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Abstract: The proposals for the ‘More Electric Aircraft’ place a significant, increased demand on the electrical power distribution
system. To increase safety and reduce aircraft maintenance times on the ground, there is a greater need to quickly identify and
locate electrical faults within the electrical distribution system. The work presented in this study provides the mathematical
basis for the use of power system harmonic impedance measurement for identifying and locating faults within power cables.
The method is passive — that is, it does not require the injection of any test signals — and can potentially be embedded into a
centralised equipment controller to provide intelligent, real time diagnostics. The method monitors the harmonic line-line
self-impedance at strategic points in the distribution system; this is obtained by measuring load voltage and current. Faults
can be identified and located within a few fundamental cycles, and therefore provides a ‘backup protection’ system which
does not require measurement of the line current. It also can provide details of the fault location and could therefore be a
significant aid to aircraft maintenance. This study derives the theoretical basis of the scheme and provides simulation results
for a proposed aircraft power system to demonstrate the validity of this approach to detect and locate faults within the system.

1 Introduction

The concept of the ‘More Electric Aircraft’ (MEA) has been
introduced for overcoming certain drawbacks in conventional
aircraft architectures and can bring many more attractive
advantages [1, 2]. The demands of an MEA will increase
the power distribution requirements of future aircraft
electrical distribution systems. The increased reliance on
electrical energy in an MEA puts increased stress on the
protection and control systems, increasing the electrical
energy distributed from a few hundred kW to over a MW
for a 737 sized aircraft [2]. The introduction of the MEA
emphasises the utilisation of electrical powers instead of
pneumatic, mechanical and hydraulic powers. For the
aircraft secondary power system, power electronic
converters are required for most of the electric loads [3].
Improved fault identification, including the detection of a
fault and its location, is important to enable the electrical
power systems to meet the increased load demand and
functionalities. The currently used protection schemes, for
example, over-current, undervoltage and negative
sequences, do not provide discrimination in an aircraft
power system or could fail to operate because of component
failure [4]. These traditional approaches may not be
particularly accurate [5]. To increase safety accurately and
reduce aircraft maintenance times on the ground, there is
also a need to quickly identify and locate any electrical
faults which may develop.
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A large number of power electronic loads inject low order
and switching harmonics into the system. Many previous
simulation and experimental work were focused on an online
system or load harmonic impedance measurement using
transients associated with capacitor switching [6-12]. Yao
et al. [13] applied voltage and current disturbances because of
loads switching to take harmonic impedance measurement.
In [14-16], a novel fault identification and location algorithm
was proposed, which analysed the ‘line-line self-impedance’
at each load at the specific harmonic frequencies that were
present in the system when an asymmetric fault occurred. The
work formed an initial study into the use of power system
harmonic impedance measurement for identifying and
locating faults within power cables. The method required the
phase voltages and line currents at different load distribution
points within the system to be measured to estimate the
harmonic line-line self-impedance at these strategic points in
the distribution system. This method can be embedded into a
centralised equipment controller to provide intelligent, real
time diagnostics. By combining the harmonic line-line
self-impedance estimates, the faults can be identified and
located within a few fundamental cycles. This can therefore
provide from overall the system a ‘backup protection’ system
which does not require measurement of the line current. A
measure of the fault location could also be a significant aid to
aircraft maintenance.

In this paper, the mathematical analysis of the line-line
self-impedance at the third harmonic frequency is
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performed to support the findings of [14-16]. In [16],
experimental work was presented to verify the capability of
the line-line self-impedance at the third harmonic frequency
for identifying fault location and providing information of
fault resistance. This paper will provide an analytical
solution for the line-line self-impedance at different
strategic points that is related to fault resistance and fault
location as represented in terms of cable characteristic
parameters and cable length to the source terminal.
Therefore the relationship of the line-line self-impedance at
the third harmonic frequency to fault resistance and fault
location, which are the two important aspects of fault
identification, can be pre-described and applied as a
powerful tool further to identify and locate faults.

This paper is organised as follows. Section 2 describes the
example aircraft power system studied. Section 3 describes
how the harmonic currents are produced using the rectifier
switching functions and how they are related to a fault
resistance and a fault location. Section 4 compares the
results from the mathematical analysis with those obtained
using the simulation method, which uses the block
SIMPOWER in MATLAB/SIMULINK. Section 5 gives the
conclusions.

2 Example aircraft power system

In this section, an example aircraft power system is described,
which is a more realistic layout for MEA in comparison with
that used in [14, 15]. The example system is shown in Fig. 1.
The working frequency for the considered system is assumed
to be a constant frequency, 400 Hz. The aircraft electrical
system is unearthed so that only phase—phase faults are
considered in this work.

The supply has an internal impedance of 0.001 Q and 40
puH and is assumed to generate fundamental sinusoidal

x: the potential fault locations on cable sections;
/I several same cable sections connected;

All cable sections in this system have the same
length and the same characteristic parameters.

voltages. The nominal line voltage is 230 V rms. The
characteristic parameters of cable resistance and inductance
are 1.58 mQ/m and 0.28 pH/m, respectively, which is
typical cabling, used in aircraft. The system supplies three
loads, the autotransformer rectifier unit (ATRU), the wing
ice protection load (WIPS) and the -electricmechanical
actuator (EMA) load that is composed of an uncontrolled
diode bridge rectifier and its equivalent DC load. In this
paper, these three loads are numerically noted according to
positions where they are connected within the system. For
the load of ATRU, it is noted as Load 1. For the WIPS, it
is noted as Load 2. The EMA load is noted as Load 3. The
length of the cables supplying the ATRU load from the
source terminal is 10 m; that of the cables supplying to the
WIPS load is 5 m; the total length of the cables supplying
to the EMA load is 30 m. This arrangement is typical of an
aircraft system where the generators are directly mounted
on the turbines and actuators are dispersed along the aircraft
wings. The considered fault locations within the system are
at every 5 m cable section as labelled as ‘%’ in Fig. 1. The
locations numbered as 1 and 2 are referred to cables
connecting to the ARTU load. The fault location is
numbered as 3 for cables connecting to WIPS load. The
considered fault locations for cables connecting to the EMA
load are numbered as 4-9 from the source terminal to the
EMA load.

In this paper, the ATRU load is simplified and modelled as
a three-phase inductive load, which has a nominal power of
100 kW with a power factor of 0.9. The WIPS load is
modelled as a three-phase pure resistive load, which has a
nominal power of 125 kW. The line inductor connected to
the input terminal of the uncontrolled diode bridge rectifier
(EMA) has the inductance of 10 uH. This is a typical filter
value. Its DC load resistance and inductance are 3.844 Q
and 3.1 mH, respectively. In the following analysis, the
EMA is the only non-linear load.

Engine Generator
Source voltages
vector, [v]

e N

""" e
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Phase voltages at
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Fig. 1 Proposed power system for MEA
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The third harmonic current amplitude is a function of fault
resistance and fault location as will be analysed in this work.
Third harmonic currents may be present in a healthy,
unbalanced system. However, their amplitude will
significantly increase in the presence of an asymmetric
fault. Fig. 2 illustrates how the currents to the EMA load
change dependent on fault resistances if a fault occurs at
fault location 5. Fig. 3 illustrates how the currents to the
EMA load change dependent on fault locations if a fault
occurs at different fault locations but with the same
fault resistance. In both cases, the fault occurred at the time
t=0.3 s and Figs. 2 and 3 only recorded currents after the
faults occurred. These two examples demonstrate that the
harmonic currents are a function of both fault resistance and
fault location.

3 Mathematical analysis of the line-line
self-impedance at the third harmonic
frequency

In the proposed power system, the EMA load is a non-linear
load with a line inductance, which distorts the line currents
and phase voltages. In this paper, the rectifier switching
functions are applied to analyse the harmonic currents
produced under unbalanced power supply conditions, which
has resulted from an asymmetrical fault occurring in the
system (i.e. a phase—phase short-circuit fault through a
resistor). Different fault locations and different fault
resistances result in different degree of unbalanced phase
voltages, which will distort line currents differently.
Therefore third harmonic currents will be different and can

www.ietdl.org

be proposed for the analysis of fault location and fault
resistance.

3.1 Fundamental phase voltages under fault
conditions

In this subsection, all variables are referred to the fundamental
frequency.

During a fault, the unbalanced phase voltages at the
source terminal are dependent on the fault resistance and
the fault location. Analysis is based on the phasor
algorithm. As shown in Fig. 1, the phase voltages at the
source terminal are denoted as a phasor vector [vy]. The
engine generator is assumed to generate pure balanced
sinusoidal voltages [v,]. At any time, the currents out
of the source terminal is equal to the sum of the currents
to each load and any abnormal current, for example,
fault current, at the fundamental frequency as described

in (1)
[i] =[]+ [] + [53] + [if] (1)

where [i] is the three-phase current phasor vector and
represents the source current; [i;] is the current phasor
vector to Load 1; [i»] is the current to Load 2; [i3] is the
current to Load 3; [i/] is the fault current flowing to the
three-phase system. In this paper, an asymmetrical fault is
studied, a phase—phase short-circuit fault with a fault
resistance R The three-phase admittance matrix of the
fault resistance is denoted as Y. [v/] is a phasor vector of

Currents flowing to phase A of the EMA load
after a fault occurs between phase A and phase B at potential fault location 5 with different fault resistances
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Fig. 2 Currents flowing to phase A of the EMA load after a fault occurs between phase A and phase B at potential fault location 5 with

different fault resistances

IET Electr. Syst. Transp., 2013, Vol. 3, Iss. 4, pp. 87-101
doi: 10.1049/iet-est.2011.0056

89

This is an open access article published by the IET under the Creative Commons Attribution-

NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/)



www.ietdl.org

Currents flowing to phase A of the EMA load
after a fault occurs at different potential fault locations with the same fault resistance
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Fig.3 Currents flowing to phase A of the EMA load after a fault occurs between phase A and phase B at different potential fault locations with

the same fault resistance Ry=0.05 2

the phase voltages at the fault location as given in (2).
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=1 1 0
710 0 O
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If a fault occurs on the cable section between Load 1 and
the source terminal, the phase voltages at the source
terminal are derived as in (3)

Dol = 1+ (ZIOV3 + 4]+ 2yl (=) D]
6

where A= {1+ZI/O(ZI]1 +Zl)_ ! +Z1f0Y/¢} - l; Zs is the
three-phase impedance matrix of the source internal
impedance; Y, is the three-phase admittance matrix
describing admittance of cable connected between the
source terminal and Load 2 and admittance of Load 2;
and Y'3 is the three-phase admittance matrix describing
admittance of cable connected between the source
terminal and Load 3 and admittance of Load 3. The
detailed expressions for Y’ and ¥’; are presented in the
Appendix. Z,y is the three-phase impedance matrix of the
cables from the fault location to the source terminal; Z,
is the three-phase impedance matrix of the cables from
fault location to Load 1; and Z; is the three-phase
impedance matrix of Load 1.

If a fault occurs on the cable section between the Load 2
and the source terminal, the phase voltages at the source

90

This is an open access article published by the IET under the Creative Commons Attribution-

terminal are derived as in (4) in a similar way

-1
(ol = {1+ (ZJOY] + V3] + 2] (= A)) [0
)

where A={I+Zu(Zp+2,)" ! +20Y) " L Zy, is the
three-phase impedance matrix of the cables from the fault
location to the source terminal; Z, is the three-phase
impedance matrix of the cables from the fault location to
Load 2; and Z, is the three-phase impedance matrix of Load 2.

If a fault occurs on the cable section between Load 3 and
the source terminal, the phase voltages at the source
terminal and the phase voltages at the fault location can be
calculated as in (5)

-1
ol = {1+ ZJAY T+ V21 + 2] (4= AD)] ]
®)

3.2 Harmonic AC currents under fault conditions

In the previous subsection, the phase voltages at the source
terminal at the fundamental frequency were calculated and
can generally be expressed in the time domain as in (6)

Vo = Vi sin(wt — ¢,
Voo = Vip sin(et — ¢,
Vo = ch SIH(wt - ¢3)

(6)

where v,9, vy and v.q are instantaneous values of the phase
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voltages at the source terminal after an asymmetrical fault
occurs on a cable section within the system. ¢, ¢, and ¢;
are the initial phase angles of the phase voltages at
the source terminal with reference to the source supply
voltage. Here, it is worth noting that the phase voltages at
the source terminal may no longer represent a balanced set
of voltages after a fault occurs within the system. The
three-phase uncontrolled diode bridge rectifier is as shown
in Fig. 4.

Va0, Voo and v,y are the phase voltages at the source
terminal. L,, L, and L. are the line inductance including the
cable inductances from the source terminal or the fault
location to the input terminal of the diode rectifier unit.

The harmonic line currents generated by the diode rectifier
are the focus of this work, especially for the third harmonic
component. The calculation can be carried out using a
Fourier series method and the rectifier switching functions
[17-19].

The open-circuit DC output voltage can be derived using
voltage rectifier switching functions. The DC output voltage
is composed of a smoothed average DC voltage and
harmonic components, which produce corresponding DC
currents. The harmonic components of the DC voltage
and current can be analysed using a combined method
proposed in [19]. For accuracy, overlap angles are
considered because of the finite inductance connected to the
rectifier unit. To simplify the calculation of the AC line
currents, it is assumed that the DC current is continuous
and smooth.

3.2.1 DC voltage: The DC side voltage v, is expressed as
the sum of the multiplication of the voltage rectifier switching
functions S,, S, and S, and the relative phase voltages v,g, Vo
and v,.

Va = Sy Vao + Sp Veo + 5S¢ Veo (N

The voltage rectifier switching functions are as shown in
Fig. 5. These rectifier switching functions can be expressed
as a Fourier series as follows

S,= Y (Ag cosnwt+ B, sinnwt)
n=135,...
Sy= Y. (Ap,cosnwt+ By, sinnwr) (8)
n=1,3,5,...
S,= Y (A,cosnwt+ B, sinnwt)
n=135,...
A N A
L Ldn:
Vil ]
Vpp © L LT 'a'a :: AT <
Ve © IL:- — d k Ry
i i N

Fig. 4 Three-phase uncontrolled diode rectifier bridge unit (EMA
load, Load 3)
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Fig. 5 Rectifier switching functions for calculating the DC output
voltage
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_2

ni

an
{sin n()\1 + %) cos(%) — sin n(/\z + %) COS(%) }
i ny M ng
{cos n(x\l + 71) COS(TI> — cos n</\2 + 72) cos(Tz) }

Ab = —

" nmw

o +12)(12) s, + 5o 2|

{cos n(x\z + %) cos(%) — oS n<A3 + %) cos ("2&) }
_ 2

ni

. W nu . W npu
{s1nn</\3 + 73) cos(f) - s1nn<)\1 + 71) cos(f)}

cn

M ny Jd np
{cos n(/\3 + 73) COS(TS> — oS n(x\l + 71) cos(Tl) }

U1, 4> and s are the overlap angles of the respective phases,
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as shown in Fig. 5. The overlap angles are calculated by

w, = C0871 1 — (Xa +Xc)ld
\/chm + Vc%m - 2Vam ch COS(¢3 - d)l)
= 00871 (Xa +Xb)[d

1—
\/ng + Vuzm - 2Vam me COS(Q’)] - d)Z)

_ (X +X,) 14
\/chm + V[%m - 2me ch COS(Q,)Z - ¢3)

M3 = cos 111

A1, A, and Aj are the radian phase angles at which the phase
voltages at the corresponding phases are equal to each other
and have positive values. They are calculated as

1 ch sin ¢3 + Vam sin ¢)1

A =tan~
: - ch Cos ¢3 + Vam Cos ¢)1
A = tan71 _Vam sin d)l + me sin ¢2
2 —V, mcos ¢y + V;,, cos ¢,
A — tan”! —VyuSin g, + V,,, sin ¢
s =

—Vymcos y +V,,, cos @5

Substituting (6) and (8) into (7), the DC voltage is given as

Vg =Vy+ Z (Adn cosnwt + B, sinn wt) 9)

N=2,46,..
Here
1 .
Vi = 3 [V (—Ag sin @, + B, cos @)
+ Vi (=Ap1 sin @, + By, cos ¢,)
+V (—A, sin @3 + B, cos 3) ]
(see (10))

The first term on the right-hand side of (9) represents the DC
component of the voltage on the DC side and the remaining
terms are the harmonic components. With the DC voltage
defined, the DC current can be derived.

3.2.2 DC current: The DC current can be determined by
applying the DC side voltage and the load impedances at

the corresponding harmonic frequencies. For the Ath
harmonic, the load impedance is Z,= Ry, +jkX4.. The DC
current is expressed as

ig=In+ Y. Icos(kot— ) (11)
k=2,4.6,...

Here

VAu+ By

R Y e e (11)
¢ |Z|
Agr and By, are given by (10)
—1 By —1Im(Z)
B; = tan P2dk 4 tan~! ——2K
‘ Age Re(Z;)

3.2.3 AC current: The AC line currents are produced by
the DC current i;. The AC line currents can be derived by
multiplying the DC current with the current rectifier
switching functions. Owing to the finite line inductance, the
commutation of diodes between phases exists and
the assumption here is that, during the commutation period,
the DC current is constant. This simplifies the analysis.
The change of the line current is assumed to be linear. The
current rectifier switching function for phase 4 is as shown
in Fig. 6.

Fig. 6 Rectifier switching function for calculating AC line currents

Vom :(Aa(n—l) + Aa(n+1)) sin ¢, + (Ba(n—l) - Ba(n+l)) €S ¢
+Vem :(Aa(nq) + Aa(n+1)) sin @3 + (Ba(nq) - Ba(n+1)) cos @3
By, = (+ 1/2){ Vam[(Aa(n—l) - Aa(n+l)) cos @) — (Ba(n_l) + Ba(n+1)) sin ¢
+Vom :(Aa(n—l) - Aa(n+l)) CoS ¢, — (Ba(n—l) + Ba(n+l)) sin <Pz_

+ch _(Aa(n—l) - Aa(n+l)) COS @3 — (Ba(n—l) + Ba(n+l)) sin 903_

Agy = (— 1/2){ Vam[(Aa(nq) + Aa(n+1)) sin ) + (Ba(nfl) - Ba(nJrl)) cos €01]

R

—_

(10)
]

[

n=2m (m=12,3...)
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The current rectifier switching function can be expressed
by a Fourier series as

Su®)= Y Ay,cosnot+ By, sinnot  (12)

n=13.5,...
Here
4 = 4
ian_nzﬂ_
—sinnﬁsinn()\1 +ﬂ) +—sinnﬁsinn()\2 +ﬂ)
Mo 2 27 py 2 2
4
B =—
an n27T
1 1
{M—lsinnzﬁcosn()\l +%) —IUJ—ZsinnzﬁcosnO\2 +%>}

The third harmonic is used in this work. Therefore the third
harmonic AC line current on phase A is derived by
multiplication of the switching function with the DC current
and given as

I3 =1g0/ Ay + Bl COS(3 wt — @)
\ Azzal +Btz

+1, > “lcos(3wt—,83—(p])+---
i \/ A?u(zz+3) +B?a(zz+3)
x> e 5

=1

[
%)

(13)
C05<3wf +Bon+ 90(21+3)) +---

\/ A?a(zz—s) + B%a(21—3)
Lo 5

X

e

[
£

1=2]
COS<3 wt — By — 90(21—3))
Here

1 Biais3) 1 Biai-3)

Poi3) =tan” and @p;_3 =tan"

ia(21+3) ia(21-3)
In a similar way, the third harmonic AC line currents on
phases B and C can be calculated.

In the proposed simplified aircraft power system, the
uncontrolled diode bridge rectifier unit is the only
non-linear load, which is also the third harmonic current
source when it is applied under unbalanced supply
condition (e.g. an asymmetrical phase—phase fault). The
third harmonic voltage distortions at each node or load
terminal can be calculated using the topological circuit of
the system with parameters at the third harmonic frequency
and will be discussed in the follow subsection.

3.3 Third harmonic line currents at each load

In this subsection, the third harmonic line currents flowing to
each load will be discussed and derived. The supply is
assumed to generate a pure sinusoidal voltage at the
fundamental frequency. Therefore the Thevenin equivalent

IET Electr. Syst. Transp., 2013, Vol. 3, Iss. 4, pp. 87-101
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of the supply will be short-circuited when a topological
circuit at the harmonic frequencies is considered. All
impedance values, voltages and currents vectors are referred
to the third harmonic frequency.

In an analogous way as described in the previous
subsection, the third harmonic line currents flowing to each
load can be derived and calculated. The third harmonic
currents produced are circulated within the system and can
be expressed by the sum of the load currents (including the
source current) and fault currents at the third harmonic
frequency

313, = [slyyy + [0 13y + [indsg + [l (14)

Here [i,]3,, [i>]3;, and [i3]3; are the third harmonic AC line
currents flowing to each load; [i];, is the third harmonic
line current flowing to the source fgom the non-linear load;
[il3;, is the fault current at the third harmonic frequency.
The third harmonic line currents are dependent on where
the fault location is. In the following description within this
subsection, all variables are referred to the third harmonic

frequency and the subscripts 3/, are omitted.

3.3.1 Fault occurring on cables supplying Load 1:
For a fault on the cable section supplying Load 1, the phase
voltages at the source terminal at the third harmonic
frequency are expressed by

-1
ol = (Y, + 1o/ /Yy + Yo =)} T3] (15)

Here A={I+Z,p(Z g +2Z,)~ ! +Zi0Y !. Then, the third
harmonic currents flowing to Load 1 and Load 2 can be
calculated as

[[il]:{Ylfo_(Y1f0+Y_f)A}[V0] (16)

[L]=(Z, + ZTz)_l[Vo]

The third harmonic phase voltages at the Load 3 are expressed
as

3] = {1+ Zs (0 + 1o/ ¥ + Vo =D v] - (17)

3.3.2 Fault occurring on cables supplying Load 2:
Similarly, for a fault on the cable section supplying Load 2,
the phase voltages at the source terminal at the third
harmonic frequency are calculated by

—1
(ol = (Y, + 10/ Y + Vg = )] T3] (18)

Here A={I+Zy(Zop+2:)" '+ ZypY ~'. The third
harmonic currents flowing to Load 1 and Load 2 are
expressed as

[i]1= (2, +ZT1)_1[VO]

[i,] = {YZfO - (YZfO + Yf) A][Vo] (1
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The third harmonic phase voltages at the Load 3 are given by
(3] = {1+ Zs (0 + Y1/ /¥y + Yoo = D] Iw] - (20)

3.3.3 Fault occurring on cables supplying Load 3:
The third harmonic phase voltages at the source terminal
for a fault on the cable section to Load 3 are calculated as

ol = [V + ¥, (14 vr) ) @

Here, the equivalent admittance matrix ¥, is defined and
expressed as Yoq =Y+ Y1/ Yy + Yo//Yp. The phase voltages
at the Load 3 are calculated as

= s () i) o

The third harmonic currents flowing to the Load 1 and Load 2
are calculated as

{ 1= (2, + ZTl)il[VO] (23)

] = (2, + ZTz)il[Vo]

In this section, the third harmonic line currents flowing to or
from each load are discussed and analysed. According to the
definition of the line-line self-impedance at the harmonic
frequency [14], the impedance indicators can be obtained.

Here, a different expression of the line-line self-impedance
is used. For the proposed aircraft electrical system,
three-phase loads are assumed to be balanced and denoted
as Zj, Z, and Z;. Thus, the three line-line self-impedance
are given by

i (b
Zun =2, (1 - ZE—’;D (24)
(@ — wy(d)
Zab3 B is(a)

In the above definitions, the line-line self-impedance at the
non-linear load terminal (3) is defined by voltage and
current and cannot be simplified as the other two due to the
non-linearities of its load. Here, all impedances are referred
to the third harmonic frequency; load line currents and
phase voltages at the load terminal are also referred to the
third harmonic components and as derived as in Section 3.3.

4 Comparison results

In this section, the comparison of the equivalent line—line
self-impedance curves against fault location and fault
resistance, which are obtained using the mathematical
analysis results and through simulation, will be presented.
The fault resistance range studied is from 0.01 up to 0.50
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Fig. 7 Equivalent impedance curves seen from Load 1 when fault occurs at Locations 1-3 (solid line, results from the simulation; dash dot

with ‘X’ line, results from the mathematical analysis)
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Fig. 8 Equivalent impedance curves seen from Load 2 when fault occurs at Locations 1-3 (solid line, results from the simulation, dash dot

with ‘x* line, results from the mathematical analysis)

Q. The system was simulated using SIMPOWER block in
MATLAB/SIMULINK. The relationship of the equivalent
line—line self-impedance curves against fault location and
fault resistance was similar to the experimental results
presented in [16].

Figs. 7-9 show the observed equivalent impedances
measured under fault conditions at each of the load
terminals for a range of fault resistance and locations as
given by simulation and mathematical analysis. From
Fig. 7-9, the equivalent impedance curves obtained by
mathematical analysis are similar to those obtained from
simulation. These curves for different fault locations at the
third harmonic frequency are very close to each other.
It will therefore be difficult to distinguish faults if they
occur at these locations.

Fig. 10 shows the equivalent impedance curves obtained at
Load 1 when fault occurring at Locations 4-6 (solid line,
results from the simulation; dash dot with ‘x’ line, results
from the mathematical analysis).

Figs. 10-15 show the equivalent line-line self-impedance
(including self-resistance and self-reactance) curves at each
load when a fault occurs at locations 4-9 deduced from
mathematical analysis and simulation. The mathematical
analysis and simulation results are in good agreement. To
distinguish the faults on cable Sections 4-9, for low fault
resistances up to 0.2Q, the equivalent line-line
self-impedance at the non-linear load can be used to locate
these faults. For high fault resistances, the equivalent line—
line self-impedance at the linear loads can be used to locate
the faults. This is because of the degree of imbalance

IET Electr. Syst. Transp., 2013, Vol. 3, Iss. 4, pp. 87-101
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decreasing and more information is required to discriminate
faults. Thus by using a combination of all the measured
impedance it may be possible to locate fault on a long line
section [14, 15].

It can be seen that the curves found from the mathematical
analysis have similar trends to those from the simulation
model. The differences between them are because of the
calculation errors of the phase angles and amplitudes of the
third harmonic currents produced by the diode bridge
rectifier. In this simulation, the length interval of the fault
location is 5m. If the interval is decreased, for the
equivalent impedance curves against fault location and fault
resistance, the differences between them will be
less obvious so that the combination of them may not be
able to identify faults occurring at a resolution much less
than 5 m.

Mathematical analysis of the line-line self-impedance at
the third harmonic frequency was presented in this paper.
To apply this algorithm in fault detection, the currents to
load need to be continuously monitored and analysed in the
frequency domain. If third harmonic currents are detected,
the line-line self-impedances at the third harmonic
frequency for each load will be calculated using the
monitored currents and voltages. Then, the calculated
equivalent impedances obtained for each load will be
compared with the calibrated curves of equivalent
impedances against fault location. Note that the load
currents and voltages are continuously monitored so that the
load impedances can be continuously updated for use in the
algorithm.
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dot with ‘x’ line, results from the mathematical analysis)
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Fig. 15 Equivalent impedance curves obtained at Load 3 when fault occurring at Locations 7-9 (solid line, results from the simulation; dash

dot with ‘x’ line, results from the mathematical analysis)

5 Conclusions

The mathematical analysis of the third harmonic currents
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7 Appendix
7.1 Expression of the admittance matrix [Y' 3]

Owing to the non-linearities of diode rectifier, the current and
voltage switching functions are applied to derive the
relationship between the input voltages and input currents at
the input terminal of the diode rectifier [20]. Therefore the
relationship between them at the fundamental frequency can
also be expressed in the form of admittance at the
corresponding frequency, as noted as [Y;3]. The finite
inductance on the line takes effects on the change of current
during the commutation period and results in the overlap.
The overlap angle is also considered to derive the
relationship between the input currents and input voltages

16 Ay Ap A
[Ya]l=———| 43 4, A
3 (77/2) XRdC 13 11 12
Ay Ay Ay
Ay A, A
K 21 Ay Ao
+ - Ay Ay Ay
(Rdc +sz<LdC + Lf)) Ayy Ay Ay
(25)
where K =((32)/(y(%/2)))sin>(y/2), y=cos™!

{1 - (zﬂlineld)/(\/gl/pm
system is in normal service and diode rectifier is supplied
by balanced voltages, 4;; = (1/2)cos(y/2), Ay, = (1/2)cos(2n/
3—2), A;z=1/72)cos(2a/3)+(y/2)), A= —(1/4)
exp(—j(01 + 02+ (¥/2))), Az = — (1/4)exp(—j(6) + 6, + (y/2) +
(27/3))) and Az = — (1/4)exp( —j(6, + 6, + (y/2) + (47/3))).
For the coefficients A5, A>> and A,3, the parameters 6; and
6, are calculated as 8, =(n/6) — @y and 6, =0, + (27/3). @q
is the initial phase angle of the phase voltage V,.

The three-phase admittance matrix denoted as Y’5 is then
described as in (26)

] is the overlap angle when the

[¥'5] = [Y1([Y75] + [V5]) ' [Ys] (26)
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7.2 Elimination of load currents in Section 3

In Section 1 of Section 3, load currents are eliminated. Here,
how the load currents are eliminated is presented. Take Case 1
as example. The fault occurs on the cable section between
Load 1 and the source terminal (Fig. 16).

According to Kirchoff’s circuit law and node equations, the
following expressions are obtained

lig] = [i1] + [i/] @7)
ol =[] = [Zyyo] L] (28)
] = ] = (2] (1] (29)

v,1 = [Z] li/] (30)

] = [Z,][1,] 31

Using (29)—(31), the fault currents and phase voltages at fault
location can be expressed in terms of load current [;] as in
(32).

{ li)] = [¥,1(Z,]+ [Z,, D) [1)] a2

=21+ 2] [i1]

In a similar way, the current [iy] can be expressed in terms of
load current [7;] as in (33) by combining (27) and (32).

ol = {1+ (Za+1z,0) 1 63)

Combining (28), (32) and (33), the current flowing to Load 1
as noted as [i;] can be expressed in terms of the phase
voltages at the source terminal [w] as in (34).

1= { (12 +12,11) +1Z,0]
y (34)
+HZyal Y1 (120 + 1)} 0]

In a similar way, currents flowing to Load 2 and Load 3 as
noted as [i;] and [i3] can be expressed in terms of phase
voltages at the source terminal [vo] in (35).

[i2] = {[Y2] (] + YD) ™ (Yo} D] = [¥'2] [w]

[i3] = {[¥55] (Y] + [Yp3D ™" [Yps]} o] = [¥'5] [vo]
(35)

Rewrite (1) in Section 3.1 in terms of source phase [vg] and

[Z170] [Z11]

- - )

[ 1 Fault location, f T | f 1

] | 1 | |

v —— L— v, L b —
] :

s — I | —

1 I ! [

Fig. 16 Example — fault occurs on the cable section between the
source terminal and Load 1
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source impedance [Z,] as in (36)

[Z17 (v — o)) = G ]+ [l + [531 + [i]1 (36)

Substituting currents on the right-hand side of (36) with
expressions (33)—(35), the phase voltages at the source
terminal can be achieved as in (3).
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If a fault occurs on the cable section between Load 2 and
the source terminal, the three-phase admittance matrix [¥’;]
in (4) can be achieved in a similar way

V'] =01 (%] + [Yp)) ' Y] (37
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