(b). Four different step

responses are shown with −50A → −20A, −50A → 0A, −50A → 20A, −50A → 50A

reference changes. The effect of parameter variation on stability is shown in Fig. 6(c). ΣLl and

Σr are varied ±20% to observed the effect on phase margin with the same designed value of

the control parameters. It can be seen that there is no effect on the phase margin with resistance

variations and a 20% decrease of inductance leads to a phase margin of 41o (which is still

a good phase margin). In Fig. 6(c) the system is still symmetric as the the variations in ΣLl

and Σr are considered in symmetrical manner. But in reality the variation may occur in one

particular channel to make the system non-symmetric. In case of non-symmetrical system the

mathematical description become extremely complicated hence computer programming can only

handle such situation. A case study of non-symmetrical situation is shown in Fig. 6(d) where

it is assumed that channel-h leakage inductance is different (±20%) from the other channels.

With this variation the 8th columns of matrices A and B [in (8) and (9)] get changed form their

original values. It can be seen that the variations in the bode plots of the open loop system are

very small and the phase margin is 45.8o with 20% smaller inductance.
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V. HARMONICS ANALYSIS

In this section, the harmonic components of the applied voltages (va, vb, vc, vd, ve, vf , vg, vh)

are determined to get the expressions of the various current harmonics in different stages of the

system.

A. Voltage harmonics

From Fig.1(e), va (t) can be expressed as,

va (t) = Vdc ; 0 < t ≤ dT

= 0 ; dT < t ≤ T
(33)

This ignores the switching time of the semiconductor devices and dead time interval between

top and bottom devices. At steady state, va(t) is periodic in nature and it can be separated into

its Fourier content as,

va (t) = a0 +
∞∑
n=1

{ancos(nω0t) + bnsin(nω0t)} (34)

a0 = 1
T

T∫
0

va(t)dt = dVdc

an = 2
T

T∫
0

va(t)cos(nω0t)dt = Vdc
nπ
sin(2nπd)

bn = 2
T

T∫
0

va(t)sin(nω0t)dt = Vdc
nπ

[1− cos(2nπd)]

(35)

where ω0 = 2π
T

. All the components a0, an, bn are same for vb, vc, vd, ve, vf , vg, vh. However,

in the time domain expressions there will be a phase shift in (34) as follows:

vb (t) = a0 +
∞∑
n=1

{ancos(nω0t+ nπ) + bnsin(nω0t+ nπ)}

vc (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ nπ

2
) + bnsin(nω0t+ nπ

2
)
}

vd (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ n3π

2
) + bnsin(nω0t+ n3π

2
)
}

ve (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ n5π

2
) + bnsin(nω0t+ n5π

2
)
}

vf (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ nπ

4
) + bnsin(nω0t+ nπ

4
)
}

vg (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ n3π

4
) + bnsin(nω0t+ n3π

4
)
}

vh (t) = a0 +
∞∑
n=1

{
ancos(nω0t+ n7π

4
) + bnsin(nω0t+ n7π

4
)
}

(36)
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B. Calculation of current harmonics

From (8) and (9) ignoring the effect of resistances we can write,

dia
dt

= N0va +N1vb +N2(vc + vd) +N3(ve + vf + vg + vh)− v0
ΣLl

(37)

By integrating and replacing va, vb, vc, vd, ve, vf , vg, vh by their Fourier coefficients,

ia = I0 +
∑
Nx

[
an
nω0

sin(nω0t+ knπ)− bn
nω0

cos(nω0t+ knπ)
]

(38)

where k = 0 and Nx = N0 + N1cos(nπ) + 2N2cos
(
nπ
2

)
+ 4N3cos

(
nπ
2

)
cos
(
nπ
4

)
and I0 is

the DC component of the current. The other channel current expressions are similar except

k = 1, 1
2
, 3

2
, 1

4
, 5

4
, 3

4
, 7

4
for expressions of ib, ic, id, ie, if , ig, ih respectively.

Similarly the second stage currents [see Fig. 1(d)] can be calculated as,

ip = 2I0 +
∑
Nxcos

nπ
2

[
an
nω0

sin(nω0t+ nπ
2

)− bn
nω0

cos(nω0t+ nπ
2

)
]

iq = 2I0 +
∑
Nxcos

nπ
2

[
an
nω0

sin(nω0t+ nπ)− bn
nω0

cos(nω0t+ nπ)
]

ir = 2I0 +
∑
Nxcos

nπ
2

[
an
nω0

sin(nω0t+ 3nπ
4

)− bn
nω0

cos(nω0t+ 3nπ
4

)
]

is = 2I0 +
∑
Nxcos

nπ
2

[
an
nω0

sin(nω0t+ 5nπ
4

)− bn
nω0

cos(nω0t+ 5nπ
4

)
] (39)

The third and fourth stage currents [see Fig. 1(d)] can be expressed as,

ix = 4I0 +
∑
Nxcos

nπ
2
cosnπ

4

[
an
nω0

sin(nω0t+ 3nπ
4

)− bn
nω0

cos(nω0t+ 3nπ
4

)
]

iy = 4I0 +
∑
Nxcos

nπ
2
cosnπ

4

[
an
nω0

sin(nω0t+ nπ)− bn
nω0

cos(nω0t+ nπ)
]

iz = 2I0 +
∑
Nxcos

nπ
2
cosnπ

4
cosnπ

8

[
an
nω0

sin(nω0t+ 7nπ
8

)− bn
nω0

cos(nω0t+ 7nπ
8

)
] (40)

Equation (38) to (40) represents the time domain expressions of the current at various stages

of the power circuit in terms of the individual Fourier coefficients. In next subsection this

expressions will be used to evaluate the RMS expressions of the currents in each stage.

C. RMS expressions of the currents in terms of duty ratio ‘d’

The expressions of nth harmonics in the first stage current can be expressed as,

I1rms(n) = Kn

√
1− cos(2nπd) ; Kn = VdcNx

n2πω0
(41)

where sub-script 1rms (n) represents the RMS component of nth harmonics in the 1st stage.

The similar expressions for the second, third and fourth stage can be written as,

I2rms(n) = 2Kncos
(
nπ
2

)√
1− cos(2nπd)

I3rms(n) = 4Kncos
(
nπ
2

)
cos
(
nπ
4

)√
1− cos(2nπd)

I4rms(n) = 8Kncos
(
nπ
2

)
cos
(
nπ
4

)
cos
(
nπ
8

)√
1− cos(2nπd)

(42)
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These harmonics (upto 8th order for clarity) are plotted in Fig. 7 with the variations of the

operating duty ratio. It is interesting to note that the harmonic cancellation in the respective

stages of the magnetics. In stage-1, the switching frequency (fsw) component is dominant. In

stage-2, fsw component is cancelled out and 2fsw component dominates. Similarly in stage-3, fsw

and 2fsw components are very small compared to 4fsw component. Finally, in stage-4 the lower

order harmonics are insignificant compared to 8th order harmonics component. The magnitudes

of the harmonics components beyond 8th order are very small and hence they are neglected in

the calculation.

(a) Harmonics components in the stage-1 current (b) Harmonics components in the stage-2 current

(c) Harmonics components in the stage-3 current (d) Harmonics components in the stage-4 current

Fig. 7. Variation of the harmonics components in different stages
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VI. LOSS CALCULATION IN THE MAGNETICS

The inductances and high frequency resistances of the implemented magnetics are given in

Table. II and Table. V in Appendix. The details of the core materials are listed in Table. IV.

These parameters are used in conjunction with the expressions derived in the previous section

to calculate copper and core losses in the magnetics.

A. Conduction loss

In the first stage conduction loss can be expressed as,

Loss1cond = 8

[
I2

0r1(0) +
8∑

n=1

I2
1rms(n)r1(n)

]
(43)

The factor 8 is due to the fact that there are 8 channels. In this expression the conduction loss

due to DC currents is I2
0r1(0). Similarly the conduction losses in the other stages can be evaluated

as,

Loss2cond = 4

[
(2I0)2 r2(0) +

8∑
n=1

I2
2rms(n)r2(n)

]
Loss3cond = 2

[
(4I0)2 r3(0) +

8∑
n=1

I2
3rms(n)r3(n)

]
Loss4cond = (8I0)2 r4(0) +

8∑
n=1

I2
4rms(n)r4(n)

(44)

Figure 8(a) shows the variations of conduction loss in various stages due to high frequency

currents. It is interesting to note that the conduction loss depends on operating duty ratio of the

system.

B. Core loss

The core loss is dependent on the magnetizing current that is responsible for flux in each

stage. This magnetizing current is nothing but the circulating current (as mentioned in section

III). From (13), the nth component in the magnetizing current in stage-1 can be written as,

I1m(n) = Vdc
LT1

n2πω0
sin
(
nπ
2

)√
2− 2cos(2nπd) (45)

Similarly, for the second and third stage the nth component of the magnetizing current can be

expressed as,

I2m(n) = 2Vdc
(2LT2

+Ll1
)n2πω0

cos
(
nπ
2

)
sin
(
nπ
4

)√
2− 2cos(2nπd)

I3m(n) = 4Vdc
(4LT3

+2Ll2
+Ll1

)n2πω0
cos
(
nπ
2

)
cos
(
nπ
4

)
sin
(
nπ
8

)√
2− 2cos(2nπd)

(46)
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For stage-4, as it is a normal inductor (not coupled),

I4(n) = 8Kncos
(
nπ
2

)
cos
(
nπ
4

)
cos
(
nπ
8

)√
2− 2cos(2nπd) (47)

The current harmonics in (45) to (47) are responsible for flux in the respective cores of the

inductors in various stages and hence core losses. From the core manufacturing data sheet [24]

the core loss in stage-1 can be evaluated as follows:

Loss1iron = 4M
8∑

n=1

6.5
(
nfsw
1000

)1.51
(

4Lm1I1m(n)

Tu1Ac

)1.74

(48)

where M is the mass of the core in kg; Tu1 is the number of turns that produces the main

working flux in the core (stage-1); fsw is the switching frequency; Ac is the core cross sectional

area. The core losses for the other stages can be calculated in similar manner. These losses are

plotted in Fig. 8(b) for various duty ratios. The high frequency losses (core loss + high frequency

conduction loss) in the magnetics is plotted in Fig. 8(c).

VII. EXPERIMENTAL INVESTIGATION

In order to validate the proposed converter model and the associated control algorithm an

experimental prototype of a 20 kW four stage/ eight channel interleaved dc-dc converter designed

as a part of a super-capacitor interface system is tested under both transient and steady-state

loading conditions. The photograph of the power circuit is shown in Fig.9. The entire super

capacitor panel with power circuit and super capacitor stack is shown in Fig. 9(a). Fig. 9(b) is

the zoomed view of the power circuit with various coupled inductor stages. The construction

of one coupled inductor (second stage) is shown in Fig. 9(c). A floating point DSP-FPGA

based digital control platform (development platform C6713 DSK based on Texas Instruments

TMS320C6713 DSP + Actel Proasic3 A3P400-PQG208 FPGA board) able to perform very fast

A/D conversion (8 inductor currents, DC bus and capacitor voltages) and generate sufficient

PWM signals is used to implement the closed loop control action as described in the previous

section.

Fig. 10 shows the measured peak-to-peak current ripple versus duty ratio (from 0.5 to 0.9). The

calculated values for the relevant channel of different stages are shown. It can be observed that the

measured values are very close to the predicted values (Fig. 3(d)) which validates the peak-peak

ripple calculation of section III. Fig. 11(a) shows the system performing a 20 kW constant power
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(a) High frequency Copper loss in the magnetic compo-

nents
(b) Core loss in the magnetic components

(c) High frequency losses in the magnetic components

Fig. 8. Calculated losses in the magnetics with duty ratio

charge/discharge cycling of the super capacitor stack. The super capacitor voltage (Vsc) was set

between 250V and 350V and the DC-link voltage (Vdc) is maintained at 400V. The waveform of

the cumulated interleaved converter current drawn from the super capacitor stack shows a very

small relative ripple which confirms that the design of the multi-stage smoothing filter was very

effective. As the super capacitor voltage is not fixed the operating duty cycle of the converter

also changes with time. Hence the direct measurement of efficiency at various power level is not

straight-forward and an alternative efficiency namely, round-trip efficiency [25] of the converter

is evaluated. The round trip efficiency accounts for the energy returned from an energy storage

system relative to the energy that was put in. It is therefore a multiplication of the conversion
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(a) Super-capacitor panel (b) Zoomed Power Circuit

(c) Physical construction of the coupled inductors
(d) Coupled inductor in 2nd

stage

Fig. 9. Photograph of the experimental prototype

efficiencies for charging and discharging [25]. The measured values of Vsc, Isc, Vdc and Idc are

stored in a personal computer (PC) and then the energy in and energy out in one charge/discharge

cycle is calculated by integrating the instantaneous powers (Psc = Vsc × Isc, Pdc = Vdc × Idc).

The round trip efficiency of the super capacitor stack and that of dc-dc converter plus super

capacitor are shown in Fig. 11(b) for various power levels used for charge/discharge cycling.

The round-trip efficiency of the DC-DC converter alone can be obtained from these efficiencies

and shown in Fig. 11(c) with the calculated round-trip efficiency. The calculation of round-trip
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(a) Peak-to-peak ripple in stage-1 channel current (b) Peak-to-peak ripple in stage-2 channel current

(c) Peak-to-peak ripple in stage-3 channel current (d) Peak-to-peak ripple in stage-4 channel current

Fig. 10. Comparison between calculated and measured ripple current

efficiency includes the high frequency losses in the magnetics (detailed in section VI), the DC

losses in the magnetics (DC resistances given in Table.V), semiconductor losses (calculated from

the data sheet [26] of the semiconductor in the power circuit) and stand-by losses in the power

circuit (like losses in the bleeder resistors). The round trip efficiency of ≥ 96% is obtained in

the 40-100% of the power range. At full load, the percentage contribution of the various losses

in the round-trip efficiency calculation of the DC-DC converter is listed in Table. I.

Next the transient performance of the current controller designed on the proposed methods is

verified by varying the gains of the PI controller around the point where the proposed model

predicts instability. Fig. 12(a)-(c) show the current response of the current to a small step change
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in the current reference for kp = 75mΩ, kp = 50mΩ, kp = 25mΩ. Isc is the total super-capacitor

current and Ia and Ib are currents in channel-a and channel-b respectively. The small step change

is chosen to avoid the saturation and anti-wind up of the PI controller that can affect the oscillation

resulting from the true dynamics of the controller. It can be noticed from Fig. 12(a) that whilst

reaching the faster rising time the system becomes marginally unstable at kp = 75mΩ which

is consistent with the observation in the previous section. A kp = 50mΩ provides an under

damped response with a rise time of 100µsec but with a large settling time. This may pose an

additional stress on the magnetics and the power devices. Using a smaller gain [kp = 25mΩ in

Fig. 12(c)] still results in a fast response (rise time: 120µsec) but with very stable output and

small overshoot. Fig. 12(d) shows the transient response with a large current step (−50A→ 50A)

with kp = 25mΩ. It can be seen that the channel current sharing (in channel-a and channel-b)

is quite accurate during transients and steady state.

TABLE I

PERCENTAGE CONTRIBUTION OF VARIOUS LOSSES AT FULL LOAD

HF losses in magnetics 13%

DC conduction loss in magnetics 38%

Semiconductor losses 41%

Stand-by losses 8%

VIII. CONCLUSION

This paper presents the modeling, the selection of multi-stage filter parameters, the controller

design and the implementation of a multi-staged coupled inductor based interleaved converter

for high current DC-DC interface for a super-capacitor system. The multi-stage coupled inductor

based system is analysed and modelled to demonstrate the key advantages like high dynamic

performance and low switching current ripple in each channel current. It improves the dynamic

performance of the system as only leakage inductance is seen by the total current and a flexible

choice of peak-to-peak ripple current can be done in each stage of the magnetics. The perfor-

mance comparison with lower stage topologies for the same final stage peak-to-peak current

ripple reveals that the 4-stage topology provides the best performance in terms of peak-to-peak
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(a) Super capacitor charge discharge cycling at 20kW , c1:

Vsc (100V/div), c2: Isc (100A/div), c3: Vdc (200V/div), c4:

Idc (75A/div), time: 20 s/div

(b) Measured round-trip efficiency of super-capacitor

and super-capacitor+dc-dc converter

(c) Evaluated and calculated round-trip efficiency of dc-

dc converter

Fig. 11. Comparison between calculated and measured round-trip efficiency

current ripple in all the stages. The closed loop controller parameters are designed from this

model to ensure stability and dynamic response. To enhance loss evaluation of the system the

harmonics current components are analysed and the copper and core losses in the magnetics

are calculated from the proposed model. The simulation and experimental results are presented

to validate the design of the magnetic component and the closed loop controller. A round-trip

efficiency of ≥ 96% is achieved at the full load.

APPENDIX

The details of the power circuit parameters are given in Table. II. The details of the control

circuit parameters are given in Table. III. The details of the material and physical construction
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(a) With kp = 75mΩ; c2 and c3: Ia and Ib (5A/div), c4:

Isc (20A/div), time: 500 µsec/div

(b) With kp = 50mΩ; c2 and c3: Ia and Ib (5A/div), c4:

Isc (20A/div), time: 200 µsec/div

(c) With kp = 25mΩ; c2 and c3: Ia and Ib (5A/div), c4:

Isc (20A/div), time: 200 µsec/div

(d) Large step change with kp = 25mΩ; c2 and c3: Ia

and Ib (5A/div), c4: Isc (50A/div), time: 200 µsec/div

Fig. 12. Measured transient response with various controller gains

of the magnetics are given in Table. IV. The number of turns (in stage-1, -2 and -3) for

each coil is half of the number of turns given in the table. Table. V gives the details of the

high frequency resistance (measured by high precision digital RLC meter PSM1735) and DC

resistances (obtained by passing rated DC current and measuring voltage across it) of the various

stages of the magnetics.
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