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Individual participant data meta-analyses should not ignore clustering
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Abstract
Objectives: Individual participant data (IPD) meta-analyses often analyze their IPD as if coming from a single study. We compare this
approach with analyses that rather account for clustering of patients within studies.

Study Design and Setting: Comparison of effect estimates from logistic regression models in real and simulated examples.
Results: The estimated prognostic effect of age in patients with traumatic brain injury is similar, regardless of whether clustering is

accounted for. However, a family history of thrombophilia is found to be a diagnostic marker of deep vein thrombosis [odds ratio,
1.30; 95% confidence interval (CI): 1.00, 1.70; P 5 0.05] when clustering is accounted for but not when it is ignored (odds ratio, 1.06;
95% CI: 0.83, 1.37; P 5 0.64). Similarly, the treatment effect of nicotine gum on smoking cessation is severely attenuated when clustering
is ignored (odds ratio, 1.40; 95% CI: 1.02, 1.92) rather than accounted for (odds ratio, 1.80; 95% CI: 1.29, 2.52). Simulations show models
accounting for clustering perform consistently well, but downwardly biased effect estimates and low coverage can occur when ignoring
clustering.

Conclusion: Researchers must routinely account for clustering in IPD meta-analyses; otherwise, misleading effect estimates and con-
clusions may arise. � 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Individual participant data (IPD) meta-analysis refers to
when participant-level data are obtained from multiple
studies and then synthesized [1]. This contrasts the usual
meta-analysis approach, which obtains and then synthesizes
aggregate data (such as a treatment effect estimates) ex-
tracted from study publication or study authors [2]. IPD of-
fers many potential advantages for the meta-analyst [1e3];
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in particular, it reduces reliance on the reporting quality of
individual studies as, with the raw data at hand, the meta-
analyst can be more flexible and consistent in their choice
of analysis method, can estimate directly the effect esti-
mates of interest, and better account for study heterogeneity
and subgroup effects.

Methods for IPD meta-analysis use either a one-step or
a two-step approach [4]. In the two-step approach, the
IPD are first analyzed separately in each study using an ap-
propriate statistical method for the type of data being ana-
lyzed. For example, to assess the association between
a continuous factor (e.g., age) and the odds of a binary out-
come (e.g., death), a logistic regression model might be fit-
ted, to produce aggregate data for each study, such as the
odds ratio and its associated standard error; these are then
synthesized in the second step using a suitable model for
meta-analysis of aggregate data, such as one weighting by
the inverse of the variance while assuming fixed or random

Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
mailto:r.d.riley@bham.ac.uk
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017


2 G. Abo-Zaid et al. / Journal of Clinical Epidemiology - (2013) -
What is new?

Key findings
� When meta-analyzing individual participant data

(IPD) from multiple studies, our findings show that
statistical and clinical conclusions can change de-
pending on whether the analysis accounts for the
clustering of patients within studies. When synthe-
sizing IPD from observational studies in deep vein
thrombosis (DVT), a meta-analysis ignoring clus-
tering leads to a potentially important diagnostic
marker for DVT being missed. When synthesizing
IPD from randomized trials of treatment for smok-
ing cessation, the effect of nicotine gum on smok-
ing cessation is severely underestimated when
clustering is ignored.

What this adds to what was known?
� It is inappropriate to simply ignore the clustering

of patients within studies and analyze the IPD as
if coming from a single study. When there is large
variability in baseline risk, logistic regression sim-
ulations show that this naive approach leads to
a downward bias in effect estimates, with small
standard errors that produce a low coverage sub-
stantially less than 95%; this problem becomes
worse as the true effect size increases. Other mech-
anisms may also cause analyses ignoring clustering
to perform poorly, such as between-study heteroge-
neity in effect or covariate patterns. In contrast,
one-step or two-step IPD meta-analyses that ac-
count for clustering generally perform consistently
well.

What is the implication, and what should change
now?
� Researchers synthesizing IPD from multiple stud-

ies should account for the clustering of patients
within different studies; otherwise, misleading ef-
fects estimates and coverage and potentially inap-
propriate clinical conclusions may arise.

effects across studies. In the one-step approach, the IPD
from all studies are modeled simultaneously; this again
requires a model specific to the type of data being synthe-
sized, alongside appropriate specification of the meta-
analysis assumptions (e.g., fixed or random effects across
studies). Clustering of patients within studies can be ac-
counted for by stratifying the analysis by study (i.e., by es-
timating a separate intercept for each study) or assuming
that the study intercepts (baseline risk) are randomly drawn
from some distribution.
Many existing articles discuss the implementation and
merits of one-step and two-step IPD meta-analysis methods
[5e11], and the methods often give very similar results
[10,12,13]. For example, for time-to-event data, Tudur
Smith and Williamson [14] show through simulation that
when there is no heterogeneity in effect and the propor-
tional hazards assumption holds, a one-step stratified Cox
model produces similar effect estimates to the two-step (in-
verse variance weighted) approach. For continuous out-
come data analyzed using linear models, Olkin and
Sampson [12] and subsequently Matthew and Nordstrom
[13,15] show that the one-step and two-step approaches
provide identical results when estimating a treatment effect
under certain theoretical conditions; although when covari-
ates are added, differences may occur. Jones et al. [9] con-
sider longitudinal continuous outcome data and empirically
show that the one-step and two-step approaches produce
similar effect estimates, as long as correlations between
time points are incorporated. For binary outcome data,
there may be some advantage of a one-step approach when
the event risk or rate is low or the sample size is small; in
contrast to the two-step approach, the one-step approach al-
lows the exact binomial distribution to be used and does not
require continuity corrections when zero events occur
[16,17].

However, potentially of more concern than the choice of
one-step or two-step approach, is that there is growing ev-
idence that researchers undertake the one-step approach but
ignore the clustering of patients within studies, thereby
treating the IPD as if it all came from one study. For exam-
ple, Simmonds et al. [4] examined IPD meta-analyses of
randomized trials and found that 3 of 14 using a one-step
approach ignored clustering. Similarly, Abo-Zaid et al.
[18] examined IPD meta-analyses of prognostic factor stud-
ies and found that 5 of 11 using a one-step approach did not
state that they accounted for clustering.

Using real examples and through simulation, we there-
fore studied the potential impact of ignoring clustering on
IPD meta-analysis results and report our findings in this ar-
ticle. We focus on IPD meta-analyses aimed at quantifying
whether a single (continuous or binary) factor or determinant
of interest is associated with (the odds of) a binary outcome.
For example, one may wish to summarize the outcome risk
in a treatment group relative to the control group (i.e., esti-
mate a treatment effect); estimate whether a certain prognos-
tic marker is associated with future event risk (i.e., estimate
a prognostic effect); or quantify whether the presence of
a certain diagnostic test result increases or decreases the
probability of having a particular disease. These are com-
mon situations in the (IPD) meta-analysis field. In Section
2, we introduce three one-step and two-step models of in-
terest, and in Section 3, we apply them to three real applica-
tions. The performance of the one-step methods is evaluated
through simulation in Section 4, and we then conclude with
Discussion and recommendations.
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2. One-step and two-step IPD meta-analysis
approaches

Consider that there are i 5 1 to m independent studies
that each assess the binary outcome of interest for ni partic-
ipants. Let yik be the outcome (1, event; 0, no event) of par-
ticipant k in study i, where k 5 1 to ni, and let xik be
a participant-level factor (covariate), which could be con-
tinuous or binary. We term an ‘‘IPD study’’ one that pro-
vides yik and xik for the ni participants in the study. Note
that, for a binary factor, if the number of participants and
events for each of the two categories are known, then
IPD for these two variables can simply be reconstructed
by creating a row for each participant and delegating them
event responses and covariate status that collectively mirror
the observed frequencies.

Given such IPD, there are a number of ways that re-
searchers could estimate the summary risk or odds ratio
across studies. We focus here on the use of a logistic regres-
sion framework, via a one-step approach ignoring cluster-
ing, a one-step approach accounting for clustering, or
a two-step approach, as now described.
2.1. Model (1): one-step ignoring clustering

With this method, the IPD from all studies are stacked
and analyzed together as if they were a single study; thus,
the clustering of patients within different studies is ignored.
The standard logistic model can be written as follows:
yik|BernoulliðpikÞ
logitðpikÞ5aþ bxik:

ð1Þ
The common a term for all studies shows that clustering
is being ignored, and a can be interpreted as the log odds of
the event for patients with xik equal to zero. The term b pro-
vides the log odds ratio comparing the odds of the event for
two patients who differ in xik by one unit. Note that b is also
assumed common to all studies, and so we have a fixed-
effect meta-analysis here. We consider a random-effects
approach and multivariable model extensions in our
Discussion.
2.2. Model (2): one-step accounting for clustering

Here, the IPD from all studies are also stacked and ana-
lyzed together, but the clustering of patients within differ-
ent studies is accounted for. The logistic model can be
written as follows:
yik|BernoulliðpikÞ
logitðpikÞ5ai þ bxik:

ð2Þ
Now the intercept term is not fixed, and ai gives the log
odds of the event in study i for those participants with xik
equal to zero. The separate ai term for each study shows
that clustering per study is being accounted for at the
baseline level, that is, each study is allowed to have their
own baseline risk.

2.3. Model (3): two-step approach

Here, the IPD of each study is analyzed separately, and
the log odds ratio estimates from each study are then com-
bined (averaged) in an inverse varianceeweighted fixed-
effect meta-analysis, as follows:
STEP 1ðeach study separatelyÞ :
yik|BernoulliðpikÞ

logitðpikÞ5ai þ bixik;

STEP 2
�
meta-analysis of aggregatedata; bbis

�
:bbi5bþ εi

εi|N
�
0;var

�bbi

��
:

ð3Þ
By first analyzing each study separately, this approach
automatically accounts for the clustering of patients within
studies. In the second step, the var(bbi) estimates are as-
sumed known, which is a common assumption in the
meta-analysis field [19], and the pooled prognostic effect
estimate (bb) will be a weighted average of the bbis, with
study weights equal to the inverse of var(bbi) [20].

The parameters in equations (1) and (2), and those in
both steps of equation (3), can be estimated using maxi-
mum likelihood (StataCorp, LP, College Station, TX,
USA) [21]. Note that, when xik is a binary factor and the
event risk is low and/or the sample size is small, some stud-
ies may have zero events for one of the factor’s groups. The
one-step approach accommodates such studies automati-
cally through their contribution to the likelihood. However,
the two-step approach first requires a so-called continuity
correction (e.g., 0.5) to be added to all cells in such studies,
to estimate a sensible log odds ratios and its standard error.
This is a clear limitation of the two-step method, and this
issue has been well discussed in the literature [22] and is
not the focus of this article. We only consider examples
without zero cells in this article.
3. Empirical IPD meta-analysis examples

We now introduce three motivating IPD meta-analysis
examples to illustrate the potential similarities and differ-
ences of the models in meta-analyses of diagnostic studies,
prognostic studies, and (randomized) therapeutic trials.

3.1. Mortality after traumatic brain injury

Hukkelhoven et al. [23] performed a meta-analysis of
14 prospective studies to assess the 6-month mortality risk
in patients with traumatic brain injury (TBI). Their key ob-
jective was to examine the association between age and 6-
month mortality risk. Biologically, this relationship is
plausible as the adult brain is hypothesized to have
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decreased capacity for repair as it ages [24] because of
a decreasing number of functioning neurons and a greater
exposure to minor repetitive insults to the brain as age in-
creases. In their meta-analysis, IPD were available for four
studies (totaling 2,659 patients), containing the 6-month
mortality outcome (dead or alive) and age for each patient
in each study. These IPD are summarized in our Appendix
A at www.jclinepi.com.

Of interest is the odds ratio comparing the odds of death
by 6 months for two patients aged 10 years apart. Only a lin-
ear relationship with age was assumed. The results for each
of models (1)e(3) are shown in Table 1, and there are only
small unimportant statistical and clinical differences be-
tween them. Age is identified to have a statistically signif-
icant (P ! 0.001) association with the odds of 6-month
mortality in all models, and the odds ratio is 1.41 in the
one-step model ignoring clustering and a slightly lower
1.37 in the two-step approach and one-step accounting
for clustering. The standard error of the log odds ratio esti-
mate is almost identical, 0.030 in the two-step and 0.029 in
the others. There was no evidence of between-study hetero-
geneity in the odds ratio (I2 5 0), suggesting that the fixed-
effect modeling assumption was appropriate. Based on this
application alone, the observed findings might lead re-
searchers to decide that it does not matter whether cluster-
ing is accounted for.

3.2. Diagnosis of deep vein thrombosis

IPD are available from six studies of patients with sus-
pected deep vein thrombosis (DVT) [25e30] and of interest
is whether a family history of thrombophilia (defined as
yes or no) is associated with the risk of truly having
DVT. One might expect patients with a family history of
thrombophilia to be more likely to have a genuine DVT
than those without. The studies are summarized in our
Appendix A at www.jclinepi.com and contained a total of
4,599 patients of which 909 (19.8%) truly have DVT. The
proportion of patients in each study with a family history
of thrombophilia ranged from 0.03 to 0.26.

As in the TBI example, there is no heterogeneity
(I2 5 0%), and the two-step and the one-step approaches
accounting for clustering obtain similar estimates, standard
errors, and confidence intervals (Table 2); they estimate that
the odds of DVT are about 1.3 times higher for patients
with a family history of thrombophilia, and the findings
are (close to) statistically significant at the 5% level
(P 5 0.038 or 0.053). However, the one-step approach
Table 1. Traumatic brain injury results for the association between age 10 yea

Methods bb (SE)

Two-step 0.316 (0.030)
One-step ignoring clustering 0.341 (0.029)
One-step accounting for clustering 0.317 (0.029)

Abbreviations: IPD, individual participant data; SE, standard error; CI, c
ignoring clustering estimates a much smaller odds ratio of
1.06, and there is now no statistically significant evidence
that family history is an important risk factor (P 5 0.64);
the standard error of bb is also smaller compared with that
of the other models. Thus, in this example, the one-step ap-
proach ignoring clustering provides different statistical and
clinical conclusions than the other approaches.

3.3. Smoking cessation and use of nicotine gum

Rice and Stead [31] perform a meta-analysis of 51 ran-
domized trials to examine whether the use of nicotine gum
increases the chances of stopping smoking. Altman and
Deeks [32] used these trials to show the impact on the es-
timated number needed to treat when clustering of studies
was ignored. We now extend this to consider the impact
on the odds ratio. Specifically, for illustrative purposes,
we consider a meta-analysis of just two of the trials (the
same two used by Altman and Deeks), which are summa-
rized in our Appendix A at www.jclinepi.com and the re-
sults shown in Table 3 (I2 5 14.3%). As in the DVT
example, the one-step method ignoring clustering produces
a smaller summary odds ratio (1.48) that is much closer to 1
than the other methods, which rather give estimates around
1.8 with wider confidence intervals.
4. Simulation methods

The above examples illustrate that the decision to ac-
count for clustering in IPD meta-analysis is potentially im-
portant. To look more generally at how ignoring clustering
affects the statistical properties of estimates, we now pres-
ent a simulation study of models (1) and (2).

4.1. Simulation procedure

Full details of our simulation are provided in our
Appendix B at www.jclinepi.com. Briefly, for multiple sce-
narios, we simulated IPD (i.e., patient outcomes and prognos-
tic factor values) for meta-analyses based on m 5 5 or 10
studies; smaller (30e100 patients) or larger study sizes (up
to 1,000 patients); a continuous or binary factor (xik); a binary
outcome yik (1, event; 0, alive), where yik|Benoulli( pik) and
logitðpikÞ5ai þ bxik; the chosen parameters of ai|Nða; s2aÞ;
and for binary factors a b of 0, 0.1, or 0.9 (relating to an odds
ratio of 1, 1.1, and 2.45, respectively) and continuous factors
a b of either 0 (no effect), 0.1 (small effect), or 0.3 (large
effect).
rs and the odds of 6-month mortality, for each of the three IPD models

Odds ratio 95% CI for odds ratio P-value

1.372 1.295, 1.454 !0.001
1.407 1.329, 1.488 !0.001
1.373 1.296, 1.455 !0.001

onfidence interval.
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Table 2. Results for the effect of a family history of thrombophilia on the odds of truly having deep vein thrombosis, for each of the three IPD models

Methods bb (SE) Odds ratio 95% CI for odds ratio P-value

Two-step 0.280 (0.135) 1.323 1.015, 1.725 0.038
One-step ignoring clustering 0.060 (0.128) 1.062 0.825, 1.365 0.642
One-step accounting for clustering 0.263 (0.136) 1.301 0.996, 1.697 0.053

Abbreviations: IPD, individual participant data; SE, standard error; CI, confidence interval.
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All scenarios considered are listed in Appendix B at www.
jclinepi.com. In each scenario, we generated 1,000 IPDmeta-
analysis data sets and then fitted models (1) and (2) to each
and recorded bb and its standard error. Each model’s per-
formance was then examined by calculating the bias,
mean square error (MSE), mean standard error, and coverage
for bb.
4.2. Simulation results

The simulation results for scenarios with five studies and
small samples sizes are summarized in Tables 4 and 5, and
Appendix C at www.jclinepi.com. The findings were very
similar when the number of studies was changed to 10 or
when a larger sample size was allowed.

For both binary (Table 4) and continuous factors
(Table 5), when there was zero or small variation in base-
line risk (ai), the performance of the models was very sim-
ilar. The bias in bb was close to zero, the MSE was
approximately the same, and the coverage was always close
to 95%. When the variation in ai was large (scenarios
13e18 and 22e24), the one-step approach accounting for
clustering continues to perform consistently well with suit-
able bias and coverage. However, the one-step approach
ignoring clustering often performs poorly, with downward
bias and low coverage especially when the true effect size
was large. For example, in scenario 13 (in which the true
b was 0.9), the one-step model ignoring clustering has
a large downward bias of �0.21 and a low coverage of
87.6%, reflecting a small mean standard error (Table 4).
This scenario is illustrated in Fig. 1, which shows the
one-step approach ignoring clustering produces smaller
standard errors in each meta-analysis and generally (though
not always) smaller effect estimates than the one-step ap-
proach accounting for clustering.

4.3. Link to the applied examples of Section 3

When the two-step approach was fitted to the TBI data,
step 1 produced separate alpha estimates in each study. The
weighted average of these alphas was �2.1, and their
between-study standard deviation was 0.20. Thus, the TBI
Table 3. Results for the effect of nicotine gum on the odds of giving up sm

Methods bb (SE)

Two-step 0.570 (0.174)
One-step ignoring clustering 0.355 (0.161)
One-step accounting for clustering 0.589 (0.170)

Abbreviations: SE, standard error; CI, confidence interval.
data mirror closely simulation scenario 19 (Table 5), in
which alpha was �2.1, the standard deviation of alpha
was 0.2, and the true effect was 0.3. In this scenario, there
was no difference between models (1) and (2) in terms of
bias, MSE, and coverage, and so it is unsurprising that
the TBI application shows very similar model (1) and
model (2) results.

In contrast to the TBI example, the DVT and smoking
applications showed that ignoring clustering produced
a substantially smaller odds ratio estimate and a smaller
standard error of bb than other methods (Tables 2 and 3).
Variability in baseline risk with only a small number of
studies is a potential cause of these differences, and in ac-
cordance with some of the simulation results in this situa-
tion (Fig. 1), ignoring clustering appears to be producing
estimates with a downward bias and low coverage in these
examples. Other mechanisms may also be causing differ-
ences to occur in these examples, beyond those identified
by our simulations, such as between-study variation in the
proportion of patients who are factor positive [32].
5. Discussion

IPD meta-analyses are increasingly used. Riley et al. [1]
found 383 IPD meta-analyses published in the medical lit-
erature before March 2009, with an average of 49 articles
published/year since 2005. In this article, we have exam-
ined the impact of ignoring clustering of patients within
studies when analyzing IPD of multiple studies with binary
outcomes, in which an odds ratio is of interest. In some sit-
uations, statistical inferences do not alter whether cluster-
ing is accounted for, as seen in the TBI application.
However, there are situations when the approaches can dif-
fer substantially in their performance, and this can impact
on statistical and clinical inferences. This was seen in the
DVT and smoking examples and in our simulations with
large between-study variability in baseline risk.

There are two key recommendations from our work. The
first is that it is inappropriate to simply ignore the clustering
of patients within studies and analyze the IPD as if coming
oking

Odds ratio 95% CI for odds ratio P-value

1.769 1.257, 2.488 0.001
1.400 1.020, 1.916 0.037
1.802 1.290, 2.517 0.001

http://www.jclinepi.com
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Table 4. Simulation results for some of the scenarios involving a binary factor with prevalence of 0.5 or 0.2; small study sample sizes between 30
and 100 participants; m 5 5 studies in the meta-analysis; the true bb was 0, 0.1, or 0.9; and the standard deviation of ai was 0, 0.25, or 1.5

Scenarios Meta-analysis model a (SD of a) Prevalence True b Mean bb Bias of bb MSE of bb Coverage (%)
of bb Mean SE

of bb
1 One-step ignoring clustering �1.27 (0) 0.5 0.9 0.91 0.01 0.03 94.90 0.16

One-step accounting for clustering �1.27 (0) 0.5 0.9 0.92 0.02 0.03 94.70 0.16
3 One-step ignoring clustering �1.27 (0) 0.5 0 0.00 0.00 0.02 94.90 0.16

One-step accounting for clustering �1.27 (0) 0.5 0 0.00 0.00 0.02 94.90 0.16
13 One-step ignoring clustering �1.27 (1.5) 0.2 0.9 0.69 �0.21 0.15 87.60 0.31

One-step accounting for clustering �1.27 (1.5) 0.2 0.9 0.92 0.02 0.14 94.80 0.36
15 One-step ignoring clustering �1.27 (1.5) 0.2 0 �0.02 �0.02 0.22 94.00 0.33

One-step accounting for clustering �1.27 (1.5) 0.2 0 0.00 0.00 0.26 94.00 0.38
16 One-step ignoring clustering �1.27 (1.5) 0.5 0.9 0.70 �0.20 0.04 46.20 0.09

One-step accounting for clustering �1.27 (1.5) 0.5 0.9 0.90 0.00 0.05 94.90 0.11
18 One-step ignoring clustering �1.27 (1.5) 0.5 0 0.00 0.00 0.04 94.90 0.09

One-step accounting for clustering �1.27 (1.5) 0.5 0 0.00 0.00 0.05 94.70 0.11

Abbreviations: SD, standard deviation; MSE, mean square error; SE, standard error.
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from a single study. When there is large variability in base-
line risk, the simulations show that this naive approach
leads to a downward bias, with small standard errors that
produce a low coverage substantially less than 95%; this
problem appears to become worse as the true effect size in-
creases. The DVT example shows that ignoring clustering
would lead to a potentially important diagnostic marker
for DVT being missed, whereas in the smoking example,
the effect of nicotine gum on smoking cessation would have
been severely underestimated. Other articles in nonmeta-
analysis settings have also identified the danger of ignoring
clustering, such as in cluster randomized trials [33,34] and
multicentre randomized trials [35]. Steyerberg et al. [36]
show that in a logistic regression analysis of a clinical trial
with multiple strata, the odds ratio of 0.853 when ignoring
clustering is reduced to 0.820 when adjusting for strata, an
increase of 25% on the logistic scale. Similarly, Hernandez
et al. [37] and Turner et al. [38] show that adjustment for
prognostic covariates in logistic regression increases power
to detect a genuine effect. Statistically speaking, by ignor-
ing clustering, one specifies a marginal model which as-
sumes all studies have the same baseline risk, but by
accounting for clustering, one specifies a conditional model
that correctly conditions each patient’s response on the
study there are in. For logistic models, Robinson and Jewell
[39] have shown that marginal models give potentially at-
tenuated (biased) effect estimates and have lower power
Table 5. Simulation results for scenarios involving a continuous factor with
studies in the meta-analysis; the true bb was 0, 0.1, or 0.3; and the standa

Scenarios Meta-analysis model a (SD of a) True b M

19 One-step ignoring clustering �2.1 (0.2) 0.30
One-step accounting for clustering �2.1 (0.2) 0.30

21 One-step ignoring clustering �2.1 (0.2) 0
One-step accounting for clustering �2.1 (0.2) 0

22 One-step ignoring clustering �2.1 (1.5) 0.30
One-step accounting for clustering �2.1 (1.5) 0.30

24 One-step ignoring clustering �2.1 (1.5) 0
One-step accounting for clustering �2.1 (1.5) 0

Abbreviations: SD, standard deviation; MSE, mean square error; SE, sta
to detect genuine effects than conditional models. For logis-
tic regression, this phenomenon is also known as noncol-
lapsibility of the odds ratio [40] as conditional odds ratios
are typically larger than marginal odds ratios after condi-
tioning on important covariates, with the increase becoming
higher as the true odds ratio increases and the number of
included important covariates increases. Gail et al. [41]
showed analytically and through simulation that Cox and
exponential regression models for survival data with cen-
soring also produce downwardly biased treatment effect es-
timates when important covariates are omitted. For linear
regression or generalized linear models with a log link
(e.g., Poisson regression), the asymptotic bias from omit-
ting covariates is zero, regardless of the true effect size
[41]; yet, even for such models, the precision of effect es-
timates can still be severely affected by ignoring important
covariates (clustering) [39]. Statisticians thus may not be
surprised by our findings, but we hope our findings raise
awareness to the IPD meta-analysis community, many of
whom currently ignore clustering [4,18]. We thus recom-
mend that researchers always account for clustering in their
IPD meta-analysis and report how they did so in any subse-
quent publication.

The second important finding is that the one-step model
accounting for clustering performs consistently well in all
simulations considered, with bias close to zero and suitable
coverage. Based on this, we recommend this method to be
small study sample sizes between 30 and 100 participants; m 5 5
rd deviation of ai was 0.2 or 1.5

ean bb Bias of bb MSE of bb Coverage (%) of bb Mean SE of bb
0.30 0.00 0.01 96.29 0.09
0.31 0.01 0.01 96.36 0.09
0 0 0.02 95.10 0.12
0 0 0.02 94.90 0.12
0.23 �0.07 0.01 84.10 0.09
0.31 0.01 0.01 94.80 0.10
0.00 0.00 0.01 95.40 0.11
0.00 0.00 0.02 95.60 0.12

ndard error.



Fig. 1. Comparison of the 1,000 simulation results from the one-step
accounting clustering vs. the one-step ignoring clustering for scenario
13 with five studies, small study sample sizes, and a binary factor, in
which the standard deviation of alpha was 1.5, the true beta was 0.9,
and the prevalence was 0.2. (A) Effect estimates. (B) Standard error
of effect estimates.
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routinely chosen to analyze IPD with binary outcomes. The
two-step method will often give very similar results, as seen
in the examples of Section 3. However, the one-step ap-
proach models the exact binomial nature of the data di-
rectly [16,17], whereas the two-step approach produces
log odds ratio estimates in the first step, which are then as-
sumed normally distributed in the second step. This addi-
tional normality assumption may be inappropriate when
the number of patients in studies is small and/or when the
number of events is small. For this reason, the exact one-
stage approach of model (1) is generally more suitable
for synthesizing two-by-two tables. The ManteleHaenszel
and Peto methods have also been suggested to overcome
this issue [42,43], but model (1) can more easily be ex-
tended to include multiple factors and continuous variables
so is our preferred method. It can also be easily extended to
allow between-study heterogeneity in the effect of interest
[16]. One could also allow a random-effects distribution
on the baseline risk rather than estimating a separate ai
for each study. This requires an additional distributional
assumption to be made for ai s, and for this reason, we pre-
fer model (1) as described previously. A distribution on the
baseline risk is perhaps useful if the baseline risk is itself of
interest, but in our examples, the focus was only on the ef-
fect of the included factor.

Note that it is not possible to predict the direction of bias
induced by ignoring clustering in any single example. For
example, our simulations with large variability in baseline
risk show that ignoring clustering leads to a downward bias
on average, but Fig. 1 highlights that in a sole application,
the actual estimates when ignoring clustering may occa-
sionally be larger than when accounting for clustering. In-
deed, the TBI application had a slightly higher odds ratio
when ignoring clustering. Our simulations are also limited
to particular choices of parameter values and, like all sim-
ulation studies, other permutations of values and alternative
scenarios are also possible. In particular, between-study
variation in prevalence of the binary factor and/or
between-study heterogeneity in effect may reveal different
findings [32].

None of our binary factor examples or simulations con-
tained studies with zero events in a particular group as
this issue has been examined before [22] and been shown
to induce bias in the two-step approach as, unlike the one-
step approach [16], it requires a continuity correction to
be added. Our simulations and examples also did not con-
sider between-study heterogeneity in effects, but our rec-
ommendations are likely to generalize to this setting also
[17,44]. We also recognize that IPD meta-analyses are not
without limitations. Some covariates may not be available
for all IPD studies, and IPD may not be available from all
studies requested [45]. In this situation, novel methods
may be required to synthesize the IPD effectively
[10,46,47].
6. Conclusion

We have shown that researchers synthesizing IPD from
multiple studies should account for the clustering of patients
within different studies. Lumping the IPD into a single data
set and naively analyzing as if from a single study can pro-
duce misleading effects estimates and clinical conclusions,
and the correct approach is a one-step or a two-step IPD
meta-analysis that correctly accounts for clustering.
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Appendix A

Data for the applied examples
Table e1. Summary of the IPD available for examining the association between age and 6-month mortality in patients with traumatic brain injury

Study
Number of
patients, ni

Mean age,
years, (SD)

Age range,
years

Mean age/10 years,
xi (SD)

Number of deaths
by 6 months

Proportion of dead
at 6 months

1 825 32.76 (12.34) 14e77 3.28 (1.23) 199 0.24
2 959 33.29 (14.36) 12e79 3.33 (1.44) 258 0.27
3 466 40.65 (19.85) 16e92 4.07 (1.99) 188 0.40
4 409 32.35 (13.42) 15e79 3.23 (1.34) 94 0.23

Abbreviations: IPD, individual participant data; SD, standard deviation.

Table e2. Summary of the IPD available for examining the association between a family history of thrombophilia and a confirmed diagnosis of deep
vein thrombosis (DVT) in patients with suspected DVT

Study Number of patients, ni

Proportion with a family
history of thrombophilia Number of true DVT cases Proportion with true DVT

1 1,756 0.04 411 0.23
2 532 0.26 91 0.17
3 1,075 0.05 190 0.18
4 436 0.19 61 0.13
5 541 0.03 121 0.22
6 259 0.20 35 0.14

Abbreviation: IPD, individual participant data.

Table e3. Summary of the IPD available for examining the effect of nicotine gum on the odds of smoking cessation

Study
Total number of
patients, ni

Nicotine gum group

Control group, number
(proportion of total)

Number who
stopped smoking ln odds ratio (SE)Number (proportion of total)

Number who
stopped smoking

1 1,286 402 (0.31) 64 884 (0.69) 88 0.538 (0.177)
2 334 270 (0.81) 21 64 (0.19) 1 1.670 (1.033)

Abbreviations: IPD, individual participant data; SE, standard error.
Appendix B

Simulation procedure and evaluation

Our simulation procedure can be broken down in six
steps as follows:

Step 1
We chose the number of studies (m) in the meta-analyses,

and this was fixed in any simulation. We consider either
m5 5 or m5 10, the typical size of most meta-analyses in
our experience.

Step 2
We randomly sampled the number of patients in each

study from a uniform distribution ni | U(a,b), with a and
b fixed in any simulation. We used either a small sample
size setting using a5 30 and b5 100 or an enabled larger
sample sizes using a5 30 and b5 1,000.

Step 3
(i) for a binary xik: For each patient in each trial, we ran-

domly sampled a binary factor value, xik, using a Bernoulli
distribution, with xik |Bernoulli(prevalence). The preva-
lence denotes the underlying proportion in the study
population with xik5 1. The prevalence was assumed the
same in all studies and fixed in any simulation as either
0.5 or 0.2.

(ii) for a continuous xik: For each patient in each trial, we
randomly sampled a continuous factor value, xik, using
a normal distribution with xik | N(4, 1.52). The mean and
variance were chosen to reflect the distribution of age/10
values in the TBI dataset (Appendix A).

Step 4
We randomly sampled the binary outcome yik (1, event; 0,

alive) for each patient assuming that yik |Benoulli(pik) where
logit (pik)5 ai + bxik. To achieve this, in each simulation, we
sampled a value for ai using ai|Nða; s2aÞ and chose a value
for b (the true effect size, i.e., the log odds ratio). Then

(i) for a binary factor: We always chose a as �1.27,
which is based on the DVT data and relates to a probability
of the event of 0.22 for patients with xik5 0. Then, sa was
chosen as 0, 0.25, or 1.5, and b was 0, 0.1, or 0.9 (relating
to an odds ratio of 1, 1.1, and 2.45, respectively). The cho-
sen s2a values covered zero, small, or large between-study
variability in baseline risk, and the chosen b values covered



Table e4. The simulation scenarios for the simulations that were
repeated for 5 or 10 studies per meta-analysis and sample sizes
of 30e100 or 30e1,000 per study

Binary factor scenarios a sa b

Prevalence
of xik[ 1

1 �1.27 0 0.90 0.5
2 �1.27 0 0.10 0.5
3 �1.27 0 0.00 0.5
4 �1.27 0.25 0.90 0.5
5 �1.27 0.25 0.10 0.5
6 �1.27 0.25 0.00 0.5
7 �1.27 0 0.90 0.2
8 �1.27 0 0.10 0.2
9 �1.27 0 0.00 0.2

10 �1.27 0.25 0.90 0.2
11 �1.27 0.25 0.10 0.2
12 �1.27 0.25 0.00 0.2
13 �1.27 1.5 0.90 0.2
14 �1.27 1.5 0.10 0.2
15 �1.27 1.5 0.00 0.2
16 �1.27 1.5 0.90 0.5
17 �1.27 1.5 0.10 0.5
18 �1.27 1.5 0.00 0.5

Continuous factor scenarios a sa b

19 �2.10 0.2 0.3
20 �2.10 0.2 0.1
21 �2.10 0.2 0
22 �2.10 1.5 0.3
23 �2.10 1.5 0.1
24 �2.10 1.5 0
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a zero, small, or large prognostic effect. When s2a was 1.5,
the 95% range for the baseline log odds of the event across
studies is between �1.27 6 (1.96*1.5), which translates to
a range in baseline event probability from 0.01 to 0.85.
Clearly, this is extreme but is deliberately chosen to view
the impact in such a setting. It may also occur when casee
control studies are synthesized as the researcher then
samples based on event status and thus influences the pro-
portion of patients with events in each group (and thus in-
fluences their ai).

(ii) for a continuous factor: We always chose a as
�2.10, which is based on the TBI data and relates to a prob-
ability of the event at age zero of 0.11 for patients with
xik5 0. Either small (0.2) or large (1.5) variability in
a was chosen, and a one-unit increase in xik (e.g., an in-
crease in 10 years when xik relates to age/10) increased
the log odds by 0 (no effect), 0.1 (small effect), or 0.3 (large
effect).

Step 5
We repeated steps 1e4 until 1,000 IPD meta-analysis

data sets had been generated, keeping the chosen range of
sample sizes, number of studies, and parameter values as
before in each step.

Step 6
To each of the 1,000 IPD meta-analysis data sets gener-

ated from steps 1 to 5, we fitted each of models (1) and (2)
and recorded bb and its standard error on each occasion.

Simulation scenarios
Steps 1e6 were repeated for a range of different simula-

tion scenarios (see table below), according to different per-
mutations and choices of m, a, b, s2a, b, continuous, or
binary xik, and if binary, the prevalence of xik5 1. For ex-
ample, for the evaluation of a binary factor, in total 72 dif-
ferent simulation settings were evaluated for each
combination of 5 or 10 studies, with small (30e100) or
large (30e1,000) sample sizes, and the choice of s2a, b,
and prevalence. Each simulation scenario took between 4
and 14 hours to run, with the longer times required for 10
studies and the larger sample sizes.

Evaluating model performance
For each simulation scenario, 1,000 values for bb and its

standard error were available for each model after step 6,
and the corresponding 1,000 confidence intervals were
calculated using bb61:96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbbÞ

q
. Assessment of each

model’s performance was then examined by calculating

the bias, MSE, mean standard error, and coverage for bb.
The estimated coverage was the proportion of the 1,000 sim-
ulations in which the 95% confidence interval contained the
true b. Note that, because of sampling variability from using
‘‘only’’ 1,000 simulations, coverage can deviate from 95%
by chance, even when the true coverage is 95%. Assuming
the coverage truly was 95%, we expected to observe a cover-
age proportion between 0.95 6 (1.96� 0.00689)5 [0.936,
0.964] in each simulation, where 0.00689 is the standard er-
ror of an estimated coverage of 0.95 from 1,000 simulations.
Thus, coverage values outside the range of 93.6e96.4%
were considered as indicative of poor parameter estimation
for b.



Appendix C
Full simulation results
Table e5. Simulation results for all the scenarios involving a binary factor with prevalence of 0.5 or 0.2, small study sample sizes between 30 and 100 participants, m5 5 studies in the meta-
analysis, the true bb was 0, 0.1, or 0.9, and the standard deviation of ai was 0, 0.25, or 1.5

Scenario Meta-analysis model a (SD of a) Prevalence True b Mean bb Bias of bb MSE of bb Coverage (%) of bb Mean SE of bb
1 One-step ignoring clustering �1.27 (0) 0.5 0.9 0.91 0.01 0.03 94.90 0.16

One-step accounting for clustering �1.27 (0) 0.5 0.9 0.92 0.02 0.03 94.70 0.16
2 One-step ignoring clustering �1.27 (0) 0.5 0.10 0.10 0.00 0.00 95.60 0.16

One-step accounting for clustering �1.27 (0) 0.5 0.10 0.10 0.00 0.00 95.60 0.16
3 One-step ignoring clustering �1.27 (0) 0.5 0 0.00 0.00 0.02 94.90 0.16

One-step accounting for clustering �1.27 (0) 0.5 0 0.00 0.00 0.02 94.90 0.16
4 One-step ignoring clustering �1.27 (0.25) 0.5 0.9 0.90 0.00 0.03 95.20 0.17

One-step accounting for clustering �1.27 (0.25) 0.5 0.9 0.91 0.01 0.03 95.30 0.18
5 One-step ignoring clustering �1.27 (0.25) 0.5 0.1 0.09 �0.01 0.04 94.60 0.18

One-step accounting for clustering �1.27 (0.25) 0.5 0.1 0.10 0.00 0.04 94.80 0.19
6 One-step ignoring clustering �1.27 (0.25) 0.5 0 0.01 0.01 0.04 94.70 0.19

One-step accounting for clustering �1.27 (0.25) 0.5 0 0.01 0.01 0.04 94.50 0.19
7 One-step ignoring clustering �1.27 (0) 0.2 0.9 0.90 0.00 0.10 94.90 0.31

One-step accounting for clustering �1.27 (0) 0.2 0.9 0.91 0.01 0.10 94.70 0.31
8 One-step ignoring clustering �1.27 (0) 0.2 0.10 0.10 0.00 0.08 95.30 0.28

One-step accounting for clustering �1.27 (0) 0.2 0.10 0.10 0.00 0.09 95.40 0.29
9 One-step ignoring clustering �1.27 (0) 0.2 0 0.01 0.01 0.08 95.80 0.28

One-step accounting for clustering �1.27 (0) 0.2 0 0.01 0.01 0.08 95.80 0.29
10 One-step ignoring clustering �1.27 (0.25) 0.2 0.9 0.90 0.00 0.09 95.10 0.30

One-step accounting for clustering �1.27 (0.25) 0.2 0.9 0.92 0.02 0.10 95.40 0.31
11 One-step ignoring clustering �1.27 (0.25) 0.2 0.1 0.08 �0.02 0.12 95.50 0.34

One-step accounting for clustering �1.27 (0.25) 0.2 0.1 0.09 �0.01 0.12 94.90 0.35
12 One-step ignoring clustering �1.27 (0.25) 0.2 0 �0.03 �0.03 0.12 95.20 0.35

One-step accounting for clustering �1.27 (0.25) 0.2 0 �0.03 �0.03 0.13 95.10 0.35
13 One-step ignoring clustering �1.27 (1.5) 0.2 0.9 0.69 �0.21 0.15 87.60 0.31

One-step accounting for clustering �1.27 (1.5) 0.2 0.9 0.92 0.02 0.14 94.80 0.36
14 One-step ignoring clustering �1.27 (1.5) 0.2 0.1 0.07 �0.03 0.12 95.70 0.33

One-step accounting for clustering �1.27 (1.5) 0.2 0.1 0.10 0.00 0.17 94.20 0.38
15 One-step ignoring clustering �1.27 (1.5) 0.2 0 �0.02 �0.02 0.22 94.00 0.33

One-step accounting for clustering �1.27 (1.5) 0.2 0 0.00 0.00 0.26 94.00 0.38
16 One-step ignoring clustering �1.27 (1.5) 0.5 0.9 0.70 �0.20 0.04 46.20 0.09

One-step accounting for clustering �1.27 (1.5) 0.5 0.9 0.90 0.00 0.05 94.90 0.11
17 One-step ignoring clustering �1.27 (1.5) 0.5 0.1 0.08 �0.02 0.04 93.90 0.09

One-step accounting for clustering �1.27 (1.5) 0.5 0.1 0.10 0.00 0.05 94.80 0.11
18 One-step ignoring clustering �1.27 (1.5) 0.5 0 0.00 0.00 0.04 94.90 0.09

One-step accounting for clustering �1.27 (1.5) 0.5 0 0.00 0.00 0.05 94.70 0.11

Abbreviations: SD, standard deviation; MSE, mean standard error; SE, standard error.

9
.e3

G
.
A
b
o
-Z
a
id

et
a
l.
/
Jo
u
rn
a
l
o
f
C
lin

ica
l
E
p
id
em

io
log

y
-

(2
0
1
3
)
-



Table e6. Simulation results for scenarios involving a continuous factor with small study sample sizes between 30 and 100 participants, m5 5
studies in the meta-analysis, the true bb was 0, 0.1, or 0.3, and the standard deviation of ai was 0.2 or 1.5

Scenario Meta-analysis model a (SD of a) True b Mean bb Bias of bb MSE of bb Coverage (%) of bb Mean SE of bb
19 One-step ignoring clustering �2.1 (0.2) 0.30 0.30 0.00 0.01 96.29 0.09

One-step accounting for clustering �2.1 (0.2) 0.30 0.31 0.01 0.01 96.36 0.09
20 One-step ignoring clustering �2.1 (0.2) 0.10 0.09 �0.01 0.01 96.58 0.11

One-step accounting for clustering �2.1 (0.2) 0.10 0.10 0.00 0.01 96.58 0.11
21 One-step ignoring clustering �2.1 (0.2) 0 0 0 0.02 95.10 0.12

One-step accounting for clustering �2.1 (0.2) 0 0 0 0.02 94.90 0.12
22 One-step ignoring clustering �2.1 (1.5) 0.30 0.23 �0.07 0.01 84.10 0.09

One-step accounting for clustering �2.1 (1.5) 0.30 0.31 0.01 0.01 94.80 0.10
23 One-step ignoring clustering �2.1 (1.5) 0.10 0.08 �0.02 0.01 95.30 0.10

One-step accounting for clustering �2.1 (1.5) 0.10 0.10 0.01 0.01 96.10 0.11
24 One-step ignoring clustering �2.1 (1.5) 0 0.00 0.00 0.01 95.40 0.11

One-step accounting for clustering �2.1 (1.5) 0 0.00 0.00 0.02 95.60 0.12

Abbreviations: SD, standard deviation; MSE, mean standard error; SE, standard error.
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