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Abstract The electronic healthcare databases are start-

ing to become more readily available and are thought to

have excellent potential for generating adverse drug re-

action signals. The Health Improvement Network (THIN)

database is an electronic healthcare database contain-

ing medical information on over 11 million patients that

has excellent potential for detecting ADRs. In this pa-

per we apply four existing electronic healthcare data-

base signal detecting algorithms (MUTARA, HUNT,

Temporal Pattern Discovery and modified ROR) on the

THIN database for a selection of drugs from six chosen

drug families. This is the first comparison of ADR sig-

nalling algorithms that includes MUTARA and HUNT

and enabled us to set a benchmark for the adverse drug

reaction signalling ability of the THIN database. The

drugs were selectively chosen to enable a comparison
with previous work and for variety. It was found that

no algorithm was generally superior and the algorithms’

natural thresholds act at variable stringencies. Further-

more, none of the algorithms perform well at detecting

rare ADRs.
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1 Introduction

It is an unavoidable consequence that prescription drugs

frequently cause unwanted side effects due to the un-

predictability of how a drug will interact with all the

body functions [23]. When a negative side effect has

been associated with a drug, it is referred to as an ad-

verse drug reaction (ADR). Clinical trials are used as

a means to identify common ADRs, but are not suit-

able at detecting all the possible ADRs. The reason

clinical trials cannot find all the ADRs is due to the

trials being limited by time constraints, sample popu-

lation size, sample population bias and unrealistic con-

ditions [16]. For example, outside of a clinical trial it

is common practice for a patient to be taking multi-

ple prescription drugs but not all co-prescriptions can

be monitored during clinical trials. It is also common

for certain subpopulations such as children or pregnant

women to be underrepresented in trials due to ethical

reasons. As a consequence, post marketing surveillance

is constantly required to identify any previously undis-

covered ADR throughout the time a drug is actively

prescribed. Pharmacovigilance signal detection is the

process of identifying potential adverse reactions to a

drug that were previously unknown. Once a tentative

signal is generated, it is further evaluated to confirm

causation between the drug and adverse drug reaction,

if causation is shown, we refer to the signal as a true

signal, if causation is not shown, it is a false signal.

The majority of the traditional posts marketing sur-

veillance techniques make use of spontaneous reporting

system (SRS) databases, databases containing volun-

tary records of suspected drug and ADR pairs. The SRS

algorithms generate tentative ADR signals by finding

medical events that occur disproportionally more of-

ten after a specific drug compared to any drug in the
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database. The existing SRS algorithms include calculat-

ing measures frequently used in epidemiology such as

the reporting odds ratio [17] and proportional report-

ing ratio [9], a Bayesian approach [3] and an Empiri-

cal Bayes approach [8]. Due to the voluntary nature of

these databases information is often missing, incorrect

or duplicated [1]. It is also believed that some ADRs

may not be detectable by mining SRS databases due

to under-reporting [2], for example people may not be

bothered to report less severe side effects or may not

notice a very rare ADR. The existing algorithms ap-

plied to SRS databases have previously been described

as filters rather than definitive ADR detectors as the

tentative signals they generate still require further in-

vestigation to determine if they are true or false.

Recently a new type of medical database, the Elec-

tronic Healthcare Database (EHD), has started to at-

tract attention for scientific research and is expected to

become a fundamental component in future pharma-

covigilance [25]. It is common for this type of database

to contain a wealth of information such as complete

medical and drug prescription histories for a patient.

These databases offer a different perspective for detect-

ing ADRs than the SRS databases and current research

includes developing methods to mine EHDs or integrat-

ing EHDs and other healthcare databases together and

mining the combination [6] [4].

There has been a recent focus on developing al-

gorithms that can mine EHDs and a variety of algo-

rithms exist. A range of different methodologies have

been incorporated into signalling ADRs including case

control approaches [18], cohort approaches [20], modi-

fying older algorithms developed for SRS databases [7]

[28], developing sequential pattern mining based algo-

rithms aiming to find dependencies between drugs and

medical events by using a control group [11] [12], inves-

tigating temporal changes [15] or by calculating the log

likelihood over time [5]. One previous study applied and

compared a range of ADR signalling algorithms includ-

ing the SRS adapted disproportionality algorithms and

the Temporal Pattern Discovery (TPD) algorithm to

multiple EHDs [19]. They showed that the algorithms

investigated tended to return many false positive as-

sociations and that there was no clear optimal algo-

rithm, as the most suitable algorithm depends on the

desired trade off between the sensitivity and specificity.

Another study concluded that there were little differ-

ence between the signalling ability of the SRS adapted

disproportionality algorithms and a selection of cohort

and case control algorithms [21]. To date there has been

no comparison that includes the ADR signalling algo-

rithms known as Mining Unexpected Temporal Asso-

ciation Rules given the Antecedent (MUTARA) [11]

and Highlighting UTARs Negating TARs (HUNT) [12].

Both MUTARA and HUNT offer a unique perspective

for signalling ADRs for a specific drug of interest as

they are case control methods that incorporate a pa-

tient level filter. It is of interest to investigate how MU-

TARA and HUNT compare with the SRS adapted dis-

proportionality algorithms and the TPD algorithm as

these have been extensively investigated.

An EHD known as The Health Improvement Net-

work (THIN) is a UK database that contains time stamped

medical data on over 11 million patients and has excel-

lent potential for ADR signal detection. Recent work

has investigated the suitability of ADR signalling us-

ing the THIN database in it’s raw form compared to

a mapped form that enables it to be integrated with

other EHDs [27]. The study showed that many THIN

records were unable to be mapped but this did not ap-

pear to limit the signalling ability of the mapped THIN

database. In this paper, we applied a selection of ADR

signalling algorithms to the raw THIN database. This

enabled a benchmark to be determined that can be used

to aid the development of future ADR signalling algo-

rithms that are specific to the THIN database and can

utilise all the information contained within. This is im-

portant as we do not know all the possible ADRs for

any drug so there is no ‘golden standard’ to compare

ADRs signalling algorithms against. Furthermore, this

comparison enables us to determine the rare ADR sig-

nalling potential of each algorithm investigated as this

has not been previously studied. This is important as

algorithms mining the THIN database may be more

likely to signal rare ADRs (occurring in less than 1 in

1000 patients) compared to algorithms mining the SRS

databases due to the THIN database not relying on

voluntary reporting. Although rare ADRs do not occur

often, if they are severe (such as liver failure or death),

it is important to identify them and algorithms capa-

ble of signalling rare but severe ADRs would greatly

improve current healthcare.

In this paper we compare four existing algorithms

(HUNT, MUTARA, TPD and modified ROR) by ap-

plying them to the THIN database (www.thin-uk.com)

consisting of general practice records for patients regis-

tered at participating practices within the UK. In previ-

ous comparisons applied to other EHDs the algorithm’s

general ability of ranking ADR as well as it’s ability

of signalling ADRs at the natural threshold have been

investigated. For consistency, these measures are also

determined in this study on the THIN database.

The modified ROR and the TPD algorithm both

have natural signalling thresholds (the value of the lower

confidence interval is greater than 1 or 0 respectively).

HUNT and MUTARA were developed to return a ranked
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list of potential ADRs but MUTARA has a natural

threshold for signalling ADRs when the unexpected-

leverage is greater than 0. Unfortunately, HUNT does

not have a natural threshold so in this paper, for the

natural threshold comparison, we implement a thresh-

old of signalling the top 10% of the ranked events.

The general ability of identifying ADRs, independent

of their natural signalling thresholds, can be observed

by using rank based measures such as the area under

the Receiver Operator Characteristic (ROC) and the

average precision. The rank based measures are calcu-

lated by considering the top n ranked events by each

algorithm to be the tentative signals generated by each

algorithm. Although technically a signal corresponds to

an unknown potential ADR, for evaluation purposes in

this paper we generate signals by considering that there

are no known ADRs (so signals corresponding to a drug

and adverse reaction are generated even if the drug is

currently known to cause the adverse reaction) and use

the known ADR knowledge to determine the number of

true signals by finding how many of the known ADRs

are signalled by each algorithm. So, we use the number

of known ADRs occurring in the top n ranked events

by each algorithm to calculate the number of true sig-

nals generated by each algorithm where n determines

the signalling threshold. The sensitivity and specificity

can then be evaluated.

The continuation of this paper is as follows, sec-

tion 2 gives a background on the existing algorithms

describing the databases they were previously applied

to and previous results. Section 3 contains information

about the THIN database, the drugs investigated and

the method applied in this paper to compare the algo-

rithms. Section 4 presents the results of the comparison

method and is followed by a discussion in section 5. This

paper finishes with the conclusion in section 6.

2 Algorithms

The EHDs do not contain direct links between drugs

and medical events that are potential ADRs but these

links can be inferred by using the temporal informa-

tion in the database and finding all the medical events

that occur within a set time period after the drug is pre-

scribed. In this paper we are investigating the ability to

detect immediately occurring ADRs so we consider all

medical events that occur within 30 days of the drug

prescription as possible drug and ADR pairs. Justifi-

cation for investigating the 30 day time period after

a drug prescription is that this is a trade off between

having a long enough time period that under-reporting

will be minimised (as patients have time to report any

side effects) while reducing the amount of noise caused

Table 1 Contingency table used in existing SRS methods.

Event j =Yes Event j =No
Drug i=Yes w00 w01

Drug i=No w10 w11

by a long time period. After finding all the medical

events that occur within 30 days of the drug prescrip-

tion, the pharmacovigilance algorithms developed for

EHDs then calculate a dependency measure between

the drug and each medical event and return a list of

all medical events that occurred within 30 days of the

prescription for any patient ranked by the dependency

measure. The medical event ranked 1 is the medical

event that appears to have the greatest dependency on

the drug of interest having been previously prescribed.

The existing EHD algorithms calculate the dependency

measure differently and the majority implement a fil-

ter. We described the existing algorithms and the de-

pendency measures used in the sections below.

2.1 SRS Algorithms

2.1.1 SRS Algorithms & Background

The SRS algorithms were originally developed for gen-

eral SRS databases where the actual rate that a drug

is prescribed and the rate that a medical event occurs

is unknown, as SRS databases only contain data on

the drug prescriptions that may have resulted in an

ADR. Consequently, the SRS algorithms estimate the

background rate that a medical event occurs by find-

ing out how often the medical event is reported with

any drug in the database. Medical events that are re-

ported disproportionally more often with the drug of

interest compared to all the other drugs in the data-

base are then ranked highly as suspected ADRs. These

algorithms make use of a contingency table, see Table

1, summarising the number of reports that contain (or

do not contain) the drug and event of interest.

One example of an SRS algorithm is the reporting

odds ratio (ROR),

ROR =
w00/w10

w01/w11
(1)

where a measure of how often the medical event occurs

after the drug being investigated relative to how often

it occurs after any other drug (w00

w10
) is divided by how

often any other medical event occurs after the drug be-

ing investigated relative to how often they occur after

any other drug (w01

w11
).
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2.1.2 SRS algorithms Previous Results

Existing work by Zorych et al. applied the ‘modified

SRS algorithms’ to a simulated EHD database and a

real EHD database [28]. They first transformed the

EHD databases into an SRS style database contain-

ing reports of potential drug and ADR pairs by using

temporal relations, in a similar way as described at the

beginning of this section, see Fig. 1. After transform-

ing the EHD data into SRS data they then applied the

existing SRS disproportionality algorithms.

2.1.3 Implementation of the modified SRS algorithms

in this study

In this paper we use the ‘Spontaneous reporting system’

style transformation [28], where SRS style reports con-

sisting of a patient, drug prescription and possible ADR

are inferred from the EHD by discovering all the medi-

cal events that occur within 30 days of a drug prescrip-

tion. Fig. 1 illustrates an example of the transformation.

After the THIN database is transformed, as described

in Fig. 1, the ROR is applied. The left bound of the 90%

confidence interval of the ROR (ROR05) is calculated

for every event that occurs in at least three reports for

the drug of interest (w00 ≥ 3) and the medical events

are ranked based on the ROR05, see Eq. 2 [17] [28].

We chose to use the left bound of the 90% confidence

interval of the ROR as previous work showed that the

ROR05 was better at ranking medical events in terms

of how likely they are to be ADRs than the ROR [28].

So the measure of dependency used to rank the medical

events when applying the modified SRS algorithms to
the THIN database is the chosen SRS algorithm value

(in this case the ROR05) calculated on the SRS style

transformed database.

ROR05 = exp(ln(
w00/w10

w01/w11
)

− 1.645 ∗
√

1

w00
+

1

w01
+

1

w10
+

1

w11
)

(2)

2.2 MUTARA/HUNT

2.2.1 MUTARA/HUNT Background

The algorithms Mining Unexpected Temporary Asso-

ciation Rules given the Antecedent (MUTARA) [11]

and Highlighting UTARs, Negating TARs (HUNT) [12]

were developed to be implemented on the Queensland

Linked Data Set (QLDS) comprising of the Common-

wealth Medicare Benefits Scheme (MBS), Pharmaceu-

tical Benefits Scheme (PBS) and Queensland Hospi-

tal morbidity data. The QLDS contained hospital data

from the 1 July 1995 to 30 June 1999 and MBS/PBS

records from 1 January 1995 to 31 December 1999.

Medical events from the hospital data were recorded

by the International Statistical Classification of Dis-

eases and Related Health Problems (ICD) 9 system and

there were a total of 2020 different diagnoses. The drug

prescriptions were coded with the World Health Or-

ganization (WHO) Anatomical Therapeutic Chemical

(ATC) system [24] and the database contained a to-

tal of 758 distinct drug codes. The QLDS did not have

complete records for each patient and only contained

hospital records.

2.2.2 MUTARA/HUNT algorithms

Both MUTARA and HUNT make use of a dependency

measure known as the leverage that is frequently used

when mining sequential patterns. In the context of this

paper the leverage calculates the temporal dependency

of medical event C on drug A by finding the number of

patients that have drug A followed by medical event C

within a time period of T days (denoted A
T→ C) minus

the number of patients you would expected to have the

medical event after the drug if the drug A and medical

event C occurred independently of each other.

The algorithms apply a case control approach where

patients prescribed the drug are referred to as users

and patients that have never been prescribed the drug

are referred to as non-users. The non-users are used

to estimate the background rate that a medical event

occurs. When implementing the algorithms the values

Te, Tc, Tr, Tb ∈ N are input.

The algorithms first restrict their attention to sub-

sequences of the user and non-user sequences. For each

user sequence, the Th constrained subsequence of inter-

est is the subsequence of length Th days starting from

the day the drug is first prescribed. The value of Th dif-

fers between users depending on if the user has a repeat

prescription within Te days after the first prescription.

If the user does not have a repeat prescription within Te
days of the first prescription then Th = Te, whereas if

the second prescription of the drug occurs s days after

the first prescription where s ≤ Te then Th = s + Te.

For each non-user, the Tc constrained subsequence of

interest is a subsequence of length Tc days that is ran-

domly chosen from the non-user’s sequence. See Fig 2

for an illustration of how the subsequences are chosen.

We define tot to be the number of users and non-

users. Using the constrained subsequences, the supp(A
T→
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Fig. 1 The line represents the THIN data for patient Pat1 with the arrow showing the direction of time and each circle is
a day, with red circles representing a prescription of a drug and green circles representing an occurrence of a medical event.
To transform this into SRS style data, the drugs are paired with all the medical events that occur within 30 days, so the
THIN data represented in this Figure is transformed into seven SRS reports for the Pat1. The SRS style reports consist of
four SRS data entries for drug A (Pat1-drug A -medical events 1,Pat1-drug A-medical event 2,Pat1-drug A- medical event 3
and Pat1-drug A-medical event 4) and three SRS data entries for Drug B (Pat1-Drug B-medical event 2, Pat1-Drug B-medical
event 3 and Pat1-drug B-medical event 4).

C) is defined as the number of user Th constrained sub-

sequences containing the medical event C divided by

tot, the supp(A
T→) is the number of users divided by

tot and supp(
T→ C) is the number of user Th constrained

subsequences that contain the medical event C divided

by tot plus the number of non-user Tc constrained sub-

sequences that contain the medical event C divided by

tot. The leverage is calculated as,

Leverage = supp(A
T→ C)− supp(A T→)× supp( T→ C)

(3)

In addition to calculating the standard leverage, a

new measure called unexpected-leverage is also calcu-

lated. The unexpected-leverage (unexlev) makes use of

a user’s history to filter repeated medical events from

the users’s Th constrained subsequence as these are

‘predictable’ and unlikely to be ADRs. This is done by

investigating a reference period of length Tr days start-

ing from Tb days prior to the first prescription within

the user’s sequence and filtering medical events from

the user’s Th subsequence if they occurred during the

Tr days in the period prior to the first prescription. An

example of determining if an item is ‘predictable’ can be

seen in Fig. 3 where three medical events C2,C3 and C4

all occur within the Th days after the prescription but

the medical event C2 also occurred within the Tr days

prior to the prescription so it is considered to be ‘pre-

dictable’ and is filtered, whereas the medical events C3

and C4 do not occur within the Tr days prior so they

are not filtered. Defining supp(A
T
↪→ C) as the num-

ber of users who’s Th constrained subsequence contains

medical event C but who do not have medical event

C within the Tr days prior to the first prescription di-

vided by tot and supp(
T
↪→ C) as the total of the num-

ber of users who’s Th constrained subsequence contains

medical event C but who do not have medical event C

within the Tr days prior to the first prescription plus

the number of non-user Tc constrained subsequences

that contain the medical event C all divided by tot, the

unexpected leverage is calculated as,

unexlev = supp(A
T
↪→ C)− supp(A T→).supp(

T
↪→ C) (4)

MUTARA was designed to calculate the unexpected-

leverages for a drug and set of specified medical events.

MUTARA then ranks the medical events in descending

order of the unexpected-leverage, so the dependency

measure used by MUTARA for signalling ADRs is the

unexpected-leverage value.

The authors state that MUTARA is prone to thera-

peutic failures so HUNT was developed as an improve-

ment [12]. HUNT returns medical events in descending

order of the ratio between the leverage rank and the

unexpected-leverage rank,

RankRatio =
event rank based on leverage

event rank based on unexpected-leverage

(5)

The medical events are ranked such that the medical

event with the highest leverage/unexpected-leverage is

ranked number 1 and the higher the rank, the lower

the rank number. The reason the rank ratio works is

because the medical events that are true ADRs will

generally only occur after the drug is taken and will

not be filtered from the Th constrained subsequences,

so the leverage and unexpected-leverage of ADRs will

be approximately the same. The medical events that are

linked to the cause of taking the drug will occasionally

occur before the prescription for some patients and be
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Fig. 2 Example of a user sequence and a non-user sequence with the time periods illustrated. The red vertical lines in the
user sequence corresponds to the point in time that the user is prescribed the drug being investigated, non red vertical lines
correspond to prescriptions of other drugs and the circles correspond to medical events, with different colours representing
different medical events.

Fig. 3 Example of determining if an event is ‘predictable’ or not within the sequence. If the event occurs in the hazard
period Th and reference Tr period it is ‘predictable’, if it occurs in the hazard period and not the reference period it is not
‘predictable’.

filtered from the Th constrained subsequences, result-

ing in the unexpected-leverage being lesser than the

leverage. Therefore, the rank number of ADRs based

on unexpected-leverage will be less than or equal to

the rank number based on leverage (as medical events

linked to the cause of taking the drug will have moved

down the rankings), so the rank ratio will be greater

than or equal to 1, whereas medical events linked to

the cause of the drug will have an unexpected-leverage

rank number greater than or equal to the leverage rank

number, so the rank ratio will be less than or equal to

1. It is clear that ADRs will have a higher RankRatio

than therapeutic failure medical events.

2.2.3 MUTARA/HUNT Previous Results

MUTARA was applied on the QLDS for older females

given alendronate and within the top ten events re-

turned by the algorithm was reflux esophagitis, a known

ADR. The top two events returned by MUTARA were

linked to osteoporosis, the cause of taking the drug and

the other events were not listed and assumed to be

unlikely to be adverse drug events. This suggests the

precision of the top ten events (P (10)) is 0.1 for the

algorithm applied to QLDS with a specific strata.

HUNT was applied on the QLDS for the drug al-

endronate and the stratum consisting of older females.

The results show HUNT returned three known ADRs

within the top ten events returned. This corresponds

to an P (10) = 0.3. When alendronate was investigated

for older males, one known ADR was returned, corre-

sponding to an P (10) = 0.1.

2.2.4 Implementation of MUTARA/HUNT in this

study

In this study the set of medical events input in MU-

TARA and HUNT is the collection of any medical event

that occurred within 30 days of a first prescription of

the drug being investigated for any patient. The rea-

son behind choosing 30 days is for consistency with

the other algorithms in this study, enabling a fairer

comparison. We did not implement any stratification

and the chosen study period was all the records from

1900−2010. The algorithms MUTARA60 and HUNT60

referred to in the continuation of this paper were MU-

TARA and HUNT implemented with Tc = Te = 30,

Tr = Tb = 60 and the algorithms MUTARA180 and

HUNT180 referred to in the continuation of this paper

were MUTARA and HUNT implemented with Tc =

Te = 30, Tr = Tb = 180. We chose not to have a gap

between the reference period and date of first prescrip-

tion of the drug (Tr = Tb) as preliminary tests indicated

this gave better results due to many indicator events

occurring a few days prior to prescription.

2.3 TPD Ratio

2.3.1 TPD Ratio Background

Noren et al. developed the Temporal Pattern Discovery

(TPD) algorithm based on a measure of disproportion-

ality [15]. This method is very similar to the dispropor-

tionality methods applied to SRS databases.

The database the TPD was developed for is the

UK IMS Disease Analyzer containing over two million
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patients and 120 million prescriptions. Similar to the

THIN database, the UK IMS Disease Analyzer extracts

data directly from general practitioners computers. The

OE ratio was implemented on patient records up to

31 December 2005. The database contained 3445 drugs

and 5753 medical events encoded by the ICD-10 [26].

2.3.2 TPD algorithms

The TPD algorithm compares the number of patients

that have the first prescription of drug x in thirteen

months followed by event y within a set time t relative

to the expected number of patients if drug x and event

y were independent. Letting ntxy denote the number of

patients that have drug x for the first time (in thirteen

months) and event y occurs within time period t, nt.y
denote the number of patients that are prescribed any

drug for the first time (in thirteen months) and have

event y within time period t. ntx. denote the number of

patients that have drug x for the first time (in thirteen

months) with an active follow up in time period t and

nt.. denote the number of patients that have any drug for

the first time (in thirteen months) with an active follow

up in time period t. The expected number of patients

that have drug x and then event y in a time period t is

then,

Etxy = ntx.
nt.y
nt..

(6)

If for a given drug, the event occurs more than ex-

pected, the ratio between the observed and expected

will be greater than one. By taking the log2 of the ra-

tio, a positive values suggests an interesting association

between a drug and event. Modifying the equation to

prevent the problem of rare events or drugs resulting in

a small expectation that can cause volatility, a statisti-

cal shrinkage method is applied.

IC = log2
ntxy + 1/2

Etxy + 1/2
(7)

The shrinkage adds a bias for the IC towards zero when

an event or drug is rare. The credibility intervals for

the IC are the logarithm of the solution to Eq. 8 with

q = 0.025 and q = 0.975.∫ µq

0

(Etxy + 1/2)n
t
xy+1/2

Γ (ntxy + 1/2)
u(n

t
xy+1/2)−1e−(nt

xy+1/2)du = q

(8)

The above can find possible drug and event associa-

tions of interest for a given t, however, the authors sug-

gest that general temporal patterns can be found by

comparing the IC of two different time periods. The

follow-up period of primary interest is denoted by u

and the control time period by v. This removes event

and drug relationships that just happen to occur more

in certain sub-populations. The difference between the

IC for both time periods is,

log2
nuxy
Euxy

− log2
nvxy
Evxy

(9)

re-arranging and adding a shrinkage term gives,

IC∆ = log2
nuxy + 1/2

Eu∗xy + 1/2
(10)

where

Eu∗xy =
nvxy
Evxy

.Euxy (11)

In previous work, Noren et al. set u and v such that

30 days after the prescription is contrasted with a time

period of 27 to 21 months prior to prescription, this

centers the v period around the same time of the year

that the u period occurs preventing seasonal bias. The

TPD calculates the IC∆ for each medical event that oc-

curs within a month of the drug being investigated for

any patient and returns the list of the medical events

in descending order of the IC∆ value. In addition to

calculating the IC∆, a filter is applied to remove med-

ical events with an IC on the day of prescription or

the month prior higher than the IC for the time period

investigated after the prescription.

2.3.3 TPD Previous Results

The algorithm was applied to the UK IMS Disease An-

alyzer database for the drug nifedipine and found seven

known ADRs within the top ten non administrative

events returned. This corresponds to an P (10) = 0.7.

2.3.4 Implementation of TPD in this study

In this study we implemented the TPD as described

in [15], with 30 days after the first prescription in 13

months contrasted with 27 to 21 months prior to pre-

scription, but investigated two different filters:

– We apply the TPD and filter medical events with an

IC value the month prior to prescription or an IC

value on the prescription day greater than the IC

value during the month after the prescription (TPD

1).

– We apply the TPD and filter medical events with

an IC value the month prior to prescription greater

than the IC value during the month after the pre-

scription (TPD 2).
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The justification for choosing two filters is due to

the possibility that ADRs can occur and be reported to

doctors on the same day as the prescription, so filter-

ing events with an IC value on the day of prescription

greater than the IC value during the month after the

prescription may prevent detection of some ADRs. We

can investigate this by implementing both filters and

comparing the results.

3 Materials & Methods

3.1 THIN Database

The THIN database contains medical records from par-

ticipating general practices within the UK. The data are

anonymously extracted directly from the general prac-

tice Vision clinical system [10]. THIN then implements

validation steps; these are added as extra fields within

the tables. The database contains patient information

including the year of birth, gender, date of registra-

tion and family history of each patient registered at the

practice since participation. Any illness, symptom, pro-

cedure, laboratory test, diagnosis or other relevant in-

formation that a doctor learns about a patient (referred

to as a medical event) is recorded along with the cor-

responding date. Information regarding any medication

prescribed as well as the date of the prescription and the

dosage are also included in the database. For this com-

parison a database containing records from 495 general

practices was used. This subset of the THIN database

contained approximately four million patients, over 358

million prescription entries and over 233 million medi-

cal event entries.

Each medical event is recorded in the database by a

reference code known as a Read code. The Read codes

used in the THIN database are an independent system

designed specifically for primary care but every ICD-9-

CM (International Classification of Diseases, Ninth Edi-

tion, Clinical Modification) code (or analogues) have a

corresponding Read code [22]. The UK general prac-

tice database has a hierarchal event Read code struc-

ture. The longer the Read code the greater the detail.

For example ‘H32..00’ may represent the event ‘Depres-

sion’ whereas ‘H321.00’ may represent ‘Depression due

to medication’. The last two elements of the Read code

represent events of the same type but described differ-

ently for example ‘G1...00’ and ‘G1...01’ may represent

‘had a chat with patient’ and ’had a chin wag with pa-

tient’ respectively. Only the first five elements of the

Read codes were used in this study and Read codes

corresponding to administrative events were ignored as

they did not offer any information about ADRs. There

were a total of 90 122 different five element Read codes

used in this study.

3.2 Preprocessing the THIN Database

Data miners applying algorithms to EHDs obtained

from general practice records need to be careful with

newly register patients. As patients can change gen-

eral practices at any age, when they register they may

have a history of events that a doctor needs to record.

The term ‘registration event dropping’ is used when his-

toric or previously diagnosed events of newly registered

patients are entered into the database. For example,

when a new patient first visits their doctor they may

inform the doctor of a previously diagnosed chronic ill-

ness such as ‘diabetes’. This medical event will then

be input into the database with a date corresponding

to the visit, rather than the actual date the patient

was diagnosed with diabetes. As the dates recored for

the ‘registration event drops’ are frequently incorrect,

including them in a research study will bias results.

Research suggests that ’registration event dropping’ is

significantly reduced after a patient is registered for a

year. To prevent ’registration event dropping’ biasing

the results in this study, the first 12 months of medical

history after registration are ignored for each patient as

justified in [14].

As patients can move to a different practice at any

time (or die), in this study we only include prescrip-

tions into the study where the corresponding patient is

still active for a minimum of 30 days after. This pre-

vents the bias due to ‘under-reporting’ of adverse drug

events that may occur if a patient no longer attends the

practice. The last date a patient is active is considered

to be the maximum date of any record for the patient

or the patient’s date of death.

3.3 Drugs

To investigate the robustness of each existing algorithm,

we applied the existing algorithms to a range of drugs.

To determine if certain algorithms perform optimally

under specific conditions, we chose to study multiple

drugs from the same drug families. The reason we chose

multiple drugs from the same family is that the drugs

would generally have similar indications and side ef-

fects, but may have different rates of prescription or be

used by different groups of patients, for example the

drug may be predominantly prescribed to the young

or to females . Therefore, by comparing the algorithm

performance between drugs of the same family we are

controlling for patient medical state while investigating
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the effect that the attributes (average age, male propor-

tion, total number of patients) of the group of patients

prescribed each drug have on the algorithm.

The drugs Ibuprofen, Ketoprofen, Fenoprofen and

Celecoxib used in this study are all from the same drug

family known as non-steroidal anti-inflammatory drugs

(NSAIDs). These drugs are typically prescribed for con-

tinuous pain associated with inflammation and have a

variety of common side effects including gastrointesti-

nal disturbances, hypersensitivity reactions and depres-

sion. Rarer side effects include congestive heart failure,

renal failure and hepatic failure. Elderly patients are

more prone to side effects associated with NSAIDs. In

this study the the drugs tended to be prescribed sightly

more to females with the male proportion ranging from

0.335 − 0.405 and to older patients, although Ibupro-

fen was prescribed to younger patients more than the

other NSAID drugs. The NSAID drug prescribed the

most was Ibuprofen with over a million first in 13 month

prescriptions, whereas Fenoprofen was only prescribed

1225 times for the first time in 13 months, see Table 2.

The quinolones are a class of drugs used to treat bac-

terial infections such as respiratory track infections and

urinary-track infections. Ciprofloxacin, levofloxacin, mox-

ifloxacin, nalidixic acid and norfloxacin are drugs from

the quinolone family that are investigated in this pa-

per. The quinolones have many side effects, including

tendon rupture. The average age of the patients pre-

scribed the quinolones for the first time in 13 months

was similar between all the drugs, around the late fifties.

The male proportion shows that females are prescribed

quinolones more than males, but this was more obvi-

ous for norfloxacin and nalidixic acid. Ciprofloxacin was

the most prescribed quinolone and moxifloxacin was

the least common, with only 1465 prescriptions. Table

3 shows the information on the drugs from the THIN

database.

Tricyclic antidepressant drugs are a family of drugs

used to treat depression and are known to cause, among

others, cardiovascular and central nervous system side

effects. The three drugs, doxepin, lofepramine and nor-

triptyline where selected in this paper. The tricyclic

antidepressants investigated are prescribed to patients

with similar ages and genders and tend to be prescribed

more often to older females. The main difference be-

tween the drugs is that doxepin is only prescribed to

6752 patients whereas the other two drugs are pre-

scribed to more than 10000 patients, see Table 4.

The drugs nifedipine, nicardipine, amlodipine, felodip-

ine and verapamil are all calcium channel blocker that

are used to treat high blood pressure and raynaud’s

phenomenon. It is common for the calcium channel

blockers to be prescribed with other drugs and apply-

ing the existing algorithms to detect side effects on the

calcium channel blockers will investigate the effect of

confounding due to multiple prescriptions. The drug

nifidipine was previously used to investigate the TPD

applied to the UK IMA Disease Analyzer, so investigat-

ing the calcium channel blockers will also give insight

into how robust the TPD is when applied to different

electronic healthcare databases. The calcium channel

blockers are generally prescribed for the first time in

13 months to patients around 65 years old. Amlodip-

ine and nicardipine are prescribed only slightly more

to females than males, whereas the other calcium chan-

nel blockers investigated are prescribed even more often

to females. Amlodipine and nifedipine have been pre-

scribed over 100000 times for the first time in 13 months

in the THIN database, but nicardipine has only been

prescribed 2796 times, see Table 5.

The sulphonylurea drug family includes tolbutamide,

glibenclamide, gliclazide, glimepiride and glipizide. They

are a class of antidiabetic drugs used for the manage-

ment of type 2 diabetes mellitus. The sulphonylureas

are prescribed for the first time in 13 months to older

patients will an average age around 65 years old and

all the sulphoylureas investigated except tolbutamide

are prescribed more often to males, with approximately

equal male proportions. Glipizide and tolbutamide are

the less frequently prescribed sulphonylurea drugs. The

general information about each of the sulphonylurea

drugs can be seen in Table 6.

The last drug family is the Penicillin drugs amoxi-

cillin, ampicillin, flucloxacillin, benzylpenicillin and phe-

noxymethlypenicillin. These drugs are used to treat bac-

terial infections. The number of times the drugs are

recorded as being prescribed in the THIN database

varies between 2000 to over two million. There is also

a divergence between the average age of the patients

prescribed each of the drugs, with the penicillins gener-

ally being prescribed to younger patients than many of

the other drugs families investigated in this paper. The

male proportion is fairly similar between the different

penicillin drugs, with females being prescribed the drug

more often than males, see Table 7.

3.4 Comparison Method

Before calculating the comparison measures we applied

our own filter that is specific to the THIN database

to remove medical events that are chronic (as chronic

medical events are not side effects), that correspond to

cancer (as it is unlikely that cancer will develop as a

side effect within 30 days of the drug first being pre-

scribed) or those that are not related to the patient’s
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Table 2 Information about the NSAID drugs investigated in this paper. Total is the number of times the drug is prescribed
for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the first time in 13 months
and male proportion is the number of patients that are male divided by the total number of patients who are prescribed the
drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
celecoxib 68036 62946 62100 63416 62.49 0.335
ibuprofen 1178163 1012555 858819 903415 45.56 0.405
ketoprofen 72946 65718 61710 63536 58.17 0.375
fenoprofen 1255 1008 975 1036 56.29 0.404

Table 3 Information about the Quinolone drugs investigated in this paper. Total is the number of times the drug is prescribed
for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the first time in 13 months
and male proportion is the number of patients that are male divided by the total number of patients who are prescribed the
drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
ciprofloxacin 280011 250158 227739 235420 55.64 0.440
levofloxacin 7662 7028 6775 6928 60.55 0.43
norfloxacin 14876 13224 12220 12625 56.83 0.262

moxifloxacin 1465 1347 1343 1371 62.09 0.419
nalidixic acid 4273 3646 3620 3787 55.63 0.127

Table 4 Information about the tricyclic drugs investigated in this paper. Total is the number of times the drug is prescribed
for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the first time in 13 months
and male proportion is the number of patients that are male divided by the total number of patients who are prescribed the
drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
doxepin 6752 6029 5908 6104 56.69 0.316

lofepramine 45532 38565 37642 39517 51.39 0.285
nortriptyline 11775 10519 10307 10650 54.43 0.286

Table 8 Table illustrating a TP, FP, FN and TN. Listed
event means the medical event is listed on the British Na-
tional Formulary as a known side effect and non-listed event
means it is not listed as a known side effect.

Listed event Non-listed event
Signalled True Positive (TP) False Positive (FP)

Not Signalled False Negative (FN) True Negative (TN)

health (such as administration events or occupation in-

formation). Without this filter the performance of each

algorithm was reduced.

3.4.1 Natural threshold based measures

The signalling ability of each algorithm using the natu-

ral threshold was investigated by calculating the sensi-

tivity and specificity at their natural thresholds (0 for

MUTARA/TPD and 1 for ROR) using the values de-

scribed in Table 8.

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)

3.4.2 Rank based measures

Each data mining algorithm, as described in section 2,

is applied to the THIN database and a ranked list of

medical events is returned for each drug investigated.

The non filtered medical events are ranked in descend-

ing order of the association between the drug of interest

and medical event, so medical events the algorithm has

deemed more likely to be ADR are ranked higher, an

example of this can be seen in Table 9. Each algorithm

is then analysed by investigating how well it has ranked

each of the known ADRs that have occurred in the re-

turned ranked list. The known ADRs are those that

are listed in the British National Formulary (BNF) [13]

for the specific drug, or medical events described as

‘adverse reaction to drug x’ or containing information

about the continuation of the drug prescription.

Given a ranked set of events, we calculate the Truth

measure y(i) for the ith ranked event, by letting y(i) = 1

if the event is a known ADR and y(i) = 0 otherwise,

as shown in Table 9. Table 9 shows an example of a

returned list containing five events ranked by an al-

gorithm and the corresponding y values. Using the y

values we can then use the measures described below

to compare the different algorithms.
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Table 5 Information about the calcium channel blocker drugs investigated in this paper. Total is the number of times the
drug is prescribed for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the
first time in 13 months and male proportion is the number of patients that are male divided by the total number of patients
who are prescribed the drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
nifedipine 125491 112715 112499 115823 65.29 0.453
verapamil 24334 22000 21896 22513 65.01 0.405
felodipine 69534 65093 64036 65202 67.46 0.454

amlodipine 270918 251316 249972 254876 66.68 0.494
nicardipine 2796 2510 2511 2593 65.91 0.481

Table 6 Information about the sulphonylurea drugs investigated in this paper. Total is the number of times the drug is
prescribed for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the first time
in 13 months and male proportion is the number of patients that are male divided by the total number of patients who are
prescribed the drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
glibenclamide 11874 10356 10377 10768 65.12 0.540

gliclazide 45824 41626 40537 41612 65.02 0.546
glimepiride 10957 10156 9882 10081 64.20 0.534

glipizide 5315 4856 4614 4731 66.50 0.535
tolbutamide 3113 2758 2793 2894 69.40 0.487

Table 7 Information about the penicillin drugs investigated in this paper. Total is the number of times the drug is prescribed
for the first time in 13 months, age is the average age of the patients who are prescribed the drug for the first time in 13 months
and male proportion is the number of patients that are male divided by the total number of patients who are prescribed the
drug for the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
amoxicillin 2795759 2321098 1593874 1718875 38.84 0.427

benzylpenicillin 2071 1610 1840 1972 31.79 0.471
flucloxacillin 971174 834017 729967 765428 41.42 0.456

phenoxymethly 55397 45941 45679 48142 29.67 0.396
ampicillin 80655 63458 64827 69381 39.18 0.423

The precision of each method at cutoff K, denoted

P (K), is defined as the fraction of known ADRs that

occur in the top K events of the list returned by each

algorithm for a specific drug, see Eq. (14).

P (K) =

∑K
i=1 y(i)

K
(14)

The average precision (AP) is a measure that can

be used to determine how well an algorithm generally

ranks the medical events associated to a drug. This

measure has previously been applied to compare algo-

rithms implemented on a different EHD [19].

The AP is calculated by finding the average P (K)

for each K corresponding to a known ADR,

AP =

∑
K:y(K)=1 P (K)∑

i y(i)
(15)

Using Table 9 as an example, as there are two known

ADRs returned (
∑
i y(i) = 2) and the known ADRs in

the table are ranked second and third we have {K :

y(K) = 1} = {2, 3}, so the AP score is,

AP =
P (2) + P (3)

2
=

1/2 + 2/3

2
=

7

12
(16)

It was also possible to investigate how well each

algorithm ranks the known adverse drug events for a

specific drug depending on how common they are. As

the BNF states the risk of each known ADR by sepa-

rately listing frequently, less frequently and rarely oc-

curring known ADRs we also calculated the AP score

of each algorithm when only considering rarely occur-

ring known ADRs (as unknown ADRs are likely to be

rare). So, we calculate the AP scores for two different

situations; considering all known ADRs and considering

only rarely occurring known ADRs. When considering

only the rare ADRs, the known common and less com-

mon ADRs are filtered from the list of medical events

returned by each algorithm. The reason for filtering the

common and less common known ADRs is to prevent

their presence causing a low AP score when only con-

sidering rare ADRs, as if an algorithm did not filter the

common and less common known ADRs and correctly

ranks these highly (above the rare ADRs) then the rare

ADRs would have a lower rank, which would result in

a lower AP score when only considering rare ADRs.

To give a general measure of the ranking ability of

each algorithm over all the drugs investigated (rather
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Table 9 An example of the medical event list associated to a specific drug and ordered by one of the algorithms.

Medical Event Rank Score Known ADR y(i)
Event 1 2.34 No y(1) = 0
Event 5 2.12 Yes y(2) = 1 precision2 = 1/2
Event 4 1.75 Yes y(3) = 1 precision3 = 2/3
Event 2 1.74 No y(4) = 0
Event 3 0.68 No y(5) = 0

Table 10 An example of the medical event list for all the drugs and ordered by one of the algorithms.

Drug Medical Event Rank Score Known ADR y(i)
Drug 10 Event 7 2.34 No y(1) = 0
Drug 10 Event 5 2.12 Yes y(2) = 1
Drug 2 Event 56 1.75 Yes y(3) = 1
Drug 9 Event 7 1.74 No y(4) = 0
Drug 2 Event 16 0.68 No y(5) = 0

Table 11 The specificity and sensitivity at the natural
thresholds for the different algorithms (3dp).

Algorithm Signals Sens Spec Precision
HUNT60 7785 0.179 0.903 0.0541
HUNT180 7785 0.193 0.903 0.058

MUTARA60 67624 0.933 0.109 0.032
MUTARA180 65435 0.914 0.136 0.032

TPD 1 1893 0.090 0.953 0.057
TPD 2 3557 0.107 0.926 0.043
ROR05 37729 0.312 0.726 0.031

than calculating ranking measures per drug) we also

compute ROC plots. The ROC plots were generated by

combining all the drug results for each algorithm, as il-

lustrated in Table 10 and calculating the sensitivity and

specificity for signals generated at a range of signalling

thresholds. The ROC curves are formed by plotting the

true positive rate (TPR=sensitivity) against the false

positive rate (FPR=(1-specificity)). The Area Under

the Curve (AUC) was approximated using the trape-

zoidal rule for FPR ranging between 0-1, 0-0.3 and 0-0.1

(AUC[0,1],AUC[0,0.3] and AUC[0,0.1] respectively).

4 Results

4.1 Natural Thresholds

Table 11 shows the specificity and sensitivity for the

different algorithms at their natural threshold and the

number of signals generated. The natural threshold for

the ROR and TPD are that their lower confidence in-

terval value is greater than 1 and 0 respectively. MU-

TARA does not have a lower confidence interval calcu-

lation, so the natural threshold implemented is that the

unexpected-leverage is greater than 0 and for HUNT

the top 10% of medical events were signalled.

Table 12 The AUC results for the different algorithms
(3dp).

Algorithm AUC[0,1] AUC[0,0.3] AUC[0,0.1]

HUNT60 0.566 0.072 0.011
HUNT180 0.570 0.071 0.011

MUTARA60 0.596 0.076 0.010
MUTARA180 0.597 0.069 0.010

TPD 1 0.570 0.065 0.009
TPD 2 0.557 0.060 0.007
ROR05 0.546 0.048 0.005

4.2 ROC Analysis

THE AUC[0,1] for the algorithms ranged between 0.546

(ROR05) to 0.597 (MUTARA180), the AUC[0,0.3] for

the algorithms ranged between 0.048 (ROR05) to 0.076

(MUTARA60) and AUC[0,0.1] for the algorithms ranged

between 0.005 (ROR05) to 0.011 (HUNT180 and HUNT60).

Fig. 4 and Fig. 5 show the ROC plots for the different

algorithms.

4.3 AP

Fig. 6 shows the AP scores for the different algorithms

over the range of drugs investigated. The family of drugs

that the algorithms perform worse on overall were the

sulphonylureas with AP scores ranging from 0.0088 −
0.0687. The algorithms all performed well on the cal-

cium channel blockers, with AP scores ranging from

0.0236 − 0.1988, but the ROR05 performed worse for

all the calcium channel blockers investigated. The algo-

rithms also performed well for the tricyclic antidepres-

sants with AP scores ranging between 0.0499− 0.1670.

It can be seen in Fig. 6 that generally the algorithms

perform similarly between the same drugs of the same

class, apart from the algorithms performing much bet-

ter for benzylpenicillin sodium compared to the other

penicillin drugs.
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Fig. 4 The ROC plots for the different algorithms over the whole FPR (1-specificity) range. The black line is the line x=y.

The box plots of the AP scores for the different al-

gorithms seen in Fig. 7 show overall the TPDs, MU-

TARAs and HUNTs perform equally and outperform

the ROR05. The MUTARA algorithm has the highest

median AP score over all the drugs and is more consis-

tent, whereas the performance of the TPD and HUNT

varies more between the drugs. The box plots for the

algorithm AP scores when only considering rare known

ADRs, see Fig. 8, shows that the algorithms AP scores

are lower when ranking rare ADRs, as the maximum

AP score for all the algorithms when only considering

rare known ADRs was less than 0.08, whereas the max-

imum AP scores for all the algorithms when considering

all known ADRs was approximately 0.2.

5 Discussion

5.1 Natural Thresholds

The results show that the natural thresholds operate

at different stringencies. The most stringent algorithm

was the TPD 1 that returned 1893 signals, the lowest

out of all the algorithms, with a high specificity of 0.953

and low sensitivity of 0.09, whereas the less stringent

was the MUTARA60 that returned 67624 signals with

a high sensitivity of 0.933 and a low specificity of 0.109.

This was not unexpected as the TPD threshold used the

lower confidence interval value rather than the actual

IC∆ value and the TPD applied a statistical shrinkage.

The results also show that none of the algorithms was
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Fig. 5 The ROC plots for the different algorithms over the section of FPR (1-specificity) less than 0.3. The black line is the
line x=y.

able to signal the known ADRs without being swamped

by false positives.

5.2 ROC Analysis

The existing EHD algorithms can be implemented to

return a list of medical events in order of how likely

the algorithm has deemed each medical event to be a

potential ADR. In effect, the algorithms act as filters

where lowly ranked medical events are filtered out and

tentative signals are generated for the top n ranked

medical events. These tentative signals are investigated

further with more stringent statistical analysis required

to confirm if they are true signals or not. Therefore, to

discover ADRs, the algorithms need to rank medical

events corresponding to ADRs highly and the higher

they are ranked the more likely they are to be discov-

ered. This shows that AUC[0,0.1] and AUC[0,0.3] give

a direct indication into how likely the algorithms will

detect ADRs. As the natural threshold’s of the algo-

rithms act at different stringencies, the AUC[0,0.1] and

AUC[0,0.3] measures offer a fairer comparison between

the algorithms.

The AUC results show that the algorithm perform

similarly and no algorithm had a higher AUC for all

three FPR cutoff values studied (AUC[0,1],AUC[0,0.3]

and AUC[0,0.1]).
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Fig. 6 Bar chart showing the AP scores for all the drugs, with a dashed line separating the different drug families.

5.3 AP

Overall no algorithm consistently outperformed the oth-

ers over all the drugs investigated in this study, how-

ever, either the TPD 1 or HUNT had the highest AP

score for the majority of the drugs studied. The ROR05

generally performed the worse, but still had a higher

AP score than the other algorithms for the drug phe-

noxymethylpenicillin. As we know the number of times

each drug was prescribed, the average age of the pa-

tients prescribed each drug and the male proportion of

the patients prescribed the drug, we discuss how these

factors impacted on the different algorithms below.

5.3.1 Age

The drugs prescribed to the youngest patients were the

penicillins. The TPD 1 returned the highest AP score

for flucloxacillin, amoxicillin and phenoxymethylpeni-

cillin and HUNT60 returned the highest AP score for

benzylpenicillin sodium and ampicillin. This is consis-

tent with the general results as the TPD 1 and HUNT60

generally had the highest AP score over all the drugs.

Although, compared to the other drugs in the study

all the algorithms performed fairly poorly for the peni-

cillins suggesting drugs that on average are prescribed

to younger patients may require the algorithms to ap-

ply stratification techniques rather than applying the

algorithms to all ages. This is unfortunate as stratifi-
cation is likely to result in an increase in the time it

takes to identify an ADR, as the population of patients

being prescribed a drug needs to be partitioned by age

but there is a lower limit to the patient size required

for the algorithms to work accurately.

The drugs prescribed to the oldest patients were

tolbutamide, felodipine, amlodipine, glipizide and ni-

cardipine with the average age of the patients prescribed

the drugs being 69, 67, 67, 67 and 66 respectively. These

drugs had high AP scores and the TPD performed the

best for all of these drugs. This suggests the TPD is

the optimal algorithm to apply to the THIN database

if the drug is prescribed to older patients. One possi-

ble reason why the TPD is better at ranking ADRs for

older patients may be due to older patients experiencing

more medical events, so there are more medical events

to rank, but as the TPD applies a filter it can remove

many of these medical events, increasing the chance of
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Fig. 7 Box plot showing the median, quartiles and minimum/maximum AP scores for each algorithm applied to all the drugs.

ranking a known ADR highly, whereas the other algo-

rithms apply less stringent filters.

5.3.2 Gender Bias

The drugs with the greatest gender bias towards fe-

males (prescribed more often to females) were the drugs

norfloxacin, lofepramine , nortriptyline and doxepin with

male proportions of 0.26,0.28, 0.29 and 0.32 respec-

tively. Apart from lofepramine, MUTARA and HUNT

perform much better for the drugs prescribed more to

females than males. This may highlight the need for

MUTARA and HUNT to be applied to a subset of the

patients such as old females or young males as was im-

plemented originally for MUTATA and HUNT.

The drugs gliclazide, glibenclamide, glipizide and

glimepiride are prescribed more often to males than fe-

males with a male proportion of 0.55, 0.54, 0.53 and

0.53 respectively. These drugs had the lowest AP scores

compared to all the other drugs investigated and pos-

sibly suggests that the algorithms have difficulties de-

tecting ADRs for drugs prescribed more often to males.

This result is not unexpected as patients taking part

in clinical trails are predominately male, so the known

ADRs for drugs frequently prescribed to males are more

likely to be rare (otherwise they would be discovered

during the clinical trials).

5.3.3 Low Prescription Rates

The drugs that had the lowest number of prescriptions

in the database were fenoprofen, moxifloxacin, benzyl-

penicillin and tolbutamide with only 1255, 1465, 2027

and 3113 prescriptions respectively. These four drugs

had a varied average age of patients prescribed the

drugs and male proportion. Looking at Fig 6 we can

see that the AP scores for these drugs are the best or

second best when comparing against the drugs in the

same family. This result shows that the existing algo-

rithms applied to the THIN database are able to detect

ADRs after around one thousand patients have been

prescribed a drug and may be able to detect ADRs in

new drugs more efficiently that applying existing al-

gorithms to SRS databases. Furthermore, HUNT per-

formed the best for the three drugs with the lowest

number of prescriptions, suggesting HUNT may be the

optimal algorithm to apply when a drug is newly mar-

keted.
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Fig. 8 Box plot showing the median, quartiles and minimum/maximum AP scores for each algorithm when only considering
rare known ADRs for all the drugs.

5.4 Detecting rare ADRs

The results show that none of the existing algorithms

is able to rank rare ADRs highly and currently the ex-

isting algorithms tend to focus on detecting more com-

mon ADRs. A possible reason for this with the TPD

is because it is more stringent as the calculation is bi-

ased to reduce the IC∆ when a medical event is rare,

this means that we can be more confident about signals

generated by the TPD, but at the cost that rarer ADRs

may take longer to be signalled. The reason MUTARA

and HUNT struggle to rank rare ADRs highly is likely

due to non ADR medical events that are linked to the

cause of the drug incorrectly having a high rank and

pushing the rare ADRs down the ranked list.

This is an important result as the currently un-

known ADRs are either likely to be rare or correspond

to medical events with a high background rate, as more

obvious ADRs will be discovered during clinical trails

or by mining SRS databases.

5.5 Discussion of Existing Algorithms

There does not appear to be an optimal reference pe-
riod to apply for HUNT out of Tr = 60 or Tr = 180 as

HUNT180 returned a better AP score that HUNT60 for

some drug and worse for others. This shows the refer-

ence period used by HUNT has a large impact on the

outcome and should be different for each drug. The rea-

son for this is that the reference period should depend

on the background rate of the drugs ADRs, as if the

ADR is common, having a large reference period will

mean that the ADRs is likely to occur during the refer-

ence period and be incorrectly filtered. However, these

is also a downside to having a short reference period as

the shorter the reference period the less likely the al-

gorithm will filter medical events have are repeats. An

improvement to MUTARA and HUNT would be to de-

velop a way to learn the optimal reference period to use

for each drug. MUTARA and HUNT also have issues

due to using a random period of time in the non-user se-

quences making the algorithms non deterministic and in

this paper we did not study how much the results vary

between different implementations of the algorithms.
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We investigated the two different filters for the TPD

and interestingly including the day of prescription into

the filter improved the AP scores for the majority of

drugs, this suggests that most ADRs are not recorded

on the same day as the drug is prescribed. However,

for some drugs the TPD 2 outperformed the TPD 1, so

using the day of prescription in the filter does occasion-

ally prevent the detection of known ADRs. In summary,

including the day of prescription into the filter for the

TPD generally increases the algorithms precision but

at a cost as it can prevent the detection of some ADRs.

5.6 Previous Work and Limitations

The results obtained in this study were consistent with

previous results as the P (10) for MUTARA and HUNT

averaged 0.065 and 0.122 respectively in this study and

were 0.1 and 0.1 − 0.3 respectively in previous work

[11][12]. The P (10) for the TPD method applied to

Nifedipine in this study was 0.7, the same as on the UK

IMS Disease Analyzer database [15]. However, there

was deviation between the AP score of the ROR05 in

this study (0.01 − 0.06) and in the study by Zorych et

al. [28] (0.1-0.15), this is probably due to this study us-

ing real data with redundant Read codes and Zorych et

al. using simulated data.

One limitation with this study is that there is no

‘gold standard’ for ADR detection and it is impossi-

ble to calculate the true sensitivity, specificity and AP

scores of the algorithms as the complete set of ADRs

for each drug is unknown and the algorithms may cor-

rectly rank an unknown ADR highly but this would

lower the sensitivity, specificity and AP values in this

study due to the event not being listed by the BNF as

a known ADR. However, the algorithms should be able

to correctly rank the known ADRs and these are likely

to be more common and obvious, so if the algorithm is

unable to correctly rank these above noise events then

it is unlikely to identify the unknown ADRs, so the AP

scores determined in this study still give insight into the

algorithms abilities to detect ADRs. The redundancy

in the Read Codes may also result in biased results as

similar medical events with different Read Codes may

get ranked closely and push down the ranks of known

ADR, so the algorithms may have higher AP scores if

there was a way to group Read Codes corresponding to

the same medical event.

6 Conclusions

In this paper we compared four existing ADR detect-

ing algorithms by applying them to the THIN data-

base for a range of drugs and measured how well they

ranked the known ADRs or signal known ADRs at their

natural thresholds. We have determine that the bench-

mark AP score for ADRs signalling algorithms applied

to the THIN database is 0.2, the benchmark AUC[0,0.1]

is 0.011 (3dp) and AUC[0,0.3] is 0.076 (3dp). Future al-

gorithms should aim for higher scores. The results show

that no algorithm was superior for all the drugs consid-

ered, although the results do indicate that HUNT may

be the optimal algorithm to apply when the number

of patients prescribed the drug is low or the TPD may

be optimal when the patients are old, however further

research needs to be conducted to confirm these hy-

potheses. However, in many situations at present, the

tentative ADR signals should be generated based on

how the medical events are ranked by all the different

algorithms rather than relying on one algorithm alone.

The results also clearly show that the existing algo-

rithms are not capable of detecting rare ADRs, but one

of the potential advantages of mining the THIN data-

base compared with mining the SRS databases it the

ability to detect rare ADRs that are under-reported in

SRS databases. For example, some rare but fatal ADRs

might never be noticed and reported into an SRS data-

base and would therefore be undetectable by mining

SRS databases.

Future work could focus on developing new filters

that are able to remove the medical events that are re-

lated to the cause of taking the drug but do not occur

before the drug is prescribed, such as illness progression

events. This would then reduce the number of false pos-

itive associations that are returned by the algorithms.

Future work should also address the limitations of this

study by developing a way to cluster the Read codes

and reduce their redundancy.
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